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Abstract: Recent observations of plasma-activated water (PAW)’s surfactant behavior suggest that
the activation of water with non-equilibrium plasma can decrease the surface tension of the water.
This suggested change to the surface tension also indicates that the addition of plasma can lead
to changes in the physical properties of the water, knowledge of which can expand existing PAW
applications and open new ones. While the chemical behavior of PAW has been extensively analyzed,
to the best of our knowledge the physical properties of PAW have not been investigated. This study
focuses on the need for experimental determination of PAW’s physical properties—namely, surface
tension, viscosity, and contact angle. The experimental results of this study show that the addition of
plasma lowers the surface tension of water at room temperature, increases the viscosity of water at
high temperatures, and lowers the contact angle of droplets on glass surfaces at room temperatures.
Potential factors influencing these changes include plasma alteration of the mesoscopic structure
of water at low temperatures and plasma additives acting as foreign particles in water at higher
temperatures. Ultimately, this investigation demonstrates that the physical properties of water change
due to plasma activation, which could lead to potential industrial applications of PAW as a surfactant
or as a washing-out and cleaning agent.
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1. Introduction

Non-thermal plasmas generated in ambient air, as well as in oxygen- or nitrogen-
containing working gases and noble gases, produce a variety of reactive oxygen and
nitrogen species (RONS), e.g., ozone, hydroxyl radicals, hydrogen peroxide, superoxide,
and nitrogen oxides. The interaction of plasma with liquid media leads to the transport
of RONS into the liquid and the formation of secondary active species. In water, the
main reactive species formed by plasma activation are OH radicals, ozone, hydrogen
peroxide, nitrites, nitrates, peroxynitrites, and peroxynitrates; water activated in this way
with non-thermal plasma is called plasma-activated water (PAW) [1]. PAW is considered to
be a green and prospective solution for numerous biotechnology applications, due to the
transient nature of its biochemical activity. The biochemical activity of PAW is derived from
the synergistic effects of active species—especially RONS. PAW currently has numerous
applications, including but not limited to surface disinfection, seed germination, use as a
fertilizer, inactivation of plant-based pathogenic organisms, curing fungus-infected plants,
food preservation, wound healing, deactivation of bacteria and viruses, mouthwash due to
its bactericidal and fungicidal efficacy, selective killing of cancer cells, and insecticides [2–8].

Plasma-activated water, because of its active biological properties, has been extensively
studied in order to understand plasma’s interactions with water [9], the production and behavior
of active species [1], differences in the production of active species under varying plasma
gases [8], identification and quantification of chemical species [3], transfer of specific active
species—namely, RONS species—to the liquid [10], and differences in the production of active
species with varied plasma systems and production parameters [11]. As a result of these detailed
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studies into the chemical behavior of PAW, there is an excellent understanding of PAW’s chemical
properties and biological behavior. For example, the antiviral behavior of PAW is attributed to
the short-lived ONOO- species [5], the plant growth improvement effect of PAW is attributed
to the aqueous nitrate, nitrite, and ammonium ions and hydrogen peroxide species [3], and
the antibacterial properties of PAW are attributed to the short-lived reactive oxygen species [4].
Until this study, the investigated physicochemical properties of PAW included pH, ORP, and
electrical conductivity; these properties were investigated in relation to the chemical properties
and behavior of PAW, as they are indicators of reactive species in the PAW [12].

While scientific interest and the number of publications related to plasma control of
the chemical properties of water are growing exponentially, to the best of our knowledge no
studies to date have focused on the physical properties and physical behavior of PAW. In a
recent study, J He et al. [13] observed that, while deactivating E. coli bacteria on the surface
of fresh produce, PAW significantly washed out or physically removed the E. coli from the
produce surface. While the RONS in PAW can deactivate bacteria, they cannot physically
remove them. This bacterial washing-out behavior of PAW is an indicator of its low
surface tension, or surfactancy. Therefore, these results suggest that the addition of plasma
brings about changes in the thermodynamic properties (e.g., surface tension) of water. If
the surface tension of the water is reduced via, plasma activation as suggested by J He
et al. [13], the potential of PAW as a surfactant widens quickly, as there are numerous fields
that could benefit from a liquid with anti-pathogenic and surfactant properties. Potential
applications for PAW as a surfactant might include use as a washing-out and cleaning agent,
an ingredient for eco-friendly detergents and soaps, surfactants for biomedical applications,
and more. Furthermore, since we have an indication that the addition of plasma can change
the surface tension of water, other physical properties of water could also be affected by the
addition of plasma. Investigating these properties is important to finding areas of potential
PAW applications.

Surface tension is the measure of force acting at the boundary of two phases. It refers
to the elastic tendency of fluid surfaces that makes them acquire the least possible surface
area. At the liquid–air interface, the greater attraction of liquid molecules to one another
than to air molecules results in surface tension. Hence, the cohesive force between the
liquid molecules is higher than the adhesive force between liquid and air molecules. This
results in an inward force at the liquid surface that causes it to behave as if the surface
were covered with an elastic membrane. Because of the high attraction of water molecules
to one another, water has a high surface tension (0.0728 N/m at 20 ◦C) compared to
many other liquids. The surface tension of a liquid can provide insights into its capillarity
behavior, surfactant properties, etc. As a liquid with growing uses in the cleaning and
agriculture industries, insights into the surface tension properties of PAW can be useful for
its economical industrial adoption.

Viscosity, or more precisely shear viscosity, is the property that defines the quantitative
relationship between the applied shear stress and the shear deformation rate in a fluid.
Qualitatively, viscosity indicates the resistance to flow of a fluid. Since viscosity is the
property that controls and quantifies the shear stress/shear rate behavior in fluids, it is
in many regards the most important physical property of a fluid. Viscosity is stated in
two different forms: the absolute or dynamic viscosity (µ), and the kinematic viscosity or
momentum diffusivity (ν), where ν = µ/ρ and ρ is the fluid’s density [14].

The contact angle is another fundamental property of interest when the interface between
two fluids is also in contact with a surface, e.g., a water drop resting on a leaf. The contact
angle is dependent on the surface energy of the solid and describes how liquids spread on a
surface—vital information for dynamic liquid–solid processes such as coating and painting. In
addition, precise measurements of the contact angle between a fluid–fluid interface and a solid
surface are critical to deduce the wetting and spreading characteristics of liquids on surfaces, as
well as to calculate the surface energy of a solid by measuring the contact angle of a series of
liquids on one type of surface. These surface properties are important when considering, for
example, the application of dyes to surfaces and pesticides to plants [15].
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Since studies investigating the physical properties of PAW (such as surface tension,
viscosity, and contact angle are very limited), there is a strong need to investigate these
behaviors. Insights into the physical properties of PAW will provide users with a better
understanding of the physical behavior of PAW and of plasma’s interaction with water
during PAW generation, and they will also help users identify properties that can be
applied to present and future areas of need. In order to address this research gap, this study
focuses on the changes occurring in the physical properties of water as a result of plasma
activation—namely, the surface tension, viscosity, and contact angle of PAW.

2. Materials and Methods
2.1. PAW Production

The plasma-activated water used in this study was produced with gliding arc plasma.
Gliding arc plasma is a transient non-equilibrium type of discharge with a relatively high
microarc temperature (about 1600–1800 ◦K). In the gliding arc plasmatron (Figures 1 and 2),
air is injected tangentially into the gap between two cylindrical electrodes, and a vortex
of air is created in the gap. As energy is supplied between the high- and low-voltage
electrodes, the plasma discharge occurs between the electrodes. The air vortex stretches
and rotates the gliding arc, thereby producing the plasma zone inside the plasmatron. As
water is injected into the plasmatron axially from the top, the water droplets react with
the air that is coming out of the plasmatron, producing PAW. After being processed in the
gliding arc plasmatron, different kinds of active species (such as OH radicals, hydrogen
peroxide, NOx, etc.) are produced in the water. The pH of PAW is 2–2.9, as opposed to the
5.5–6 of distilled water. The operational parameters of the PAW production were as follows:
60–100 mL/min water flow rate; 40–100 SLPM plasma air flow rate. The experiment
was performed using 400–1900 W plasma power. The gliding arc plasmatron used for
PAW production in this study is shown in Figure 1, and a schematic of the gliding arc
plasmatron’s operational principle is shown in Figure 2.
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2.2. Surface Tension Measurement Method

For more than a century, a variety of techniques have been used to measure the
interfacial tension between immiscible fluid phases. When we discuss the interfacial
tension between a liquid and a gas, we call it surface tension. The different surface tension
measurements are described in detail by Drelich et al. [16]. The different types of surface
tension measurements can be divided into five groups: The first group of techniques directly
measure the surface tension with a microbalance. Examples from this group include the
Wilhelmy plate and Du Noüy ring methods. The second group of techniques determines
surface tension through direct measurements of capillary pressure. Examples from this
group include the maximum bubble pressure and growing drop methods. The third group
of techniques relies on the balance between surface tension forces and variable volumes
of liquid to determine the liquid’s surface tension. Examples from this group include
the capillary rise and drop volume methods. The fourth group of techniques is based on
fixing the volume of the liquid and measuring the distortion of a drop of the liquid under
the influence of gravity. Examples from this group include the pendant drop and sessile
drop methods. The fifth group of techniques, used to measure ultralow surface tensions,
involves distortion of the shape of the liquid using centrifugal force. The pendant drop
method was chosen for surface tension measurements in this study, as it is the simplest,
most robust, and most versatile method. Surface tension measurement using the pendant
drop method consists of suspension of a liquid droplet from a needle [17].

Pendant drop tensiometry using OpenDrop software was chosen as the surface tension
measurement method for this project because of its accuracy and open-source nature [16,17].
Pendant drop tensiometry is performed by generating droplets of the liquid to be analyzed
using a syringe pump, capturing an image of the generated droplet, and iteratively fitting
the Laplace equation on this droplet image using image-processing software to determine
the surface tension of the liquid. Images of Pendant drop tensiometry performed are shown
in Figures 3 and 4.
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The accuracy of this method was validated by correction factors with respect to
image quality obtained from the image processing software, called Worthington and
Bond numbers. The recommended numbers for accurate measurements are 0.7–0.8 for
Worthington numbers and 0.3–0.35 for bond numbers [17]. The average Worthington and
bond numbers for all measurements in this study were 0.77 and 0.31, respectively. The error
in all instances was 0.01 for both Worthington and bond numbers. These measurements
were taken at a room temperature of 18 ◦C.

2.3. Viscosity Measurement Method

Viscometers make use of the theoretical relationship between shear stress and strain
rate to measure viscosity. There are three types of viscometer: flow, drag, and resonant.
In flow-type viscometers, the rate of flow of the fluid in a tube or through an orifice is
measured, and the shear stress can either be calculated or estimated based on theory.
Examples of flow-type viscometers include capillary tube viscometers, with which shear
stress is calculated, and cup viscometers, with which shear stress is estimated. Flow-type
viscometers measure kinematic viscosity. Drag-type viscometers measure either the force
on an object as it moves at a specified rate in the fluid (for example, rotational viscometers)
or the time it takes for an object to move a specified distance through the fluid (for example,
falling objects and bubble tube viscometers). Drag-type viscometers measure absolute
viscosity. The third type of viscometer is the resonant or vibrational viscometer, which is
most commonly used for in-line process applications [14].

Among the commercially available viscometers, a capillary viscometer was chosen for
viscosity measurements in this study because it was cost-effective and readily available.
Capillary viscometers determine viscosity by measuring the liquid flow rate through a
capillary tube. These viscometers are typically made of glass and consist of a bulb reservoir
connected to the capillary tube. The operation of a capillary tube viscometer is based on
the Poiseuille model of laminar flow which, describes flow through a round pipe [14].

The capillary viscometer used for this study was a certified, calibrated, size 25 Cannon-
Fenske viscometer. The certified accuracy of this device is 0.16%. The viscosity was
measured from 10 to 40 ◦C with the help of a water bath. The setups of the viscometer and
water bath are shown in Figures 5 and 6, respectively.

Plasma 2023, 6, FOR PEER REVIEW  6 
 

 

was measured from 10 to 40 °C with the help of a water bath. The setups of the viscom-
eter and water bath are shown in Figures 5 and 6, respectively.  

 
Figure 5. Cannon- Fenske viscometer. 

 
Figure 6. Viscosity measurement setup. 

The Cannon-Fenske viscometer has two fluid reservoirs connected by a tilted capil-
lary tube. A measured volume of the liquid to be analyzed is added to the lower reser-
voir. After equilibration at a constant temperature, the liquid is drawn up through the 
capillary tube to fill the second reservoir until it overfills. The liquid is then allowed to 
fall under the influence of gravity, and the time taken for the liquid meniscus to pass 
between two marks in the viscometer (as seen in Figure 5) is noted as the efflux time. The 
kinematic viscosity of the liquid, which is the mathematical product of the efflux time 
and certified viscosity constants, was calculated for each temperature point.  

2.4. Contact Angle Measurement Method 
The most common contact angle measurement methods include the telescope–

goniometer method, Wilhelmy balance method, captive bubble method, tilting plate 
method, and the more recently developed drop shape analysis methods. Among these 
methods, the most frequently used is direct measurement of the contact angle by tele-
scope–goniometer. In this method, a direct measurement of the tangent angle is taken at 

Figure 5. Cannon- Fenske viscometer.



Plasma 2023, 6 50

Plasma 2023, 6, FOR PEER REVIEW  6 
 

 

was measured from 10 to 40 °C with the help of a water bath. The setups of the viscom-
eter and water bath are shown in Figures 5 and 6, respectively.  

 
Figure 5. Cannon- Fenske viscometer. 

 
Figure 6. Viscosity measurement setup. 

The Cannon-Fenske viscometer has two fluid reservoirs connected by a tilted capil-
lary tube. A measured volume of the liquid to be analyzed is added to the lower reser-
voir. After equilibration at a constant temperature, the liquid is drawn up through the 
capillary tube to fill the second reservoir until it overfills. The liquid is then allowed to 
fall under the influence of gravity, and the time taken for the liquid meniscus to pass 
between two marks in the viscometer (as seen in Figure 5) is noted as the efflux time. The 
kinematic viscosity of the liquid, which is the mathematical product of the efflux time 
and certified viscosity constants, was calculated for each temperature point.  

2.4. Contact Angle Measurement Method 
The most common contact angle measurement methods include the telescope–

goniometer method, Wilhelmy balance method, captive bubble method, tilting plate 
method, and the more recently developed drop shape analysis methods. Among these 
methods, the most frequently used is direct measurement of the contact angle by tele-
scope–goniometer. In this method, a direct measurement of the tangent angle is taken at 

Figure 6. Viscosity measurement setup.

The Cannon-Fenske viscometer has two fluid reservoirs connected by a tilted capillary
tube. A measured volume of the liquid to be analyzed is added to the lower reservoir. After
equilibration at a constant temperature, the liquid is drawn up through the capillary tube
to fill the second reservoir until it overfills. The liquid is then allowed to fall under the
influence of gravity, and the time taken for the liquid meniscus to pass between two marks
in the viscometer (as seen in Figure 5) is noted as the efflux time. The kinematic viscosity
of the liquid, which is the mathematical product of the efflux time and certified viscosity
constants, was calculated for each temperature point.

2.4. Contact Angle Measurement Method

The most common contact angle measurement methods include the telescope–goniometer
method, Wilhelmy balance method, captive bubble method, tilting plate method, and the
more recently developed drop shape analysis methods. Among these methods, the most
frequently used is direct measurement of the contact angle by telescope–goniometer. In
this method, a direct measurement of the tangent angle is taken at the three-phase contact
point on a sessile drop profile. Drop shape analysis of sessile drop also measures the tan-
gent angle at the three-phase contact point with the help of droplet images and computer
programs [18]. A simplified experimental setup of the drop shape analysis method suitable
for researchers was used in this study for the measuring contact angle [19]. Droplets com-
prising 20 µL of PAW and distilled water on clean glass microscope slides were captured
as images, as shown below. The contact angle between the liquid droplets and the glass
was measured using OpenDrop image processing software [17]. The contact angle made
by 20 µL of distilled water on a glass slide was measured to validate the accuracy of the
measurement. The contact angle for distilled water determined by this method was 54.5◦,
which is consistent with the literature reports of ~55 ◦ [20]. The images of the PAW droplet
making a 31◦ contact angle on the glass surface and the distilled water droplet making a
54.5◦ contact angle on the glass surface are shown in Figures 7 and 8, respectively. The
measurements were conducted at a room temperature of 18 ◦C.

The surface tension and contact angle investigations in this study were limited to room
temperature due to the limitations presented by the cost of systems required for accurately
measuring these properties at varying temperatures.
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3. Results
3.1. Surface Tension of PAW

The surface tension of two PAW samples of pH 2.5 and pH 2.78 was measured using
pendant drop tensiometry, at a room temperature of 18 ◦C. The results obtained are shown
in Figure 9. The literature values of water surface tension [21] is also included as a reference.
The PAW at pH 2.5 had a surface tension of 68.7 mN/m, while the PAW at pH 2.78 had a
surface tension of 68.6 mN/m—both lower than the surface tension of distilled water at
18 ◦C reported in the literature, which was 73.1 mN/m. On average, the PAW displayed a
viscosity 6.1% lower than that of distilled water. The relative accuracy of the measurements
was determined to be 3.65%.
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Figure 9. Surface tension of plasma-activated water at 18 ◦C; the surface tension of distilled water
(DW) at this temperature is shown for reference.

Using the modified free energy equation, J He et al. [13] suggested that PAW’s washing
out (physical removal) of E. coli is aided by a reduction in the surface tension of water
with the addition of plasma. The surface tension of water is lowered by the transition of
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the crystalline mesoscopic structure of water to an amorphous mesoscopic structure with
the addition of plasma. This transition in the water’s structure is aided by the plasma
lowering the mesoscopic transition temperature. The results of this study are consistent
with the suggestion of J He et al. [13], showing that the addition of plasma lowers the
surface tension of the water. As the addition of plasma changes the surface tension of water,
it also influences its thermodynamic properties.

The mesoscopic structure of normal water is crystalline at temperatures below 35 ◦C,
and it transitions to being amorphous at temperatures between 35 and 60 ◦C [13]. The
crystalline structure is characterized by high surface tension and high viscosity, while the
amorphous structure is characterized by lower surface tension and viscosity relative to the
crystalline structure. One example of differences in the physical properties of water with
different mesoscopic structures is that hot water is more effective in cleaning applications
than cold water, due to the lower surface tension or surfactancy of hot water’s amorphous
structure compared to cold water’s crystalline structure. As J He et al. [13] witnessed
surfactant behavior/low surface tension in water at low temperatures, they suggested
that the addition of plasma could possibly lower the temperature required for mesoscopic
structural changes in water. The theoretical proof presented [13] in support of their claim is
discussed later to enrich the understanding of PAW’s physical behavior.

Reduction in surface tension increases the surfactant behavior exhibited by a liquid,
making it more suitable for cleaning and removal of particles. Since plasma-activated
water is biodegradable, it can be suitable for cleaning applications without harming the
environment.

3.2. Viscosity of PAW

The mesoscopic structural changes and foreign plasma additives in PAW influence
its viscosity. The structure change at low temperatures should reduce the viscosity of
PAW, while the foreign plasma additive should increase its viscosity. The effect of foreign
plasma additives in increasing the viscosity of water is similar to how sand added to water
can affect its viscosity; foreign additives can lead to increased friction in the liquid flow,
resulting in higher viscosities. Since it is proposed that the addition of plasma will result in
mesoscopic structural changes in water at low temperatures, PAW should display lower
to almost identical viscosity relative to water at low temperatures. This is because the
viscosity-reducing effect of mesoscopic structural change at low temperatures can possibly
be countered by the viscosity-increasing effect of foreign plasma additives. If the proposed
mesoscopic structural change does not occur, PAW should have a higher viscosity at lower
temperatures because of the foreign plasma additives. The foreign plasma additives should
also cause PAW to have higher viscosity at higher temperatures. At temperatures above
35 ◦C, normal water has an amorphous structure [13], and the only influence differentiating
the rheological behaviors of PAW and normal water is that of the plasma foreign additives.

The viscosity of PAW at pH 2.78 was measured from 10 to 40 ◦C using the Cannon-
Fenske viscometer and water bath setup described earlier (as shown in Figure 6). The
viscosity results obtained for this temperature range are shown in Figure 10. The kinematic
viscosity of water from the literature is included for reference [22].

The kinematic viscosity of PAW at 10 ◦C was 1.28 mm2/s, compared to the 1.30 mm2/s
kinematic viscosity of water at the same temperature. The viscosity of PAW was 1.3% lower
than that of distilled water at 10 ◦C. The slightly lower viscosity of PAW at low temperatures
supports the mesoscopic structural changes in water proposed by J He et al. [13]. Under
normal conditions, PAW should have exhibited a higher viscosity, since the foreign plasma
additives have the natural effect of increasing viscosity. The amorphous structure of PAW
at low temperature might have countered the viscosity-increasing effect of the plasma
additives, resulting in a lower viscosity than that of distilled water.
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Figure 10. Viscosity of PAW from 10 to 40 ◦C; the viscosity of distilled water (DW) is shown
for reference.

With the increase in temperature from 10 ◦C, the high viscosity of normal water,
caused by its crystalline structure, started to decrease due to the transition of its structure
to amorphous. As the crystalline structure in water began to weaken, the relatively lower
viscosity of PAW, due to its amorphous structure, became less pronounced and began to
match the viscosity of normal water, as demonstrated at about 15 ◦C in Figure 10.

With further increase in temperature from 15 ◦C, the higher viscosity of normal water
due to its crystalline structure began to decrease as its structure transitioned further into
amorphous, resulting in PAW having higher viscosity than normal water. The viscosity-
reducing effect of the amorphous structure in PAW no longer countered the viscosity-
increasing effect of its foreign plasma additives. The kinematic viscosity of PAW at 20 ◦C
was 1.04 mm2/s, while that of normal water was 1.00 mm2/s; at 20 ◦C, the viscosity of PAW
was 2.19% higher than that of normal water.

Following this trend of increased viscosity in PAW at higher temperatures, PAW at
40 ◦C had a kinematic viscosity of 0.76 mm2/s, while that of normal water was 0.66 mm2/s,
meaning that PAW had a 12.8% higher viscosity than normal water at 40 ◦C. At 40 ◦C,
the high viscosity caused by the crystalline structure was minimal in normal water, as
its mesoscopic structure might have transitioned very close to amorphous; therefore, the
higher viscosity demonstrated for PAW, which also has an amorphous structure, could be
attributed to the foreign plasma additives.

3.3. Contact Angle of PAW

The difference in contact angles made by liquids on a surface helps us to understand
the changes in surface energy between the liquids and the contacting surface. The contact
angles made by PAW at pH values of 2.47, 2.68, and 2.85 on a glass microscope slide were
inspected. The results obtained are summarized in Figure 11. The contact angle made
by a distilled water droplet of the same volume in the same setup is shown for accuracy
indication. The measurements were conducted at a room temperature of 18 ◦C.

PAW droplets make smaller contact angles on glass surfaces than water droplets,
by an average of 20◦, or 36%. At lower pH or higher plasma production power, PAW
makes smaller contact angles. Therefore, the addition of plasma increases the surface
energy during interaction between the glass surface and the water. The contact angle is
an indication of the adhesive and cohesive forces exhibited by the liquid. If the adhesive
force of a liquid is high relative to its cohesive force, the liquid will wet the surface more,
resulting in a lower contact angle. If the cohesive force of the liquid is high relative to
its adhesive force, the liquid will wet the surface less, resulting in a higher contact angle
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formed on the surface. Since plasma activation resulted in water forming smaller contact
angles, it increased the adhesive force of water during contact with glass. Therefore, plasma
activation might increase the adhesive forces of liquids on surfaces; this could be useful in
the surface treatment industry for applications requiring better adhesion by dyes, along
with other applications that require better wettability of liquids to surfaces.
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Figure 11. Contact angle made by PAW and distilled water (DW) on glass slides.

4. Discussion

The low surface tension exhibited by water after plasma activation was attributed by J
He et al. [13] to the plasma’s effect of lowering the mesoscopic transition temperature. The
mesoscopic structure of water at lower temperatures is crystalline, which is characterized
by higher surface tension and viscosity. However, as the temperature increases past the
mesoscopic transition temperature, the crystalline structure of water changes to amorphous,
which is characterized by lower surface tension and viscosity. J He et al. [13] suggested
that plasma activation lowers the temperature required for this transition, causing PAW to
display low surface tension and low viscosity at lower temperatures compared to normal
water. J He et al. [13] theoretically demonstrated that plasma activation lowers the free
energy of water. This can be shown with the following equation, where the free energy of
water F is given by

F = U − T σ + q (qVs + (1 − q) Vr)
= qEs + (1 − q)Er + (qVs + (1 − q)Vr)P

+kBT
(

q ln q
gs
+ (1 − q)ln 1−q

gr

) (1)

where F is the free energy of water, U is the internal energy of water, σ is the entropy, q is the
percentage of structured state, Es,r are the specific energies of the structured and random
states, respectively (Es < Er), Vs,r are the specific volumes, gs,r are the statistical degeneracy
values (gs << gr), T is the temperature, P is the pressure, and kB is the Boltzmann constant.

When ions are added to a fluid, it changes the fluid’s free energy. Free energy in the
presence of ions contains an additional term, the Debye–Huckel term (UDH):
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where i denotes the type of ion species, Ni is the ion’s concentration, αi is the ion’s radius,
zi is the charge of an ionic species, e is the charge of the electron, M is the total number of
ionic species, εr is the dielectric permittivity of the medium, ε0 is the dielectric permittivity
of a vacuum, and κ is the inverse of the Debye screening length. The ions are unlikely to
penetrate the clusters; thus, in the first approximation, their impact is proportional to the
percentage of water in the amorphous phase. From this, we can derive the free energy of
plasma-activated water (FDH), modified with the Debye–Huckel term as follows:

FDH = F + (1 − q)UDH (4)

From Equation (4), we can see that the addition of plasma ‘favors’ the amorphous
state; thus, the transition temperature decreases.

PAW presents interesting behavior as a solution. An ideal solution is a solution whose
properties change in proportion to the concentration of solute added to it. As PAW displays
changes in properties (i.e., 6.1% for surface tension, 1.3–12.6% for viscosity, 36% for contact
angle) that are significantly higher than the concentration of active species added to it
(0.01%), we can conclude that PAW behaves non-ideally.

The low surface tension characteristic of PAW indicates potential surfactant behavior.
Surfactants are required for numerous industrial processes, including but not limited to de-
tergents, paints, food emulsions, biotechnological processes, biosciences, pharmaceuticals,
and cosmetic products. PAW can be an eco-friendly and cost-effective alternative to current
products used for these applications [23]. As PAW is antibacterial, antifungal, and has
demonstrated its ability to disinfect bacteria [4] from fresh produce, it can be an excellent
washing-out agent—an industrial process that prevents disease breakouts due to microbes
on produce. Surfactants with antibacterial and antifungal properties are used in biomedical
fields [23]; as PAW has these properties [4,7] and can act as a surfactant, it can potentially
be applied as a biomedical industrial surfactant. Surfactants are also important ingredients
for the preparation of detergents and cleaning agents. PAW with surfactant properties can
potentially be used in these processes as a biodegradable and eco-friendly ingredient [23].
One major advantage of using PAW is its biodegradability [1], which means that it can meet
the surfactant requirements for industrial processes without harming the environment.

The viscosity of PAW is influenced by the mesoscopic structural changes and the
presence of foreign plasma additives due to plasma activation. At low temperatures,
when the effect of the crystalline structure is dominant in water, PAW with its amorphous
structure has a slightly lower viscosity. As temperatures increase beyond low values, the
friction-inducing plasma additives result in higher viscosity in PAW when compared to
water. Until the crystalline structure of water is transitioned to an amorphous structure,
the viscosity of PAW is only nominally higher than the viscosity of water. However, as the
temperature increases beyond the mesoscopic transition temperature in water (35◦ C [13]),
and the water attains an amorphous structure, the friction-inducing plasma additives cause
PAW to have a significantly higher viscosity than water (12.8%). The high viscosity of PAW
can lead to higher shear force exerted by the liquid during its flow at high temperatures.
The higher shear force exerted by the flow of PAW on a particle in its path can lead to better
removal of particles when compared to normal water, making PAW a better cleaning agent
at higher temperatures. The higher viscosity of PAW can also cause it to form a thicker
boundary layer during flow, thereby reducing transfer losses and making it suitable for
augmented oil extraction.

In terms of contact angle, the addition of plasma caused water to form smaller contact
angles on a glass surface, indicating that the addition of plasma increases the surface energy
during interaction between water and a glass surface. The addition of plasma resulted in
increased wettability and increased adhesion of water to the glass surface. Increased wetta-
bility and adhesion are of great use for applications in the surface treatment industry. These
improved surface properties exhibited by PAW suggest that plasma activation of liquids
might result in improved adhesion and wettability by liquids thus activated, potentially
improving the adhesive behavior of paints, dyes, etc.
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5. Conclusions

The aim of this study was to experimentally investigate the understudied physical
properties of PAW and see the effects of the addition of plasma to application-oriented
physical properties—namely, surface tension, viscosity, and contact angle. This study
inspected the surface tension and contact angle of PAW at room temperature (i.e., 18 ◦C)
and the viscosity of PAW between 10 and 40 ◦C. The addition of plasma resulted in changes
to the physical properties of water, as observed and theoretically suggested by J He et al. [13].
The major conclusions drawn from this study are as follows:

1. The physical properties of water change with plasma activation.
2. As a solution, PAW behaves non-ideally; since the percentage changes occurring to

the physical properties with the addition of plasma are higher than the percentage of
plasma species added.

3. The addition of plasma lowers the surface tension of water by 6.1% at room temper-
ature; it also decreases the temperature required for the mesoscopic transition from
crystalline to amorphous structure, resulting in lower surface tension in PAW relative
to normal water.

4. The addition of plasma increases the viscosity of water by 12.8% at higher tempera-
tures; foreign plasma additives lead to this increased viscosity in PAW. The viscosity-
increasing effect of plasma additives is inhibited at low temperatures due to the PAW’s
amorphous structure.

5. The contact angle made by water on glass surfaces is reduced by 36% with plasma
activation; thus, the surface energy during the interaction of water with glass is
increased with plasma activation, thereby increasing the wettability and adhesion of
water to the glass surface.

6. The changes occurring to the physical properties of water with plasma activation can
be attributed to water attaining an amorphous structure at lower temperatures, as
well as the presence of plasma additives at higher temperatures.
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