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Abstract: The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable
for industrial and biomedical applications. They show many advantages when it comes to local and
precise surface treatments, and there is interest in upgrading their performance for irradiation on
large areas and uneven surfaces. The generation of charged species (electrons and ions) and reactive
species (radicals), together with emitted UV photons, enables a rich plasma chemistry that should be
uniform on arbitrary sample profiles. Lateral gradients in plasma parameters from multi-jets should,
therefore, be minimized and addressed by means of plasma monitoring techniques, such as electrical
diagnostics and optical emission spectroscopy analysis (OES). This article briefly reviews the main
strategies adopted to build morphing APPJ arrays and ultra-flexible and long tubes to project cold
plasma jets. Basic aspects, such as inter-jet interactions and nozzle shape, have also been discussed,
as well as potential applications in the fields of polymer processing and plasma medicine.
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1. Introduction

A non-thermal atmospheric pressure plasma jet (APPJ) is the afterglow from a dielec-
tric barrier discharge (DBD) projected into ambient air [1,2]. The flow requires a noble gas
or an admixture with reactive gases. The elementary parts are streamers, which consist
of dipolar charged structures propagating between anode and cathode. The flowing of
guided streamers out of the DBD region conform the plasma column, which transits from
filamentary to a diffuse homogeneous mode, typically when a set of adjacent streamers
overlap [3].

The portability and cost-effective characteristics of APPJ sources make them very
attractive for many uses; from material synthesis, surface modification and/or functional-
ization, through to gas treatments, and biomedical applications. The latter discipline has
been a popular topic in both plasma physics and medical device development [4–7]. In
particular, the adoption of APPJ treatments to address cancer therapy via selective killing of
cancer cells has been a breakthrough in plasma science and technology, which has enabled
strong synergies between electrical engineers and healthcare laboratories [7]. Although
plasma cancer therapy is still a young discipline, there is common agreement that UV
radiation and radicals generated in the mixture of a free jet with air, such as reactive oxygen
and nitrogen species (RONS), are associated with the successful performance of plasma jets
in wound healing and tumor degradation.

There has been substantial progress towards the understanding of fundamental mech-
anisms in plasma–biomaterials interactions. However, a pending issue is the mechanical
adaptation of plasma sources to the targeted surface. The classical setup in APPJ instru-
mentation is based on a pen-shape device, which, once fed with electrical power and gas
supply, provides a needle-like discharge with millimetric side range [8]. This is the ade-
quate geometry for local treatments, and its use on extended areas demands programming
scanning routines and/or the assembly of several parallel nozzles to provide a multi-jet
outcome. Accommodation of plasma sources on surfaces showing uneven topology has
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been achieved so far by designing large-area sources based on dielectric barrier discharge
(DBD). Paper-based plasma sanitizers, knitted warfare gadgets, and low-power flexible
DBD sources summarize the state-of-the-art equipment in flexible plasma sources for
large-area treatments [9–12].

It would be desirable to upgrade APPJ technology to make it available for uniform
treatments over large areas. An important advantage compared with flexible DBD sources
is a better control over plasma chemistry and the option of modifying nozzle-sample
distances as per required treatment [13]. Figure 1a shows the main configurations of
atmospheric plasma sources for surface modification [14]. The highlighted APPJ column
shows the main charged and reactive species coexisting with the primary gas source,
typically helium or argon. Maho et al. prepared plasma multi-jet sources for skin treatment,
as shown in Figure 1b [15]. However, this configuration does not guarantee homogeneous
influx of plasma species onto the irradiated area. The persisting issue is how to improve
the uniformity of APPJ treatments over extended surfaces showing arbitrary topography,
which is only possible by means of deformable plasma jet arrays or nozzles compliant with
target features, such as asperities, trenches, elbows, or holes. This article briefly reviews the
main efforts in this respect.
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2. Extended- and Multi-Jet Devices

The fabrication of flexible APPJ devices demands an optimal arrangement of the
plasma jet nozzles. Either having sources designed in multi-jet arrays or in special nozzle
geometries, one should expect plasma systems operating with important interaction issues
and performance depending on the coupling at the plasma-sample interface.

2.1. Multi-Jet Interactions

An important aspect to consider when designing APPJ sources with multi-jet arrange-
ment is the nature of interactions between adjacent plasma plumes. As concluded from
experimental and computational studies, the four key aspects of technological relevance
are the discharge voltage waveform (pulsed vs. sinusoidal AC), timing of each jet, gas flow
rate (1–10 lpm), and inter-nozzle distance (few mms) [16–19]. Two main interactions govern
the trajectories of multi-jets: hydrodynamic (attractive) and electromagnetic (repulsive).
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Figure 2 shows a typical setup to study the optical and electrical characteristics of plasma
multi-jets [20]. Here, we only consider free jets. The presence of a target material coupled
to the multi-APPJ requires a separate analysis [21]. Moreover, the memory effect on the
surface induced by leftover charges from jet interaction substantially enhances the scenario
complexity [22].
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Figure 2. Scheme of an experimental setup prepared for the optical and electrical characterizations
of multi-APPJs and associated gas streams. In this setup, both He and Ar APPJs were studied
by measuring signal waveforms and obtaining Schlieren images of the plasma plume fluid dy-
namics. Reprinted/adapted with permission from Ref. [20]. Copyright 2017, WILEY-VCH Verlag
GmbH & Co.

Figure 3 shows optical images of a 3-APPJ array along with the corresponding density
contrast images obtained by Schlieren imaging [23]. All scenarios evidence multi-jet
divergence, whose characteristic angle is larger for the optical emission image due to
electrostatic repulsion between the bright plumes. The increase in the divergence angle is
observed for lower flow rates and larger voltages. Turbulence phenomena are connected
to higher voltages and gas fluxes, which can be explained by the linear dependence of
Reynolds number with the gas linear velocity [24]. The use of heavier gases (e.g., Ar vs.
He) diminishes the divergence angle due to the larger inertia of heavy plasma atoms [20].

The choice of whether supplying sinusoidal AC voltage or pulsed DC rectangular
voltage waveforms, along with the set amplitude and frequency, determines the spatial
charge density of each single plasma jet. Naturally, a larger accumulation of spatial charges
enhances repulsive interaction between adjacent plumes due to an increase in the jet
potential, thereby contributing to jet deflection [18,19]. This deflection is ultimately caused
by the electrostatic repulsion existing between guided ionization waves or plasma “bullets”,
which are the APPJ elementary constituents, and are detectable by high-speed imaging,
such as the ICCD technique [25,26]. Such repulsion can be modified by conveniently
synchronizing the voltage signal supplied to each jet, which in turn affects the time of
flight of the associated bullets. Indeed, Cho et al. showed that the interaction potential in a
crossed-flow two-plasma beam could be tuned by selecting the same or opposed polarities
of the interacting jets (incidence angle: 90 degrees) [27].

In contrast with electrical interaction, when the hydrodynamic interaction becomes
dominant, the multi-jet system tends to converge into a central jet due to inter-jet attractive
forces, which compensate for the electrostatic repulsion barrier. The boundary layer of
air formed between freely expanding neighboring jets can become very thin, and, in the
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limit of close-packed nozzles, such layer can vanish so that adjacent jets merge into a
more intense unified plasma column. Fang et al. illustrated this situation by forming
one very bright jet out of the merging of all single-participating plasma plumes [28]. In
summary, deviations from a straight, collimated multi-jet are expected from the combined
hydrodynamic and electrostatic characters of the fluid system. The question of which
interaction dominates depends on the specific APPJ setup and operating conditions. Hence,
APPJ source parameters need to be adjusted if the electrostatic and hydrodynamic effects
appear unbalanced and a collimated jet bundle is required.
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2.2. APPJ Nozzle Geometries

Besides inter-jet interactions, the shape of the APPJ nozzle is a subject of interest in
the design of flexible plasma jet sources. In general, the orifice from which an APPJ flows
to open air is cylindrical with a mm-sized diameter. This is the case for the channels used
to design atmospheric microplasma jet sources [29]. Micro-APPJs are commonly used in
plasma chemistry research [30,31], and they serve as inspiration for microfluidic plasmas,
which is being consolidated as a research line [32].

Alternatives to cylindric apertures are nozzles manufactured with a horn-like shape.
Although studies on deformable APPJ nozzles in operando have not yet been reported,
Castro et al. have characterized the performance of different horn-like nozzles emitting
plasma jets with comparable parameters [33]. In that study, they concluded that the
modified area of a polymer surface (wettability and roughness) systematically exceeds the
optically visible interaction area. This result is explained by the presence of non-emitting
reactive species in the vicinity of the APPJ interaction zone [34]. Figure 4a shows one of the
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conical jets with the plasma volume adapted to the object being treated. Another nozzle
shape worthy of exploration is the rectangular or slit aperture, which provides plasma
afterglows in 2D-like laminar form. Planar APPJs have been explored and show potential
applications requiring selected-area plasma processes (Figure 4b) [35,36]. The construction
of flexible APPJ devices with variable nozzle shapes will be a valuable milestone in cold
plasma applications.
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3. Morphing APPJ Arrays

As pointed out in the introduction, many efforts have been made in the construction
of flexible plasma source prototypes that operate in ambient air conditions. Some groups
mimicked plasma-jet configurations by designing linear arrays of biased pins adaptable to
different substrate geometries [37,38]. Nevertheless, not many authors have reported the
design and operation of flexible atmospheric plasma multi-jet sources with an independent
control over primary gas and its flow rate.

3.1. Close-Packed Microplasma Multijet Arrays

Ma et al. reported an early approach to a plasma multi-jet source made of a flexible
material [39]. The body of the source consisted of a molded silicon block with inserted
thin rods acting as electrodes, which were biased by a 20 kHz-AC signal at the kV range
amplitude. The separation between rods, inter-nozzle distance, and microchannel size were
all of the order of 1 mm or less. Hence, sub-millimetric nozzles enabled the production
of close-packed collimated micro-APPJs in a square matrix configuration, which ranged
from 2 × 2 up to 8 × 8 [40]. Up to three rods in parallel arrangement were inserted
across the microchannels direction, as shown in Figure 5a. This disposition is appropriate
to separately modulate the energy and length of different arrays of plasma plumes by
applying the appropriate voltage values at selected electrodes. Figure 5b shows the range
of discharge voltage and the current associated with this setup. The source characterization
was completed by optical emission spectroscopy (OES) diagnostics, showing the dominant
species in the different positions of the discharge: He, as a primary gas, was relevant within
the DBD source region, while a rich profile of nitrogen lines dominated in open air. A
helium back pressure of up to 800 Torr was exerted. No jet–jet interaction was observable.
Finally, this source successfully reduced burn wound size and sterilized drink water [41,42],
thereby validating its performance as an efficient healing and bactericide tool.
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The production of reactive plasma species based in oxygen and nitrogen formed
near the treated sample is enhanced thanks to the interaction of multiple plasma plumes
with the surrounding air. OES spectra depicted in Figure 6a show how RONS density
dominates over helium atoms and metastables in the afterglow region in the case of a
3 × 3 microplasma array. The medical therapy capabilities of the microplasma jet array
have been demonstrated by treating burn wounds in animal rat models [41]. The plasma
plume array treatment promoted a burn size reduction down to 20% of the original size in
2 weeks, whereas the control sample only decreased to 80% of its original size (Figure 6b).
It was concluded from the tissue histology that the healing process is accelerated through
the regulation of anti-inflammatory processing. However, more detailed analysis of gene
expression mechanisms, e.g., via tracking mRNA expressions of inflammatory markers, is
pending to complete the study.
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Figure 6. (a) Optical emission spectra corresponding to a 3 × 3 array microplasma jet measured in
the channel and outside in open air. (b) Evaluation of burn closure times in rats after plasma jet
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3.2. Low-Power Planar Uniform Jet Arrays

A compact device constituted by six independently actuated discharge cells has been
reported by Li et al. [43]. The anode–cathode alternating arrangement was operated at
an optimized electric field for argon flow. This setup yielded to discharges initiated at
a breakdown voltage far below the Townsend potential. Such elementary discharges
glowed in a non-self-sustained mode at relatively low voltages. Figure 7a,b shows the basic
geometry features of one of the discharge devices of the so called “low-power large-scale
uniform laminar plasma jet array”. The parallel-connection arrangement of several of these
cells was advantageous to send plasma jets with modulated V-I characteristics. Although
the ceramic housing of the cells is not flexible, the APPJ striking from each individual
anode–cathode segment can be independently sustained by the adequate combination of
switches, so that the profile of electromagnetic irradiation and of reactive plasma species
can be conveniently adapted to the specific sample topology.
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Figure 7. Sketch of a low-voltage laminar discharge array with plasma jets emanating from inde-
pendently actuated cells. Each single discharge is controlled by actuating on separate switches.
(a) Lateral, and (b) top view of the device. (c) Images of the planar jets striking in couples at different
positions with similar values of input power. Reproduced from [43]. Published by Wiley-VCH under
the Creative Commons CC BY license.
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Figure 7c shows flexible arrangements to generate plasma jets using similar power
values. The transverse light intensity emitted by the plasma array showed uniform profiles
along each cell. In particular, configurations in groups of single, double, or quadruple stable
plasma jets could be formed simultaneously by setting the adequate power distribution on
an independent switch circuitry [43]. In this way, different zones of a sample surface can
be selectively plasma-irradiated with the adequate switching arrangement at a low power
cost. Although the impact of the discharge mode variation on RONS concentration has
not been discussed, the basic plasma parameters, such as electron density, are expected to
remain constant.

3.3. Deformable APPJ Platforms

Corbella et al. pioneered the use of bendable surfaces as multi-APPJ emitters [44,45].
Such pad-like sources are constituted by an array or matrices of one to five nozzles of
millimeter size produced onto a silica aerogel foil. He plasmas were excited by 15 kHz-
sinusoidal AC signals of around 10 kV peak-to-peak through Cu tape electrodes placed
above and below the aerogel region. The spherical shaping of the nozzle aerogel surface
provided voltage, current waveforms, and optical emission spectra qualitatively similar
to the flat operation conditions. Therefore, the performance of the plasma multi-jet is not
expected to vary upon the changes in the curvature state of the aerogel, which should
correspond to the profile of the treated substrate in the final application. Figure 8 shows
the multi-APPJ surface in operation in either concave or convex-shaping modes (curvature
radius ≈ 5 mm). An OES analysis of the multi-jet provided the typical profile of emission
lines dominated by nitrogen species, which come from the air mixed with the He jet
column [46]. A jet divergence was clearly observed in flat and bent configurations, and it
was attributed to electrostatic interactions between the plasma plumes [19].
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Figure 8. (A) Photographs of the aerogel flexible array emitting three APPJs in convex (a) and con-
cave (b) bending modes. The large aperture, which is 1 cm in diameter, is surrounded by a ring Cu 
tape acting as ground. (B) OES spectrum collected from the flat 3-plasma jet shown in the inset 
image. Reprinted/adapted with permission from Ref. [44]. Copyright 2021, Authors. 

Power values limited to 5 W were obtained from the analysis of current and voltage 
waveforms of discharges corresponding to the 3-APPJ utilization. Since the power dissi-
pated by the plasma plumes is a fraction of the total power consumed by the plasma 
source, i.e., DBD together with jets, such configuration may be adequate to build bendable 
plasma multi-jet prototypes to treat temperature-sensitive samples, such as biopolymers 
and organic tissues. Furthermore, upscaling the possibilities of this source should be 
tested by assembling multiple cells managed by independent power supplies. 

Figure 8. (A) Photographs of the aerogel flexible array emitting three APPJs in convex (a) and concave
(b) bending modes. The large aperture, which is 1 cm in diameter, is surrounded by a ring Cu tape
acting as ground. (B) OES spectrum collected from the flat 3-plasma jet shown in the inset image.
Reprinted/adapted with permission from Ref. [44]. Copyright 2021, Authors.

Power values limited to 5 W were obtained from the analysis of current and voltage
waveforms of discharges corresponding to the 3-APPJ utilization. Since the power dis-
sipated by the plasma plumes is a fraction of the total power consumed by the plasma
source, i.e., DBD together with jets, such configuration may be adequate to build bendable
plasma multi-jet prototypes to treat temperature-sensitive samples, such as biopolymers
and organic tissues. Furthermore, upscaling the possibilities of this source should be tested
by assembling multiple cells managed by independent power supplies.
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Following up the study above, identical electric and gas feedings were applied to a
low-density polyethylene (PE) cylindrical hollow housing to ignite APPJs in the radial
direction [47]. The working principle is schematically shown in Figure 9. Briefly, a He
flow was introduced in the axial direction of the cylinder cavity, which had mm-size radial
channels through the walls. The electric field generated between an axial electrode rod
and Cu tape glued around the outer perimeter was able to sustain the gas breakdown.
The generated APPJs were produced from the He flow diverted from axial direction to
radial direction in the laminar regime, and they showed electrical and optical behaviors
comparable to the aerogel APPJ source described above. Although flexing tests of the
hollow PE cylinder have not been reported to date, its soft and flexible consistency is
promising for applications in which plasma jets need to reach delicate samples placed in
locations of difficult access.
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Despite the specific differences in the setups reported in the literature, such as tube 

length (a few centimeters up to a few meters) and biocompatible tube material (e.g., PVC 
and polyurethane), many prototypes involve a plastic tube lodging a thin floating Cu wire 
that prolongs from the DBD source up to a few millimeters before the tube ending (Figure 
10a,b) [49–52]. In this way, the electrical power can be propagated to the exit of the tube 
in a transmission line fashion with negligible losses [52]. There is no plasma along the 
tube, and the APPJ restricted to the tip can remain near room temperature when operated 

Figure 9. (A) Images of the APPJ radial source in operation. Plasma jets are ignited from arrays either
around the perimeter (a,b) or along the axial direction of the polyethylene (PE) cylinder (c). The
cylinder has an outer diameter of 5.4 cm. (B) Scheme of the active DBD region (1) and the afterglow
region (2) with the He cold atmospheric plasma jets (CAPJs). Reprinted/adapted with permission
from Ref. [47]. Copyright 2021, Authors.

There are many possibilities to modify the cylindric source operation. For instance,
the number of ejection holes can be increased if required. Simultaneously, the total flow
rate should scale with the number of nozzles so that the flow regime does not change. The
source can be also rotated around its axis to increase the treatment area and, additionally,
to vary the plasma dose on the irradiated sample.

4. Flexible APPJ Channels

The necessity of treating locations of difficult access, such as in the case of surgical
operations or endoscopic applications, motivated the development of APPJs produced
along or at the end of flexible tubes [48,49]. The basic setup usually consists of a flexible
tube or channel coupled to a DBD plasma source.

4.1. APPJ at Tube Exit

Despite the specific differences in the setups reported in the literature, such as tube
length (a few centimeters up to a few meters) and biocompatible tube material (e.g., PVC
and polyurethane), many prototypes involve a plastic tube lodging a thin floating Cu
wire that prolongs from the DBD source up to a few millimeters before the tube ending
(Figure 10a,b) [49–52]. In this way, the electrical power can be propagated to the exit of the
tube in a transmission line fashion with negligible losses [52]. There is no plasma along the
tube, and the APPJ restricted to the tip can remain near room temperature when operated
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with the usual parameters (≈10 kV of AC voltage at ≈10 kHz) (Figure 10c). Otherwise,
without a floating wire, the discharge would occupy the entire tube so that resources to
prevent electroshock and plastic overheating would have to be in place [48].
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Figure 10. (a) Schematic layout of the flexible tube plasma source for microbial decontamination.
A floating Cu wire within the tube shifts the plasma jet ignition to the very end. (b) Photo of a
polyurethane nasogastric feeding tube used in the experiments. (c) APPJ emerging from the tip of a
1 m-plastic tube. Reprinted/adapted with permission from Ref. [50]. Copyright 2015, WILEY-VCH
Verlag GmbH & Co.

Kostov et al. used an AC voltage input of 32 kHz modulated in 667 Hz-power bursts
for a better control over the energy delivered to APPJ at the tube end [50]. Pulse duty
cycle is around 20% of the low frequency. Hence, delicate samples, such as human skin or
other tissues, may be treated without risk of overheating or burns thanks to a significant
decrease in gas temperature. Naturally, the transient states of the discharge will affect
the plasma parameters during treatment, and the specific frequency and duty cycle of the
periodic signal are selected for each application. This approach has been adopted by other
researchers working on long-tube APPJs for biomedical applications, especially for cancer
therapy [53]. Figure 11 shows typical current and voltage waveforms at different timescales.
The asymmetric shape of the current curve is due to the distinct streamer evolution during
positive and negative voltage cycles.

A critical issue is the power loss in long dielectric tubes with inserted Cu wire. The
transmission line model developed by Bastin et al. proved excellent to explain the high-
frequency electromagnetic energy propagation along this system [52]. Power transmission
efficiency is low in open-circuit conditions, i.e., when the APPJ strikes without target. In
this case, leaks occur due to a capacitive coupling between the PTFE tube and atmosphere,
as evidenced by the electric current decay measured along the tube. On the contrary,
transmission efficiency is maximized in lines loaded with a solid conductive target, whose
impedance is significantly lower than the jet impedance. The plume-target gap distance is
another important variable for optimal power management.
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4.2. APPJ along Flexible Tube

In absence of metallic core wire, as for example in the use of dielectric capillaries
with inner diameter < 1 mm, the APPJ discharge can fully occupy the inner volume of
the tube. Such configuration has been successfully tested in clinical studies, for example,
in the significant in vivo reduction in mice pancreatic tumor after plasma irradiation via
flexible plasma gun [48]. Figure 12 shows an example of a plasma gun device filled with
Ne discharge and a scheme of the DBD generator. In some applications, the tube can be
coated with an Au thin film to act as an electrode and to shield UV radiation from plasma
emission as well. Wang et al. demonstrated an excellent performance of such a coated
APPJ channel after bending the capillary 200 times at −180◦ and 180◦ [54]. APPJs operated
through capillary tubes must be fed by relatively small gas flow rates, namely of the order
of 1 lpm or less, to keep a laminar flow regime.
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Figure 12. Plasma gun device filled with a neon discharge generated by DBD reactor. The discharge
is ignited with a nanosecond pulse driver and leaves the DBD outlet through a 4 mm branched glass
capillary, which is connected to a silicone capillary acting as an APPJ guide. Reprinted/adapted with
permission from Ref. [48]. Copyright 2013, Elsevier GmbH.

Geng et al. explored further geometries of narrow flexible tubes acting as APPJ
sources [55]. Different lengths and diameters of transparent Teflon tubes were adapted
to the tested conditions of high and low values of nitrogen flow rate. Hence, a 10 cm
tube was appropriate for 6 lpm, while a 120 cm tube enabled the transport at 18 lpm. To
prevent gas-heating issues, a vortex tube was added between the electrode and gas supply
systems to reduce the plasma jet temperature. Moreover, this APPJ system admits several
architectural options intended for different applications. Figure 13 shows the flexible
plasma jet system operating with different numbers of bifurcations and as a plasma jet
brush (radial mode), the latter being an alternative to the radial APPJ source (hollow PE
cylinder) discussed above [47]. The enhancement of the wettability of different materials
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upon plasma irradiation validated the performance of the flexible plasma source to modify
surface properties without structural degradation.
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It is difficult to predict the maximal length in flexible tubes still enabling an effective
APPJ outcome given the number of experimental parameters involved, such as tube ma-
terial and gas flow regime. However, a rough estimation on the order of magnitude can
be made. Assuming a longest timescale of t ≈ 0.1–1 s for plasma chemistry reactions and
diffusion processes involving radicals and neutrals [56], a gas flow rate of 1 lpm, and a tube
diameter of 1 mm (linear velocity v ≈ 20 m/s), the theoretical maximal length is limited to
L = v·t ≈ 10 m. This value is consistent with the reported APPJ tube devices. Additionally,
a gradient in plasma optical emission is expected along the tube due to energy extinction.
Therefore, the energy decay rate along the tube length can be monitored by OES analysis at
different distances from the source.

5. Final Remarks
5.1. Summary and Discussion

Here, the state-of-the-art research in flexible APPJ source design, characterization,
and applications has been briefly presented. The discussed prototypes show excellent
advantages for many applications, namely room-temperature treatments; adaptation to
large-area surfaces containing features such as asperities and microcavities; homogeneous
irradiation with reactive neutrals and ions, and UV photons; and finally, the possibility of
working at atmospheric pressure conditions. These properties make flexible jet sources
unique for uniform plasma treatments without the inconveniences of vacuum pumping
systems and scanning routines to ensure homogeneous plasma fluxes.

Table 1 summarizes the main approaches in the subjects of morphing APPJ sources,
devices with independent APPJ nozzle operation, and plasma jets through flexible tubes.
Although the list of references is not exhaustive, the cited works are representative of each
type of plasma source.

The above results suggest that a milestone in the design and construction of a flexible
multi-jet device could consist of a thin foil enclosing the necessary circuit elements and gas
microchannels for an acceptable plasma outcome. Figure 14 sketches the basic concept of a
multi-APPJ “shower” able to adapt its morphology to any sample shape. The corresponding
plasma sources need to prove mechanically flexible, versatile, and efficient performances in
surface treatments. For example, in the treatment of skin at body extremities, the plasma-
operating parameters should be optimized so that the right dosages of plasma species reach
out uniformly to the layer thicknesses of the epidermis (≈40 µm–1 mm), dermis (≈1 mm),
and hypodermis (≈10 mm) [14]. Simultaneously, irradiation doses should lie within the
tolerance margins to prevent skin damage.
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Table 1. Morphing plasma jet sources and flexible APPJ nozzles together with their characteristics,
operation parameters range and intended applications.

Source Array Gas/Power Supply Applications Refs.

Close-packed
micro-APPJ

Silicone polymer <5 lpm He Wound healing [39–41]

Integrated rod electrodes 20 kHz, 1–100 mW Drinking-water
treatment

8 × 8 nozzles, 0.35 mm diam.

Low-power planar
discharge cells

Ceramic cells <15 lpm Ar Large and uniform
plasmas [43]

Activation by independent
switching

6 cells, 0.5 × 15 mm2/cell
8 kHz, 5–10 W/cell

Flexible APPJ
platforms

Silica aerogel (flat), PE (cylindric)
External Cu tape electrodes <10 lpm He

Wound healing,
surgical margins, and

surface processing
(proposed)

[44,45,47]

1–5 nozzles, 1 mm diam. 15 kHz, 0.1–5 W

Flexible micro-APPJ
tube

Silicone, Teflon <1 lpm He, Ne, Ar, N2,
+O2 *

Plasma endoscopy
Internal surface

processing, machining
[48,54,55]

Empty or coated tube
0.1–1 mm diam., a few meters long 1–20 kHz, 1–20 kV

APPJ at the end of a
flexible tube

PVC, PTFE ≈1 lpm He, Ar Plasma endoscopy
Fungal deactivation [49–53]

Floating Cu wire
>1 mm diam., <5 m-long 5–20 kHz, 1–80 W

* O2 was added to adjust the plasma chemistry.
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treatments of large, uneven areas by compact-morphing sources are mentioned below. 

5.2. Outlook 
The small number of articles published on the topic of flexible plasma jet sources for 

room-temperature treatments demonstrates the novelty of such technology. Nevertheless, 
here we speculate some future directions that research on flexible APPJ sources may take 
in the following years. 

The next generation of non-equilibrium flexible plasma jet sources will demand the 
miniaturization of the driving setup for a more convenient device manipulation. Ongoing 
efforts involve the manufacturing of small-size piezo transformers to build more compact 
generators for portable plasma jet devices [57]. Recently, Liu et al. fabricated a 3D multi-
microhole plasma jet instrument driven with nanosecond-pulsed power for underwater 
discharges [58]. Its layout could be applied to fabricate a miniaturized version of the soft 
cylindrical source aimed at plasma-liquid applications [47]. 

The development of flexible multi-jet headers for imprinting purposes opens a new 
field in lithography applications for non-flat surfaces, for instance, in the processing of 
third-generation photovoltaic systems and other microelectronic architectures [59]. 

Morphing plasma jet 
device

Figure 14. Drawing of skin cross section and schematic representation of a morphing plasma jet
source treating a sample with irregular topography. Flexibility, versatility, and efficiency are crucial
aspects in the APPJ source performance. In the treatment of skin, the plasma-operating parameters
should be tuned considering the penetration depths of plasma species vs. layer thicknesses of
epidermis (≈40 µm–1 mm), dermis (≈1 mm), and hypodermis (≈10 mm).

In fact, human skin constitutes an exceptional laboratory to test the performance of
flexible APPJ prototypes for gentle healthcare treatments by mimicking complex topologies.
The potentials of cold APPJs in cutaneous biology are numerous and well-adapted to this
multiresponse organic tissue. APPJs can indeed exert their activity at different levels of the
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skin; the length of penetration will promote different types of reaction depending on the
treatment [14]. At the superficial level (epidermis), they promote hydration, acidification,
and decontamination of the stratum corneum. Inside the skin (dermis and hypodermis) via
APPJ-generated RONS, they can penetrate intercellularly (inter), intracellularly (intra) or
in a transappendageal way (trans). They can promote the absorption of other molecules,
such as drugs, by loosening the skin barrier. At the molecular and cellular level, in the
skin (RONS), plasma jets can influence the oxidation of skin biomolecules, the activation of
cellular metabolism, and signaling. Finally, at the tissue level, APPJs can increase cutaneous
oxygenation, and stimulate vasculogenesis and the remodeling of the extracellular matrix.

Some of the main technological challenges to be addressed to get uniform plasma
treatments of large, uneven areas by compact-morphing sources are mentioned below.

5.2. Outlook

The small number of articles published on the topic of flexible plasma jet sources for
room-temperature treatments demonstrates the novelty of such technology. Nevertheless,
here we speculate some future directions that research on flexible APPJ sources may take
in the following years.

The next generation of non-equilibrium flexible plasma jet sources will demand the
miniaturization of the driving setup for a more convenient device manipulation. Ongoing
efforts involve the manufacturing of small-size piezo transformers to build more compact
generators for portable plasma jet devices [57]. Recently, Liu et al. fabricated a 3D multi-
microhole plasma jet instrument driven with nanosecond-pulsed power for underwater
discharges [58]. Its layout could be applied to fabricate a miniaturized version of the soft
cylindrical source aimed at plasma-liquid applications [47].

The development of flexible multi-jet headers for imprinting purposes opens a new
field in lithography applications for non-flat surfaces, for instance, in the processing of
third-generation photovoltaic systems and other microelectronic architectures [59]. Another
interesting approach would be the production of diffuse, and laterally extended and
uniform APPJs through porous flexible structures. Hong et al. and Ma et al. have studied
the formation of diffuse APPJs through ceramics with open pores [60,61], and the next step
will involve using a flexible analog to accommodate the porous structure to uneven profiles.
An important challenge will be to maintain the processing performance upon the tensile
and compressive stresses of the porous structure. Finally, to avoid the degradation of the
treated samples, the gas temperature and electron density of the new APPJ devices should
lie within the tolerances determined by the healthcare and food-processing regulations.

Flexible APPJ source prototypes have shown excellent performance so far, and they are
promising for industrial steps in which surface modification of soft matter and biomaterials
is a must.
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