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Abstract: We study the effective interactions and the mass action constants for pair and triple
associations in classical and quantum plasmas. Avoiding double counting, we derive new expressions
for the mass action constants. The calculations resulted in values that were substantially smaller than
the standard ones in relevant temperature ranges by up to 50 percent. On this basis, we determine
the pressure of H, He and Li plasmas and the osmotic coefficient of electrolytes with higher charges
such as, e.g., seawater. Classical and quantum Coulomb systems show strong similarities. The
contributions in low orders with respect to the interaction e2 are suppressed by thermal and screening
effects. The contributions of weakly bound states, near the continuum edge, to the mass action
constants are reduced, replacing the exponential functions with cropped exponentials. The new mass
action constants are consistent with well-known extended limiting cases of screening effects. We
analyze classical examples including the salts CaCl2 and LaCl3, and a model of seawater including
multiple associations. In the case of quantum systems, we follow the work of Planck–Brillouin–Larkin
for H plasmas and study He and Li plasmas. The equation of state (EoS) for wide-density regions is
obtained through the concatenation of the EoS for the low-density region of partial ionization with
the EoS of degenerate plasmas, where all bound states are dissolved and Fermi, Hartree–Fock and
Wigner contributions dominate.

Keywords: statistical thermodynamics; few-body bound states; mass action constants; equation of
state; bound state valley

1. Introduction: Effective Interactions

Charged-particle systems are interesting objects of statistical physics, which show spe-
cial features because of the long-range characteristic of the Coulomb interaction. Important
examples include plasmas and electrolytes. Bound states or associations may be formed, and
the composition is described by mass action laws. The correct introduction of association
or ionization constants in plasmas and electrolytes is the main topic of the present work.
For pair associations in plasmas (atom formation), this problem has already been solved by
Max Planck in 1924 [1] for H plasmas, as outlined below in this section. The calculation of
bound states in dense He or Li plasmas and the corresponding mass action laws is a difficult
task of quantum statistics. We discuss descriptions at the physical and chemical levels
in Section 2. After considering the classical osmotic pressure and the chemical potential
including associations in Section 3, mass action constants for He and Li plasmas including
excited states are derived in Section 4. Thermodynamic functions, such as pressure, for
quantum plasmas including the bound state formation are presented in Section 5.

Within a chemical picture where bound states of the elementary particles are consid-
ered as new species, our charged-particle systems consist of different constituents i with
charge Zie (e is the elementary charge) and particle density ni. In plasmas, these are nuclei,
electrons, and ions as bound states with different degrees of ionization; in electrolytes we
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have ions and associations. At larger distances, the forces between charges in plasmas and
in electrolytes are basically the same as Coulombic forces:

βVij =
`ij

r
; `ij = ZiZj`, β =

1
kBT

. ` =
βe2

4πε
. (1)

where `ij is the Coulomb length and ε = εrε0 is the dielectric constant with the relative di-
electric constant εr. There is a difference between standard chemical and Coulomb binding:

(1) Chemical forces are short-range and show strict saturation. For example, a hydrogen
atom may bind with second one by chemical binding forming the H2 molecule, but
there is no way to bind a third one with the same-strength force.

(2) Coulomb forces are long-range and are strictly additive; this is limited only by the
tendency to form neutral configurations.

Most attention is, in this work, devoted to electrolytes and plasmas [2–4]. Another
interesting example for association and bound-state formation is the quark-gluon plasma.
Hadrons, which are color-neutral bound states of quarks, become dissolved at high energy
densities, forming a new state of matter, which can be found, for example, in ultrarelativistic
heavy ion collisions [5] or in the cores of neutron stars [6].

The application of mass action laws is standard for chemical binding, but it also works
with modifications for Coulomb associations, as already shown by Arrhenius, Ostwald,
Planck and Bjerrum [2,7,8]. To explore the limits of mass action laws and the peculiarities of
binding by Coulomb forces is the aim of the present work. We show that the essence of this
is the transition from the traditional exponentials in the mass action constants for chemical
binding to the cropped exponentials, which reduces the contributions from weakly bound
states with binding energies smaller kBT and considerably weakens associations.

The Coulomb force may be positive or negative depending on the charges that meet.
Since, on average, positive charges are surrounded by negative charges and negative
charges by positive ones, the Coulomb forces are, on average, screened within the Debye
distances rD = 1/κ with κ2 = 4π`∑i Z2

i ni, where the sum over i concerns all ion species
and electrons.

Within statistical physics, screening effects are due to contributions of the so-called
ring diagrams. Since screening is a primary effect, all other effects in Coulomb systems,
in particular the association effects, have to be treated in a way which is compatible with
screening. In particular, naive definitions of mass action constants and mass action laws for
Coulombic associations and ionization lead to internal contradictions and possibly to errors.
Here, we will discuss the problem based on strict principles of statistical physics, which
are compatible with the findings of Planck and Onsager. We show, in particular, that one
should not include terms in the mass action constant, which have already been taken into
account to obtain Debye’s limiting law. Double counting leads to errors and has to be strictly
avoided. This problem will be solved in the present work for classical MgSO−4 , CaCl−2 ,
LaCl−3 -like systems and in the quantum case for H, He and Li-like associations/ionization.
In fact, Planck was the first to show [1] that in the bound-state part of the atomic partition
function of Hydrogen the following characteristic expressions should appear,

exp[−(βEH
s )]− 1 + (βEH

s ). (2)

Here, this is denoted by cropped exponential function, instead of the simple exponen-
tial exp[−(βEH

s )]. EH
s is the binding energy of the intrinsic quantum state denoted by the

quantum number s, in the case of the H atom EH
s = −1/s2 Ry (1 Ry = 13.60568 eV).

The introduction of a cropped exponential, which starts only with the second-order
Taylor expansion, leads to the so-called Planck–Brillouin–Larkin partition function (PBL)

σH(T) = 2
∞

∑
s=1

s2
[

e−EH
s /kBT − 1 +

EH
s

kBT

]
. (3)
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The factor 2s2 is the well-known degeneracy of the energy level EH
s for the H atom. In the

case of classical ions, we obtain structurally similar expressions [9], which we discuss in
detail later. The transition from exponential functions to cropped exponentials reduces the
contributions from bound states with binding energies near to the series limit, which are
smaller than the thermal energy |EH

s | < kBT or the extension of the bound-state electron
density is larger than the Debye radius. The main reasons for the suppression of these
states are:

(i) The discrete states near to the continuum edge are not stable due to thermal collisions
and screening effects;

(ii) the contribution of these states is compensated by contributions of nearby states in
the continuum;

(iii) the discrete states near to the continuum edge are also destroyed if the wave functions
are larger than the Debye length.

and therefore the Debye potential leads to a gap of energy levels near to the continuum.
While PBL-type partition functions are generally accepted nowadays, the corresponding
partition function for classical ionic pairs is still under discussion and the relation to the
quantum problem is mainly ignored [2–4,7–13]. So far, the association problem for triple
and higher associations has not been solved completely either. Our main task here is
to propose new compatible partition functions and mass action constants for triple and
quadruple associations in Coulombic systems.

The forces at short distances of ions are mainly repulsive since determined by the
internal electronic shells. We introduce a potential of mean forces between the ions i and j
as ψij. In electrolytes the average forces at zero concentrations are defined by means of the
Mc Millan–Mayer theory [2,7,9,12]. In plasmas, i.e., for charges imbedded into a vacuum,
we follow the pioneering work of Günter Kelbg [3,4,11,13] and find an effective average
potential of pair interactions from the binary Slater sums [14–16]

ψij = −kBT ln Sij(r1, r2), (4)

where Sij are the diagonal elements of the density matrix of pairs. The concept of Slater
sums had been introduced by Slater and Morita, and was further investigated and applied
to Coulombic systems by Günter Kelbg and his school [3,4,11,14,15]. In the classical
as well as in the quantum case, the potentials of statistical averaged forces consist of a
Coulombic and a short-range part. The electronic part of electrolytes is given by Coulomb’s
law, Equation (1). Both εr(T, p), the relative dielectric constant of pure water, and `, the
so-called Landau length or with the pre-factor 0.5 the Bjerrum length, are functions of
temperature and pressure. The short-range forces can be modeled to be of hard-core type,
where Rij are the contact distances. Here, we will stick to this rough approximation since
the Rij comprises the most important key information for ionic solutions. For plasmas, the
short-range forces are weaker and do not have a hard core contribution. An approximate
description is given by the so-called Kelbg–Deutsch potential [14,15,17]

ψK−D
ij (r) =

ZiZje2

4πεr

[(
1− exp

(
− r

λij

))
±

δij

2
exp

(
− r

λij

)2]
; λij =

(h/2π)

(2mijkBT)1/2 (5)

where mij = mimj/(mi + mj) are the relative mass and λij is the so-called thermal De Broglie
wave lengths. The ± sign refers to fermions and bosons, respectively. Note that in Kelbg’s
exact expression generalized hypergeometric functions appear instead of exponentials [3,4].
The quantum effective potential has a finite value at zero distance [15]. Some approximate
values for the characteristic lengths Rij, λij for electrolytes and corresponding lengths λij for
quantum systems are given in Table 1, in the quantum case for a typical temperature of 104 K.
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Table 1. Table of contact distances for several ion pairs including alkaline earth metal ions, sulfate
ions and adapted “ideal” seawater ions according to [18]. Further we give for quantum plasmas some
typical values of the De Broglie thermal wavelength at T = 104 K (all length given in pm).

i − j R± R++ R−− i − j λ± λ++ λ−−

Na− Cl 350 470 360 H+ − e 204 7.4 297
K− Cl 320 400 360 He2+ − e 203 5.3 297

Mg− Cl 400 280 360 Li3+ − e 202 4.3 297
Ca− Cl 500 320 360
K− SO4 340 400 300

Mg−
SO4

290 400 300

La− Cl 270 430 360

We consider plasmas of the light elements hydrogen, helium and lithium, and note
that the role of a smallest distance between electrons and positive charges is, at lower
temperatures, determined by the temperature independent Bohr radii

aH
B = 52.9 pm; aHe

B = 26.4 pm; aLi
B = 13.2 pm. (6)

For H, He and Li the lowest-bound states, the hydrogen, helium and lithium atoms consist
of 2–4 charged particles. The outer electrons are only loosely bound with ionization energies
in the range of 10–100 eV. For the full thermal ionization of all helium or lithium electrons
we need far more than 100 eV, i.e., more than 106 K. An alternative way to reach high
ionization degrees is to increase the particle density to regions of n > 1023 cm−3 where all
atomic and molecular bound states are dissolved by screening, Pauli blocking effects and
pressure ionization [15,19–21]. Earlier work to describe high-density and high-pressure
effects was often based on the chemical picture [19]. In contrast to the physical picture,
which normally uses perturbation expansions, the chemical picture is using chemical mass
action laws (MAL) and has the advantage that it is based on a variational principle [12,16].

For electrolytes, the applicability of the physical and chemical picture has also been
discussed in the literature [2,7–9,12,22,23]. The main task of the present work is to develop
mass action constants for triple and higher associations, which are consistent with screening
effects and avoid any double counting of Coulombic effects. Standard approaches to
association effects in electrolytes, in particular with multiple charged ions, are usually based
on the classical concepts of Bjerrum, Fuoss and Kraus [2,7]. While these authors define
pairs and triplets as spatially defined special configurations, our concept of associations is
not based on a spatial criteria but on the strength of the interaction. This is measured in
powers of the Bjerrum interaction parameter b = (Ze2/εkBTR), and, in the quantum case,
the corresponding (Ze2/εkBTλ) or (Ze2/εkBTaB). This way we avoid any double counting
of Coulombic effects. As Onsager pointed out in 1968 at a conference in Montpellier, one
has to consider the correct balance between various effects like in a ledger, but having
some freedom in the definition of associations and mass action constants. Using the
freedom in the choice of the mass action constant, we assume that associations are formed
by higher-order (negative) contributions of binary charge interactions bn with n ≥ 4
to the pressure and other thermodynamic functions. Triple or quadruple associations
are generated by (negative) contributions of three or four opposite charges. by higher
orders in the interaction e2, etc., to the pressure. Such a definition of associations may
seem less transparent in comparison with spatial definitions; however, it allows one to
integrate screening. Therefore, this concept is easier to introduce in the light of statistical
thermodynamics, which has been working with expansions in e2 since the pioneering work
of Joseph Mayer. Our concepts were first developed for electrolytes in [2,9]. Alternative
concepts of electrostatic associations have been considered in many works [24–26]. The
basic concepts for the quantum case are due to Planck, Brillouin and Larkin [1,15] and
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are connected with several quantum effects affecting the states with near to zero binding
energy, which leads to the cropped partition functions introduced above.

The influence of an electrostatic pair and triple associations of ions is of high relevance
for many real electrolytic systems with higher ionic charges as MgSO4, MgCl2 or Na2SO4,
in particular in studies of seawater, which is the most relevant associating electrolyte in
nature [18]. In the quantum case, it is the sun plasma, which plays a central role for life
on earth and is connected with multiply charged ions, such as He2+ or Li3+, forming
bound states. Note that for systems with multiply charged ions the differences between
the individual and the mean activities are larger than usual [7], which requires special
attention to the influence of charge asymmetry on the individual ionic activities. Most of
our studies are restricted to weakly associating systems, where less than about 1/3 of the
charges are associated, and where a quasi-linear (semi-chemical) approach to the mass
action law works.

2. Physical and Chemical Level of Descriptions
2.1. Virial Expansions and Mass Action Constants

Let us assume we have an associating system forming bound states. In the low-
density limit, we consider the approximation of an ideal mixture of different components,
neglecting all interactions with the exception of reactive collisions to establish chemical
equilibrium. This chemical level is described by mass action laws which relate the free
particle densities n∗i of the different components in chemical equilibrium, introducing mass
action constants Ki(T) which depend only on temperature T.

As an example, we consider H, He and Li plasmas. For H plasmas with components e,
H+, and H, the composition is given in the approximation of ideal systems by the mass
action law

n∗H = n∗e n∗H+KH(T). (7)

For He plasmas, we have the components e, He++, He+, and neutral He with two ideal
mass action laws

n∗He+ = n∗e n∗He++KHe+(T), n∗He = n∗e
2n∗He++KHe(T). (8)

For Li plasmas with components e, Li3+, Li++, Li+, and Li, we have three ideal mass
action laws

n∗Li++ = n∗e n∗Li3+KLi++(T), n∗Li+ = n∗e
2n∗Li3+KLi+(T), n∗Li = n∗e

3n∗Li3+KLi(T). (9)

Note that the asterisks denote the free particle densities. The total particle densities would
contain also the contribution of the bound states; see Section 4.

The thermodynamic properties of these plasmas are easily obtained if we use the
approximation of ideal associating plasmas within a chemical picture. The EoSs for the
pressure are given approximately by [21]

βpH = n∗e + n∗H+ + n∗H,

βpHe = n∗e + n∗He++ + n∗He+ + n∗He,

βpLi = n∗e + n∗Li3+ + n∗Li++ + n∗Li+ + n∗Li. (10)

For the pressure as function of density and temperature, virial expansions are known
where virial coefficients are introduced. For interacting plasmas/electrolytes, we may
expect that this virial expansion remains valid, except that now additional interaction
terms will appear. Because of the long-range character of the Coulomb interaction, a
series expansion in powers of densities is not possible, and additional terms with broken
exponents and logarithmic terms appear; see [15]. Inserting the mass action laws (7)–(9) into
Equation (10), we see that the mass action constants are connected with the coefficients in
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the virial expansion. However, the virial coefficients for the interacting plasma contain also
contributions from scattering states, in addition to the bound state contributions described
by the mass action law.

We may conclude that any realistic virial expansion, which includes bound states will
include important information about the association constants, which appear as essential
parts of the virial coefficients. The terms corresponding to mass action constants should be
positive and strongly increasing at low temperatures. For Coulombic systems, the statistical
expressions for the pressure may be obtained from derivatives of the free energy which
follows from statistical thermodynamics in the form of cluster contributions. The negative
free excess energy of classical charged hard spheres and, quite similar, non-degenerate
plasma reads in the quantum case [2,12,20]

Fex = FDH + F2 + F3 + . . . = −kBTV
[ κ3

12π ∑
ij

ζ0
i ζ0

j R(κλij) + ∑
i,k

S(k)i

]
(11)

where Rij in the classical case is now replaced by λij. R(x) is the so-called ring function
in the Debye-Hückel-like approximation and ζ0

i are Onsager’s relative screening factors
defined according to [18,20] as

quantum case : R(x) = 1− 3
16
√

πx +
1

10
x2 − . . . (12)

classical case : R(x) = 1− 3
4

x +
3
5

x2 − . . . , (13)

ζ0
i =

nie2
i

∑j nje2
j

. (14)

The sums are to be extended over the species of ions i and all orders of clusters k. The
corresponding diagrams modelling screening are of ring-type, called Mayer’s ring diagrams.
Contributions, which are used for generating screening in Coulomb systems should not
appear again in second, third and higher cluster integrals. This is the reason for subtracting
certain terms in the cluster integrals. Therefore, the mass action constants for Coulombic
systems have a specific structure, they exclude the lower powers in the interaction parameters.

Since we are mainly interested in association effects, we apply the following approx-
imations [20] by introducing the so-called opposite charge approximation (some times
called reduced mass approximation). We replace all reduced masses and distances with the
plus–minus parameters

mij → µ =
m+m−

m+ + m−
, Rij → R = R±; λij → λ = λ±. (15)

This is physically justified by the fact, that in associating systems most encounters are of
plus–minus type. Technically, this gives large simplifications [16,20]. We assume here that
only one kind of ± pairs exists. The strong coupling contributions to the cluster functions
S(k)i were derived in the framework of a quasi-classical cluster expansion for clusters of
order k = 2, 3, 4, . . ., which are formed by ions of kind i, and are given as [2,12,16]

S(2)i =
1
2

ni ∑
j

nj

∫
drj[ψij −

1
2

G2
ij],

S(3)i =
1

2 · 3 ni ∑
jk

njnk

∫
drjdrk

[
ψijψikψjk + Gijψikψjk + Gikψijψjk + Gkjψikψij

]
,

S(4)i =
1

2 · 3 · 4 ni ∑
jkl

njnknl

∫
drjdrkdrl

[
ψijψjkψklψil + . . .

]
. (16)
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with the definitions

ψij = exp[Gij − βV′ij]− 1− Gij; Gij(r) = −ZiZj`
exp(−κRij − κr)

(1 + κRij)
. (17)

Here, the strong coupling function ψij is of higher-order O(e4) in the interactions. V′ij is the
hard-core potential and the Kelbg potential in the classical and the quantum case, respec-
tively. In the following, we are using the so-called nonlinear Debye-Hückel approximation
for charged hard spheres [18,23]. In the quantum case, the exponential functions in ψij are
replaced by the Slater functions [15,16]. The density-dependent expression for the pressure
derived from the free energy reads in the quantum case is [2,9,15,16]

βp(n1, n2, . . . , T) = ∑
i

ni

[
1−

Z2
i

6κ ∑
j

ζ jR̄(κλij)− 2π ∑
j

njλ
3
ij

(
Ḡij(κ) + K20(ξij)

)
(18)

−8π2 ∑
ik

njλ
3
ijnkλ3

ik

(
Ḡijk(κ) + K30(ξij, ξik, ξ jk

)
−4π3 ∑

ikl
njλ

3
ijnkλ3

iknlλ
3
il

(
Ḡijkl(κ) + K40(ξij, ξik, ξil , . . .

)
+ . . .

]
.

In the classical case, the λab are replaced by Rab. The temperature functions K20(ξ), K30(ξ)
and K40(ξ) describe in the classical and in the quantum case the two- and three- particle
bound states [2,9,15,16]. Further we have R̄(x) = R(x) + xR′(x) with R(x) defined above.
The functions Ḡ are weakly depending on κ and not relevant for binding. Now, the
problem is to isolate the mass action contributions, i.e., the bound state parts, is to identify
these terms in the general cluster expansion. According to our basic assumption, the
mass action constants K(2), K(3) etc. are the positive definite even parts of the functions
K20(ξ), K30(ξ), K40(ξ), which are dominant for strong binding, e.g.,

4π3/2λ3
±K20(ξ±) = K(2)

+,− + δ; 8π2λ6
±K30(ξ2+,−, ξ−−) = K(3)

−,2+,− + δ. (19)

with δ asymptotically small for strong binding. The lower orders in interaction up to e4

automatically do not contribute to the mass action constant, due to our way of construction.
For pair associations, the most useful splitting for the classical as well as for the

quantum case is given in [15,16]. It is based on exact relations valid for the K-functions for
pairs with opposite charges as

[K20(ξ) + K20(−ξ)]/2 = m(ξ); [K20(ξ) + K20(−ξ)]/2 =
√

πσ(ξ). (20)

This means that the even part of the function K20(ξ±) defines the bound state part m and σ
of the pair partition functions in the classical and the quantum case, respectively.

m(x) =
∞

∑
k=2

ξ2k

(2k)!(2k− 3)
; σ(ξ) =

∞

∑
k=2

ζ(2k− 1)ξ2k

(2k)!
. (21)

The mass action constants for pair formation are

K(2)
± = 8πR3

±m(ξ±); K(2)
± = 8π3/2λ3

±σ(ξ±). (22)

We see that in both cases the mass action constants are defined by the bound state parts
of the virial function and have a quite characteristic similar structure. Along this line our
hypothesis is, that the even parts of the K30 and K40 functions, are basically responsible for
the formation of triples and quadruples.
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For example, we assume that the mass action constant for He-like triple bound states
is given by the trace over the states relative to the center of mass

K(3)
(2+),2− ∼ Tr

′′
rel exp[−βH(3)

(2+),2−] ∼ [K30(ξ±, ξ−−) + K30(−ξ±, ξ−−)]]/2 (23)

Here, the double dash means that by performing the relative trace all divergent states have
to be identified and omitted.

2.2. Mass Action Functions for Coulombic Pairs

No doubt, nature is unique and cannot be divided into physical or chemical systems.
Nevertheless, physicists and chemists look at naturals systems in a quite different way.
Physicists like elementary units like electrons, nuclei or bare ions. Chemists like to speak
about more complex chemical units like atoms and molecules. According to classical
equilibrium thermodynamics, the mass action constant for chemical binding is

K(T) ∼ exp[−∆G/kBT] (24)

where ∆G is the change of the Gibbs potential in the reaction, which is approximately
given by the effective bound state energy EB of the associate. For all quantum bound states
studied here, the binding energy is EB = C Ry with C = 1 for hydrogen, i.e., the bound state
energy is proportional to e4 and the mass action constant proportional to exp(Ce4/kBT).
However, as already mentioned, we may expect some peculiarities for Coulomb binding
with respect to the dependence on e2.

For the hydrogen-like association, (24) leads to

KH(T) = 8π3/2λ3
±∑

s
s2 exp(−βEH

s ) = 8π3/2λ3
±

∞

∑
s=1

s2
[
1− βEB

s2 +
(βEB)

2

2!s4 − (βEB)
3

3!s6 + · · ·
]
. (25)

Max Planck showed in 1924 that the first two terms in this series are compensated for by
contributions from the continuum of relative states and therefore should be omitted. So,
we arrive at cropped exponentials and get the new mass action constant for the formation
of H-atoms

KH(T) = (2
√

πλei)
3 ∑

s
s2[exp(−βEH

s )− 1− βEH
s ] = (2

√
πλei)

3 ∑
s

[ (βEB)
2

2!s2 − (βEB)
3

3!s4 + · · ·
]
. (26)

The question is whether we have the freedom to go from the classical ansatz using the
exponential function (25) to a different expression based on the cropped exponential
(26) for Coulombic systems. Onsager’s argument from 1968 that we have principally
some freedom in the exact definition of mass action constants as far as we observe the
balance of the total contributions to pressure, free energy, etc., was a comment on a famous
historical controversy about the correctness of theoretical expressions for the mass-action
constant of ion association in electrolytes, connected with names like Bjerrum, Fuoss, Kraus,
Falkenhagen and others [2,7,8]. Lars Onsager made clear that some rigorous statements
about correctness or errorness of definitions of mass action constants do not have a precise
meaning. In Onsagers words [9,23]: “Bjerrum’s choice is good but we could vary it within
reason. In a complete theory, this would not matter; what we remove from one side of the ledger
would be entered elsewhere with the same effect.” Note that the problem of defining mass
action constants for electrolytic associations is equivalent to the problem of mass action
constants for plasma reactions. Following Onsager’s views, we assume that statements
about correctness of regularized partition functions do not have a direct physical meaning,
and the choice of Coulomb partition function is to some extent free to choose [9,15,16]. The
terms correct or wrong should only be applied to observable quantities as pressure and free
energy. Taking this view, our choice is based on the criterion of maximal simplicity.
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Pair association: In earlier works, Falkenhagen and coworkers [2,9] proposed for the
pair formation of charged hard spheres with diameter R and Bjerrum parameter b = `/R
the mass action constant [2,7,9]

K(2)
± (T) = 8πR3

± ·m(ξ±) = 8π`3
± · n(ξ±), n(ξ) = m(ξ)/(ξ)3. (27)

Instead of the function n(ξ±), Fuoss and Kraus [8] used the notation Q(ξ±). The pair
association functions m(x) or n(x) are related to the E1(x) functions and to the so-called
Kirkwood function [2,9]. The values of the function m(b) are tabulated in [2,9]. For higher
b, they are in asymptotic agreement with the function b3Q(b) used by Bjerrum, Fuoss and
Kraus [7]. However, we observe considerable differences for intermediate and for smaller
b-values. For practical calculations, we may use the approximations [27]

m(b) ' b4

24
·
(

1 +
b2

90
+

b4

8400
+

b6

530, 000

)
if b < 10 (28)

m(b) ' sinh(b)
b

' exp(b)
(2b)

if b > 20. (29)

The last expression gives the asymptotic behavior for very large interaction parameters
b. For a first estimate, one may take only the first term in Equation (29), which gives the
so-called weak approximation to the mass action constant

K(2)
± (T) ' (π/3)

`4
±

R±
. (30)

The given functions show the typical structure of a cropped exponential and agree asymptot-
ically with the Bjerrum theory. In the Bjerrum theory of associating electrolytes, which has
been further developed by Fuoss and Kraus [8], the result for the mass action constant reads

K(2)
± (T) = 8π`3

±Q(b), (31)

where Q(b) is a tabulated function [7,8]. Asymptotically, the function Q(b) is identical to
n(b). However, in the whole region of finite b-values, it is larger than our expression. As
an example, for b = 10 is Q(10) = 4.519, n(10) = 2.155 and for b = 20 is Q(20) = 3890,
n(20) = 1932. This means, we predict a much smaller degree of association than the
Bjerrum–Fuoss–Kraus theory [7,8]. For example, for the association constant of MgSO4

with R± ∼ 290 pm and b ∼ 10 we obtain a value of about k(2)2+,2− ' 10 [mol/liter], while
the Bjerrum–Fuoss–Kraus theory would give about double the value. We will show later
that our estimate for the association constant of MgSO4 in seawater gives about the correct
value of 10%, as observed in experiments [28].

The fact that our expression for the mass action constant is based on power expansions
beginning with higher-order e8 is connected to the peculiarity of Coulombic systems,
namely that the Debye screening, which is present everywhere, needs and absorbs all lower
powers of e2 in the series.

Quantum theory of pair association: As first shown by Planck, Brillouin, Larkin
and others [1,15,16], the quantum statistics of pair formation like in hydrogen plasmas
leads to quite similar expressions, where the PBL partition function σ appears [15]. In
quantum statistics the partition function is expressed by a power series in the interaction
parameter [15] ξ± = −ZiZj`/λ±. This series for σ(ξ)-function is in full agreement with
the early result by Max Planck [1]. There is also a structural analogy to the series m(ξ) for
the classical case. The only difference is that we have to use other coefficients and other
definitions of the parameter ξ [15]. The virial function for the quantum case Q4(x) has more
advanced coefficients expressed by Riemann’s known Zeta and Euler’s Gamma functions,
well known from mathematical physics [15,16]. The hydrogenic partition function may
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be written as a function of the interaction parameter including the elactronic spin states
se = 1/2 in the form

σ(ξie, se) = (2se + 1)
∞

∑
s=1

s2
[

exp
( ξ2

ie
4s2

)
− 1−

( ξ2
ie

4s2

)]
= (2se + 1)[

ζ(2)
32

ξ4
ie +

ζ(4)
128

ξ8
ie + · · · ] (32)

This relation is often is called Planck–Brillouin–Larkin function (PBL-function), since it was
first used by Max Planck in 1924 and later rederived and more strictly founded by Brillouin
in 1932, Larkin in 1960 and these authors [15,16]. In low binding approximations, this gives,
for the hydrogenic mass action constant,

KH
± '

π2√π

24
`±
λ±

. (33)

The comparison with the classical Equation (30) provides the following recipe for the
transition from classical to quantum statistical mass action constants

R± →
8

π
√

π
λ±, (34)

what is near to the estimates for corresponding transitions of the Debye-Hückel distance
a→ (

√
π/4)λie given in [15,16,20].

2.3. Mass Action Functions for Coulombic Triples and Quadruples

The question how to define the association constant for triple associates is more
difficult than the treatment of pairs. This is connected with the fact that the three-particle
problem in classical and in the quantum case is not well-understood and correspondingly
the statistical virial coefficients for three particles are not well-elaborated. We start with
same general considerations. The main effect of pair and triple association is the decrease of
effective ion numbers from ni to αni. The task is to find αi which is the degree of ionization.
The following associates are of specific interest:

(±) (−+) (+,−,+) (−,+,−) (−, (2+),−) (+, (2−),+). (35)

As some classical examples, we may look at the Coulombic associates of Cl− ions with
Mg2+-ions and with La3+ ions. In order to estimate triple associations, we study first
the maximal binding energy of 3 ions in linear order, e.g Cl-Na-Cl, Cl-Mg-Cl or Na-
SO4-Na including that one ion is double charged. The biggest energy has the linear
configuration (−)(++)(−) or (+)(−−)(+) in the linear arrangement of the ions in contact.
A simple estimate of the energy of 3 ions with the linear configurations (−), (Z+), (−) or
(+)(Z+)(−) in contact gives the energy

E−,(Z+),− = E(+(Z−),+) = (2Z− 1/2)U0 = 2Z̃U0; U0 = `/a (36)

which leads to Z = 2, Z̃ − 1.75 the value E = 2Z̃U0. These estimates show also that we
should not expect the formation of triples in the case of univalent ions, since the formation of
two separate pairs gives a lower energy than the formation of one triple. However, in the case
of divalent ions, the formation of triples is of advantage and we may introduce an effective
charge Z̃ = 1.75. For the mass action constant of such triples, we expect the asymptote

K−(2+)− = K+(2−)+ ∼ exp[2Z̃βU0] = exp[3.5βU0]. (37)

These results correspond to early estimates proposed by Kelbg, Friedman and these authors
by using the results of mathematical studies of cluster integrals [12,13,27,29]. We consider now
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the configurations of four classical ions like in LaCl3 solutions. An estimate of the electrostatic
energy of a LaCl3-quadruple with La in the center and three Cl-ions at the edges gives

ELaCl3 ' (9−
√

3)U0 = Z̃U0 = 6.3U0; Z̃ ' 2.1 (38)

Evidently the formation of this quadruple is of some advantage in comparison to forming
a pair with energy 3U0 or a triple with energy 6− (1/2)U0 = 5.5U0. The corresponding
mass action constant is

K(2−)(2+)− ' exp[(3Z̃βU0] = exp[6.3βU0] (39)

We consider a statistical approach to the mass action constants for the triple formation using
the approximation of effective charges. In order to find effective approximations, we study
the integrands of the triple integrals in more detail. We concentrate at the integrals with
three ψ-factors assuming that they give the dominant contributions. These triple integrals
contain in the integrands three factors with cropped exponentials

exp[−βVij − βV′ij]− 1 + βVij. (40)

We observe the subtraction of first powers of the exponential, this is typical for all Coulomb
forces which have to be screened. Some of these factors in the integrands of the relevant
clusters for associating particles belong to attractive interactions and are rather big. How-
ever, in the case of repulsive charges, these factors φij have negative exponents expressing
the repulsion of two equally charged ions and are nearly constant. The essential point for
the integration is that repulsive ions cannot come close to each other and further these
factors expressing repulsion are rather slowly changing and converge at larger distances to
1/2 (see Figure 1).

Figure 1. Typical factors in cluster integrals representing. Left panel: For repulsive ions exponential
function (green), same function subtracting first two expansion terms (red), only second-order term
(blue line). Right panel: exponential term subtracting the lowest power up to e4 (in red) and the bare
term of order (O(ξ4

ij)) gives indeed a qualitatively correct overall shape. Note that all functions are

multiplied with the spatial pre-factor x2.

We replace now in the integrals the repulsive factors by the constant ξ2
−−/2 what is

due to the approximate distance 2R± of the equal charges near to ξ±/8 and calculate the
first order integrals; further, we factorize the higher order parts of the integrals and arrive at

K(3)
2−,(2+)

(T) ' π2R4
±`

2
−−[C26ξ6

± + m(ξ̃±)
2]. (41)

where C26 ' 0.08. Correspondingly we get e.g., by applications to the triple association
of CaCl2 we find approximately for the mass action constant about 6[liter/mol]2 [27,29].
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For the quadruple formation we have to replace 3 repulsive factors by the constant ξ2
−−/2.

This way, with C46 ' 0.022 we obtain the estimate

K(4)
3−,3+(T) '

π3

3456
R3
±`

6
−−[C46ξ6

± + m(ξ̃±)
3]. (42)

We find again that the mass action constants for Coulomb systems have a specific structure,
excluding the lower powers in the interaction parameters. We repeat that these lower powers
are unable to contribute to binding effects, since they are already absorbed in screening
effects. Our method of approximating the mass action constants by the lowest diagrammatic
contribution and for the higher contributions by products of pair factors is an assumption.
We may, however, refer here to the Onsager freedom in the exact choice of the mass action
constant as far as we observe the Onsager balances. We may refer further to the possibility
to adapt our choice by means of the effective charges.

In the quantum case, we consider the quantum bound states of k = 2 or k = 3
electrons with one positively charged nucleus. In a first approach, we may assume a
simple generalization of the known expression for hydrogen to helium by using cropped
exponential functions instead of standard exponential functions. Here, the energy levels are
to be collected from quantum calculations or from spectroscopic data. We subtracted here as
for hydrogen the first two terms in the exponential series. Proceeding in a more systematic
way, we have to sum up diagrams as in classical statistics, namely first all Feynman diagrams
of ring type [15,16,30,31]. This means for Coulombic systems, starting with the Debye law
the lower powers in the interaction strength ξ are already used for getting Debye’s limiting
law due to screening. Here again, Onsagers arguments come into play. If somebody insists,
to use for plasmas partition functions a which contain the lowest orders in the ξ, then he
should pay a price. Namely, if the lowest orders in ξ, means in e2 are included in the mass
action constants, they will be missing in the limiting law, which leads to deviations from
Debye’s coefficient in the root law. This is not necessarily incorrect. In order to complete then
“Onsagers ledger” in a correct way we have to pay a price, a big complication of the theory.
It is much better to leave the Debye-Hückel-terms intact and to define the mass action
constants in a way, which does not touch the lower orders needed for providing the correct
Debye Hückel-like terms. We will follow here this route and obtain mass action constants
as asymptotic parts of the cluster integrals. Since the cluster integrals do not contain lower
orders in e2, a procedure based on cluster expansions guarantees automatically our requests.

In quantum theory approximate methods to treat triple association of the type (−, 2+,−)
are known from the theory of Helium Quite effective is the method of effective charge.
Formally, the problem is to treat the helium formation as bound state of two electrons and
one two times positively charged alpha particle. The bound state energy of an electron-
alpha pair is Z2EH where Z = 2 is the charge of the He-nucleus. For a pair of single
charged ion and a Z-fold charged ion the quantum statistical theory [15,16,30] provides the
expression for the mass action of a hydrogen-like pair [15]

K(2)
Z+,−(T) = (2

√
πλ±)

3 · σ(ξZ=2), ξZ = Ze2/kBTλ±. (43)

In a first rough approximation of the bound states with two electrons, we may use the
effective charge method of the variational quantum theory of He. The idea is to approximate
the wave function as a product of two hydrogenic wave function. Each electron represents
a cloud of negative charge which somehow shields the nucleus so that the other electron
actually sees an effective nuclear charge Z̃ < 2. The value of Z, which gives the minimal
energy, is Z̃ = (Z− 5/16) and the minimal energy has the value 2.75 Ry with Ry = |EH |.
This is similar to the classical estimate Equation (36) with the difference that we find in
the quantum case a factor 5/8 instead of the classical value 1/2. Looking for an analogy
between classical and quantum distances, we find that for hydrogen the analog of the
classical R± is the double Bohr radius 2aB and correspondingly for helium 2aB/Z = aB.
We may introduce for helium the effective charge Z̃ = (Z − 5/16) ' 1.69 and, for the
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effective distance, obtain R̃± ' 2aB/Z̃ ' 1.18aB. In a first approximation, we may compose
the mass action constant of the He-atom by a contribution of the lowest-order binding
with 4 + 2 attractive (±) interaction lines and two repulsive (−−) interaction line what
gives in first approximation the factor for the lowest diagram (C26 ∼ 0.18)). By adding
the contributions of the ground state with cropped exponential function we get for the
formation of an He-atom the following estimate of the mass action constant

KHe
2−,(2+)(T) ' (2

√
πλ±)

6
[
Cqu

26 ξ2
eeξ6

ie + [exp(5.8βRy)− 1− (5.8βRy)]
]
. (44)

However, this and the previous estimates are only with respect to the ground state correct,
the excited states are not correctly described. The needed inclusion of excited states is given
in Section 4.

For the study of Li, where the situation is even more difficult, the method described
abe for the He-atom gives a first estimate for the Li-atom. We include in this estimate the
contribution of the lowest-order binding diagram which is a ring with 4 + 2 attractive ±
interaction lines and four repulsive (−−) interaction line, which gives

KLi
3−,(3+)(T) ' (2

√
πλ±)

9
[
Cqu

46 ξ4
eeξ6

ie + [exp(19βRy)− 1− (19βRy)]
]
. (45)

The quantum-statistical constants Cqu
26 , Cqu

46 are not yet known, a first estimate may be
obtained by using the relation (33). For more precise calculations of the mass action
constants for He and Li including excited states we refer to Section 4. Here, we restricted our
study to the ground state contribution and an estimate of the free binding contributions. For
a quantum-statistical calculation of the weak binding contributions which are of the order
e8 for 3 and e10 for 4 particles we need an extension of the tedious calculations of the density
matrix which Kelbg and Hoffmann performed for the orders orders e2, e4, e6 [4,11,13,14] to
the next orders e8 and e10.

Concluding this section about mass action constants we have to note, that the chemical
approach on the basis of mass action laws has certain limits. Only at lower densities, when
chemical species are well-defined and distinguished from free particles, the approach by
mass action laws works. As shown in particular by the modern theory of nonideal plasmas,
a new effective Schrödinger equation replaces the standard wave equation [15,16,32]. The
new theory shows the bound state levels and the continuum edge approach each other
in dense systems and merge finally [32]. Beyond these densities, the distinction between
bound and free relative states becomes questionable and one needs new concepts. We will
come back to these problems in Sections 5 and 6.

3. Classical Osmotic Pressure and Chemical Potential Including Association
3.1. Semi-Chemical Description of Associating Systems

For practical calculations, in order to avoid heavy nonlinear mathematics, we develop
now a semi-chemical or semi-physical approach that is half way between a full physical
and a full chemical description [16,18,20]. In order to explain this, let us start with the
case of pair association between a positive charge i and a negative charge e. Introducing
the densities of free particles, e.g., of free electrons and free ions n∗e = αne, n∗i = αni,
n∗ie = (1− α)ni we get the nonideal mass action law (MAL) with the activity coefficients f±:

1− α

α2 = ni f 2
±K2(T). (46)

Rewriting this equation for the degree of ionization α in a form, which is appropriate
for iterative solutions and starting with the zeroth approximation α(0) = 1 we get the
first approximation (called semi-chemical approach)

α(1) =
1

1 + c( f±(1))2K2(T)
. (47)
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The range of validity of this simple quasi-linear approximation ends if more than about
1/3 of the ions are associated. This is a strict assumption which however leads to a great
simplification of the mathematics and is justified for many interesting systems as e.g., for
seawater-like mixtures [18]. For the activity coefficients f± which appear in the mass action
law we use in the classical case the standard expressions for the electrical parts

ln f± = ln f el
± = − z+z−

2
κ`

(1 + γ±)
. (48)

In Debye-Hückel-, or mean-spherical approximations, respectively, we have [18,29]

γ± = κR±; or γ± =
1
2
·
(

κR± +
√

1 + 2κR± − 1
)

. (49)

We are using here the so-called opposite-charge approximation (OCA) or sometimes called
reduced mass approximation (RMA), which is a specific property of Coulombic systems,
based on the fact, that in the region of stronger interactions (larger Bjerrum parameters),
the meeting of opposite charges dominates [16,21]. The main effect of pair and triple
association is the decrease of effective particle numbers which leads to a decrease of the
osmotic coefficients and the conductivities. Our first rational approximation to the MAL,
which works only for regions where α > 2/3, i.e., we are near to full ionization, is equivalent
to a semi-physical approximation. This means, that physical and chemical expressions
meet here at half way. In the general case, the degree of free ions of kind i is defined as that
part of the ions which are not associated in pairs, triples, quadruples etc. We find this way

αi =
Nfree

i

Nfree
i + Nasso

i
=

1

1 + δ
(2)
i + δ

(3)
i + δ

(4)
i + · · ·

. (50)

This is the typical mathematical structure in the semi-physical, semi-chemical approach
suggested first by Justice. The terms δ

(2)
i , δ

(3)
i and δ

(4)
i are in our approach calculated as the

asymptotically big negative definite contributions from the 3rd and 4th virial coefficients
etc. providing the relevant contributions to association. According to our estimates, the
pair contribution is of order ξ4, the triple contribution is of order ξ10, and the quadruple
contribution is of order ξ14 [27].

More explicit is the degree of ionization of the charge i in semi-chemical approximation
expressed by the mass action constants found above and the activities (fugacities) zk by [29]

αi =
1

1 + ∑j 6=i zjK
(2)
ij (T) + 2 ∑j,k 6=i zjzkK(3)

i,j,k(T)
(51)

where the zk = nk f el
k are the electrical contributions to the activities/fugacities (note that

here short-range terms are omitted). The activity coefficients f el
i are defined by the electrical

parts of the chemical excess potentials which we approximate for charged hard cores
by [18,33]

zi = ni f el
i ; kBT ln f el

i = −
Z2

i `κ

2 ∑
j

ζ0
j G0(κRij) + · · · ; G0(x) =

1
1 + x

. (52)

Onsagers relative screening factor ζ0
i which have been used already above, are for a binary

electrolyte ζ1, ζ2 in particular simple. We have for example for MgCl2, CdCl2 the pair
(1/2, 2/3) and for LaCl3 the pair (1/4, 3/4).
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For the partial osmotic pressure, the osmotic coefficient, contributed by the ionic
species i we obtain by using the virial formula and reinterpreting the strong coupling terms
as contributions due to the association [18,27,29]

gi = βPi/(nikBT) = αi −
1
6

Z2
i κ` ·∑

j
ζ0

j · [G̃0]. (53)

The first term in Equation (53) is interpreted as the effective degree of ionization or associa-
tion, and may be found from Equation (51). We note that the expressions for the degree
of ionization obtained this way are very near but not identical; to the αi derived above,
both expressions are identical only for small densities. Examples for the relative osmotic
pressure are shown in Figure 2 for NaCl and for comparison also for a model of sea water.

1.1 

1.05 

0.95 

0.9 ,..______.__._______.__._____, 
0 0.2 0.4 0.6 0.8 1 

sqrt(c), c in 1mol/dm3 

Figure 2. Left panel: Relative pressure for the ions Na+ (above) and Cl− (below) as well as the mean
for a NaCl-solution. Right panel: Relative (individual) osmotic pressures for a mixture of six ions
mimicking seawater including association in dependence on salinity S (gram salt per liter). We are
sorting from below looking at the values at salinity S = 5. The lowest curve represents the ion SO2−

4 ,
then follow the curves for Mg2+, K+, Ca2+, Cl−, Na+.

The small differences which we observe in the degrees of association obtained from the
osmotic pressure or from calculations based on free energy is not a real inconsistency. The
differences between calculation based on virial formula for the pressure and those based
on cluster expansions for the free energy are known for decades. They cannot be avoided
since they are of principal nature, the smallness of these differences is even often used as
quality criterion of the both approaches. We remember here again Onsagers statement, that
mass action constants are not uniquely defined. Essentially is that in the pressure approach
the first term in Equation (53) may be interpreted as an ideal chemical contribution. Note
that we are using here in simplest approximation for the zeroth order G0 the Debye-Hückel-
approximation; more advanced is the Mean Spherical Approximation (MSA) and the related
Henderson-Smith approximation (HSA). The more advanced nonlinear Debye-Hückel-
approximations (DHX) take into account the first- and second-order terms G1(x), G2(x).

3.2. Applications to CaCl2, LaCl3 and a Seawater-Model

Relevant for pair and triple association are large negative contributions from the 2nd
and 3rd virial coefficients. Following general results from statistical thermodynamics [2,12]
we have shown that the key quantities for association are the asymptotically dominant parts
of the strong coupling terms in the cluster integrals. We mention that there are different
ways to estimate the triple association constant, the constant factor approximation which we
prefer here but there exist also an effective charge approximation [29]. According to [29], both
methods are in reasonable agreement for ξ± < 6, then they start to disagree. In the constant
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factor approximation, which we developed in Section 2, neglecting the weak binding term, the
triple association constants for salts like CaCl2 and ions like (LaCl2)+ have been estimated as

kClCaCl = π2`2R4
CaCl ·m(`CaCl/RCaCl)

2,
kClLa+Cl = π2`2R4

LaCl ·m(`LaCl/RLaCl)
2.

(54)

Several numerical values of mass action constants for pair and triple formation estimated this
way have been given also in [29]. A comparison of results for the activity coefficients using
these formulae in comparison with results of Wilczek-Vera et al. [34] is shown in Figure 3.
Our results are also in reasonable agreement with the Molecular Dynamics calculations of
Valisko and Boda [24]. For the salt CaCl2 we may compare directly with data points by
Wilczek-Vera et al. [34]. The agreement of our results with these data and those of other
workers for CaCl2 is not quantitative but at least sufficient. For LaCl3 our theory is not able
to reproduce the pronounced minimum around

√
c ∼ 0.4(mole/liter)0.5 predicted in [24].

The reason is possibly that we did not include so far the fourth virial coefficient.

Figure 3. We show the activity coefficients of several ions and electrolytes. From above: Cl in CaCl2
(red) and Cl in LaCl3 (green), CaCl2 (blue), LaCl3 (magenta), Ca2+ (turquoise), La3+ (black). The
activities were calculated in the semi-chemical approach neglecting so far quadruples, what could be
the reason for too low values for the activities of CaCl2 and LaCl3, Ca2+ and La3+. The points denote
data measured by Wilczek-Vera et al. [34] for Cl− and La3+ in LaCl3.

For the fourth cluster integral and the corresponding association constants, a conse-
quent statistical analysis is still missing. Therefore, we restrict ourselves here to an estimate
following the lines valid for the third virial coefficient. In order to estimate the quadruple
association constant for a salt like LaCl3 we fix the Cl-Cl-distances at some energetically
favorite distance like

√
3RLaCl, which we guess from a symmetric configuration of the Cl-

ions. Then the factors for the repulsive terms may be taken out, what leads to factorization
of the remaining terms in the integral. Approximating again the repulsive term by the
quadratic order and neglecting he weak binding term we get the estimate

kLaCl3 =
π3

3456
R3

LaCl`
6 · [m(`LaCl/RLaCl)]

3. (55)

For the calculation of concrete values of the quadruple association constant we used
data from MC simulations by Valisko and Boda [24], in particular the contact distances
RLaLa = 430 pm and RLaCl = 270 pm corresponding to a relative large Bjerrum parameter
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ξ± = 7.95. The agreement of our results with available data (see Figure 3 [24,34]) is so far
not sufficient. Note that we have to differ between association constants in the density scale
of statistical mechanics particle number/cm3, and in the usual chemical concentration scale
mol/liter. In order to switch to the chemical scale the standard recalculation is needed [29].

For MgSO4 in standard seawater, the degree of association has been measured based
on the attenuation of sound by Fisher [35]. Based on these data, Fisher concluded that
about 9.2 percent of the total Mg in seawater exists as MgSO4. Kester and Pytkowicz
estimated the mass action constants for Mg and Ca and found a degree of association of
about 10 percent [28]. Our calculation gives for normal ocean salinity for Mg a degree of
association of about 12 percent, for SO4 about 9 percent and for Ca about 4 percent. Looking
at the uncertainties of the experiment and the theory, the agreement seems to be satisfactory.

We estimated the degree of triple association in seawater for the triples MgCl2 and
Na2SO4. We find according to out estimates that the formation of triples in seawater is
rather seldom.

The predicted degrees of association to MgCl2 and Na2SO4 obtained from our estimate
are in the range of 10−4. Qualitatively, this estimate and the shape of the curves seems to
be reasonable (Figure 4).

Figure 4. Left panel: Degrees association for ions in seawater. The curves describe (looking at mean
salinities from above): Mg2+, SO2−

4 , Ca2+, Na+, K+, Cl−, as a function of salinity. Right panel:
Degree of triple association in seawater for the triples MgCl2 (red) and Na2SO4 (green) which is
according to our estimates rather low. Typical is the maximum at finite concentrations/salinities.

4. Quantum Bound States of He and Li Plasmas Including Excited States

The calculation of bound states in dense He or Li plasmas and the corresponding mass
actions laws is a difficult problem in quantum statistics. We can use the approach for the H
plasma [15] where we have to solve a two-particle problem to account for the formation of
bound states, and where the solution in the low-density limit is well known [15].

In the case of He plasma, we have the doubly charged α particle as ion (Z = 2), total
density ni, and electrons, total density ne = 2ni for charge neutral plasmas. The intrinsic
factors for electrons are σe = 2 (spin 1/2), for the He++ ion σHe++ = 1. In the framework of
the chemical picture, where bound states are considered as new species, in the low-density
limit case we have free electrons, density n∗e , free ions, density n∗i , singly charged He+ ions,
density nHe+ , and neutral He atoms, density nHe. A more detailed description takes into
account not only the ground state of the few-particle system, but also all excited states and,
in the general case, the scattering states in the continuum. For He+, the intrinsic partition
function is calculated in analogy to the H atom, except that for the Z-fold charged ion, the
Hydrogen-like energy spectrum EZ

n = Z2EH
n occurs and the bound state system has charge
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+|e|. As discussed above, the intrinsic partition function of the He+ channel is (factor 2
from spin; note that we use n here as principal quantum number)

σHe+(T) = 2
∞

∑
n=1

n2
[

e−4EH
n /kBT − 1 +

4EH
n

kBT

]
. (56)

We do not want to repeat the discussion that the subdivision into the bound state part and
the continuum part is arbitrary [15]. The definition of the bound state part, proposed in
Equation (56), avoids artificial divergencies.

As discussed for the case of the H atom, the third term of the PBL partition function
is related to the long-range character of the Coulomb interaction, so that scattering phase
shifts cannot be introduced in the usual way. As is well known, this problem is solved by a
partial summation of ring diagrams so that a screened potential can be introduced, and
new terms appear in the virial expansion containing the square root of the density [15]. In
the case considered here, the contribution to the polarization function describing screening
is provided by the free electrons, the free ions, charge Z = 2, and the free singly charged
He+ ions, described below.

The calculation of the contribution of the charge-neutral He excited states is more
complicated. We have to solve the three-body system, the α particle as a doubly charged
ion, and two additional electrons. As known from spectroscopy, we have two different
channels, spin-triplet ortho-helium and spin-singlet para-helium. Excitation energies and
multiplicities are obtained, for example, from the NIST tables [36]. Bound states occur
when the 1s state is occupied by one electron, the other electron occupies states in a center-
symmetric potential that becomes Coulomb-like for highly excited states, with effective
charge Z = 1 of the He+ core ion. These Rydberg states behave like states of the H atom
near the continuum limit at 1.80714 Ry (1 Ry =13.60568 eV) so that the same divergences
appear in the intrinsic partition function. There are other two-electron states where both
electrons are excited, but the lowest, 2s2p, has an excitation energy of 4.2858 Ry and is far
in the continuum, so that it decays.

The intrinsic partition function for spin-singlet helium is (units: Ry)

σHepara(T) = e4β
[
e1.80714β − 1− 1.80714β + e0.291908β − 1− 0.291908β

+3
(
e0.247644β − 1− 0.247644β

)
+ . . .

]
.

(57)

The intrinsic partition function for spin-triplet helium is (units: Ry)

σHeortho(T) = e4β
[
3
(

e0.350425)β − 1− 0.350425β
)

+5
(
e0.266308β − 1− 0.266308β

)
+ 3
(
e0.266307β − 1− 0.266307β

)
+e0.266298/kBT − 1− 0.266298β + . . .

]
.

(58)

The values for further excitation energies and multiplicities are obtained from the tables [36].
In both cases, to obtain convergent results, the second-order term in the e-He+ interaction
is subtracted because the Coulomb interaction requires the introduction of screening. The
cluster decomposition of the polarization function describing the screening also includes a
contribution from the singly charged He+ ions as monopole contribution. A more sophisti-
cated approach also provides contributions from a multipole expansion [37] but this cluster
decomposition is not discussed here, see [15].

Now, we discuss the composition of ideal He plasmas and the mass action constants.
Within our approximation, we obtain for the total densities

ne = n∗e + n∗He+ + 2n∗He,

ni = n∗He++ + n∗He+ + n∗He (59)
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with

n∗He+ = n∗e n∗He++

Λ3
e Λ3

He++

Λ3
He+

σHe+

σeσHe++
= n∗e n∗He++KHe+(T),

n∗He = n∗e
2n∗He++

Λ6
e Λ3

He++

Λ3
He

σHeortho + σHepara

σ2
e σHe++

= n∗e
2n∗He++KHe(T). (60)

Charge neutrality means ne = 2ni so that the properties of the He plasma are determined
only by T and ni. The ionization degree may be introduced as n∗e /ni.

Often, only the lowest term of the intrinsic partition function is considered when
calculating the mass action constants. We refer to this reduction to the contribution of the
ground state as the reduced intrinsic partition function. To show the influence of the excited
states, the ratio of the chemical constants with all bound states to the cropped chemical
constants with only the lowest bound state is shown as a function of T in Figure 5.

A more advanced treatment based on a Green function approach would introduce
quasiparticle energies depending on T, ni. For all charged particles, a Debye shift arises giv-
ing the Debye limiting behavior for the pressure and other thermodynamic functions. The
medium modification of the bound state energies [32,38] leads to the so-called Mott effect,
i.e., bound states are dissolved when the bound state energy approaches the continuum
edge, see [15]. One problem, however, is that shifted energy levels cannot be introduced
directly into our chemical approach, since this requires a new approach via the grand
canonical ensemble [21], which will be briefly discussed in the next section.

The treatment of the Li plasma follows the same approach. We have triply charged
Lithium ions with the free ion density nLi3+ and degeneracy σLi3+ (which is determined
by the isotope, which should be considered as different species, but is not of relevance for
our approach). We also have doubly ionized Li++ ions with density nLi++ , singly ionized
Li+ ions with density nLi+ , and neutral Li atoms with density nLi. Higher clusters such as
Li dimers are not considered here. As before, the intrinsic partition function for Li++ is
Hydrogen-like with Z = 3, so that

σLi++(T) = σLi3+2
∞

∑
n=1

n2
[

e−9EH
n /kBT − 1 +

9EH
n

kBT

]
. (61)

As for He, the singly charged Li+ ion has two bound electrons that are in the singlet
or triplet spin state. According to the data tables [36], the continuum limit is 5.55944 Ry,
and the intrinsic partition function for spin-singlet Li+ is (units: Ry)

σLi+,para(T) = σLi3+ e9β
[
e5.5594β − 1− 5.5594β + e1.08171β − 1− 1.08171β

+3
(
e0.98663β − 1− 0.98663β

)
+ . . .

]
.

(62)

The intrinsic partition function for spin-triplet Li+ is (units: Ry)

σLi+,ortho(T) = σLi3+ e9β
[
3
(
e1.22149β − 1− 1.22149β

)
+3
(
e1.05541β − 1− 1.05541β

)
+ 5
(
e1.05538β − 1− 1.05538β

)
+e1.05536β − 1− 1.05536β + . . .

]
.

(63)

For the contribution of the neutral Li atoms, we consider three bound electrons, two
of which occupy the 1s core state, and the third one can be excited. The energy spectrum is
similar to that of hydrogen, where the modification of the Coulomb potential near the 1s core
can be described by the quantum defect method. We use the empirical values of the excitation
spectrum and have for the intrinsic partition function (continuum limit at 0.396284 Ry)

σLi(T) = σLi3+ e14.5594β
[
2
(
e0.396284β − 1− 0.396284β

)
+2
(
e0.260472β − 1− 0.260472β

)
+ 4
(
e0.260469β − 1− 0.260469β

)
+ . . .

]
.

(64)
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As for the He plasma, the composition of the Li plasma is described by

ne = n∗e + n∗Li++ + 2n∗Li+ + 3n∗Li,

ni = n∗Li3+ + n∗Li++ + n∗Li+ + n∗Li (65)

with

n∗Li++ = n∗e n∗Li3+
Λ3

e Λ3
Li3+

Λ3
Li++

σLi++

σeσLi3+
,= n∗e n∗Li3+KLi++(T),

n∗Li+ = n∗e
2n∗Li3+

Λ6
e Λ3

Li3+

Λ3
Li+

σLi+,ortho + σLi+,para

σ2
e σLi3+

= n∗e
2n∗Li3+KLi+(T),

n∗Li = n∗e
3n∗Li3+

Λ9
e Λ3

Li3+

Λ3
Li

σLi

σ3
e σLi3+

= n∗e
3n∗Li3+KLi(T). (66)

Charge neutrality means ne = 3ni so that the properties of the Li plasma are determined
only by T and ni. The ionization degree may be introduced as n∗e /ni.

We discuss different versions of the mass action constants K(T),

(i) in simplest case the reduced uncropped K0(T) where only the ground state e−E0/kBT

is taken for the intrinsic partition function, all excited states and the low-order terms
with respect to the interaction, −1 + E0/kBT, are neglected;

(ii) the reduced cropped mass action constant Kcropped(T) where only the ground state
contribution e−E0/kBT − 1 + E0/kBT to the intrinsic partition function is taken and the
summation over all excited states is neglected;

(iii) the full cropped expression K(T) given above, which contains the summation over all
excited states.

We consider the ratios Kcropped(T)/K0(T) to see the effect of the subtraction of the
low-order terms with respect to the interaction, and K(T)/Kcropped(T) to see the effect of
excited states. Calculations for KHe+(T), Equation (60), of both ratios as function of T are
shown in Figure 5. The ratio Kcropped(T)/K0(T) is 1 for low T, but approaches zero for high
T, where the subtraction of the low-order terms with respect to the interaction is important.
This reduction is shown for the ground state contribution to the intrinsic partition function,
but the reduction is even larger for the contribution of excited states.
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Figure 5. Mass action constants for the He+ ion. The ratio Kcropped(T)/K0(T) shows the effect of
subtracting the low-order terms with respect to the interaction,−1+ E0/kBT, for the reduced intrinsic
partition function where only the ground state is considered. The ratio K(T)/Kcropped(T) compares
the fully cropped intrinsic partition function with the reduced cropped partition function to show the
effect of including excited states.
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The inclusion of all excited states in the full cropped expression K(T) is interesting
when compared with the ground-state contribution in the reduced cropped mass action
constant Kcropped(T), as shown in Figure 5 as a function of T for the He+ ion. The ratio
K(T)/Kcropped(T) is also 1 for low T where excited states are not important, but increases
with increasing T as thermal excitation is possible. Interestingly, this ratio saturates in the
high T limit at π2/6 = 1.64493 so the error in using the reduced cropped mass action constant
does not become very large even at high temperatures. A similar behavior follows for the
other mass action constants, including the saturation limT→∞ K(T)/Kcropped(T) = π2/6.

5. Pressure of Quantum Plasmas Including Bound State Effects
5.1. The Valley of Bound States in the Relative Pressure and the Concatenation Method

For quantum systems the calculations of the EoS are more complicated, details are given
in [21]. The low- and high-density regions are treated in different ways. For the low density
region the cluster expansions given above work with a few modifications [15]. For low-density
plasmas, we proceed with the calculations using the mass action law method as explained
above. For the treatment of the ionization equilibrium in the low-density region we begin
as before with the expressions given below for the mass action constants KH, KHe+ , KHe,
KLi+ , KLi++ , KLi and fugacities in ring approximation, Equations (6) and (7) [20,21]. In this
approximation, for example, for hydrogen plasmas for the relative pressure p/pid the curve
follows as shown in Figure 6 on the left. Beyond the minimum of the relative pressure,
the approximations given above break down, since completely new effects appear such as
Fermi–Dirac-, Hartree–Fock and Wigner effects, as explained in previous work [20,21].

For the calculation of the pressure at high densities, in contrast to the cluster expansions
used so far, we use the more general quantum statistical formalism of Green’s functions
and Feynman diagrams

p = pFD + pHF + pring − 1
2V

1∫
0

d λ
λ

∫
d1 d2 V(1, 2) [G2(1, 2, 1′, 2′; λ)

−GFD
2 − GHF

2 − Gring
2 ] ,

(67)

where G2(1, 2, 1′, 2′) is the full two-particle Green’s function, which can be represented by
Feynman diagrams. Note that, again, the first diagrams have to be calculated separately [21].
The essential part of the remaining diagrams, which represent the contributions of bound
states, are of the ladder type and correspond to the diagrams for bound states that we
calculated in Section 2. Note that for the treatment of the light elements up to Lithium, we
have to include all Feynman diagrams, including one heavy ion and two to three electrons.
In addition, the contribution of scattering states to the thermodynamic functions, not yet
included in the approximation (59), can be obtained from the Green function approach,
see [15,37,38]. This leads to expressions for the pressure in the grand canonical ensemble
which extend the cluster expansions used above to higher density.

At very high densities, i.e., at high degeneracy, we assume that the effects of bound
state are attenuated by high-density effects and are only a perturbation. Beyond densities
of about 1023 electrons per cm3 the bound state effects may be neglected in a first approxi-
mation. This is the idea behind the method of concatenation used here: We first calculated
separately the EoS for small and for high densities using different methods, looked for
crossing points, and concatenated the curves in a smooth way as shown in Figure 6 for Hy-
drogen plasmas. In the region where the relative pressure valley ends, the bound states are
destroyed due to various high-density effects. The Schrödinger equation for bound states
is now replaced by the Nambu-Bethe-Salpeter equations [15,21]. The main contributions to
the EoS come in the high density region from Pauli and Hartree-Fock effects. In fact, we
now have an EoS which is completely different from the low-density EoS. To explain how
to proceed, we first consider Hydrogen plasmas and explain our method of concatenation
which provides a smooth connection between the low density branch and the high-density
branch. As our picture Figure 6 shows, the high density EoS and the corresponding result
for low density plow are crossing in the region of about ni = 1023 cm−3. We construct a
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convenient analytic interpolation as known from the theory of the electron gas [16] by
using the interpolating function w(x) = tanh(x/2)/2 which connects the two pieces in a
smooth way at the crossing point y0 ' 18 where y = neΛ3

e /2. This way we get in our case
with a ' 0.1

pconcat = plow/(1 + exp(a(y− y0))) + phigh/(1 + exp(−a(y− y0))). (68)

The present method of smooth concatenation at the crossing point provides a simple
extension of the above two approaches to the whole range of densities. We demonstrate
how the method of smooth concatenation works in Figure 6. In fact our way of interpolation
between the low-density branch and the high-density branch is using tanh(x/2)− functions
as is well known from electron gas theory [15,16,21].
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Figure 6. Hydrogen plasmas: We demonstrate the method of smooth concatenation for a hydrogen
plasma at T = 20,000 K. After identifying a crossing point near to ni ' 1023 cm−3 we construct a
smooth concatenation of the branches on the left (red) and right (green) sides of the intersection of
the low-density branch (red) with the high-density branch (green). The blue curve shows the result
of the concatenation using complementary tanh-functions (a ' 1; y = neΛ3

e /2).

5.2. Applications to Hydrogen, Helium and Lithium Plasmas

In the high-density regions, the fugacities and the contributions of the ideal pressure
must take into account the Fermi, Hartree–Fock and Wigner effects.

Hydrogen plasmas: For simplicity, we have treated only approximately the formation
of H2-molecules, which dominate at temperatures below 10,000 K [19]. The shoulder in
Figure 6 reflects the formation of atoms and the minimum reflects the formation of atomic
and molecular bound states. In the temperature range studied here (10,000–50,000 K), no
first order phase transitions were observed in our approximation.

Helium and lithium plasmas: Except for the need to include higher bound states, the
details of the calculations for these plasmas are analogous to hydrogen [21]. Explicitly, for
helium and lithium plasmas, we obtain expressions of the form (note that the ze, zi are
fugacities [15,20,21]

p = pFD
e + pB

i + pHF
e + pWi

i + 2zHF
e zWi

i Kei + 3(zHF
e )2(zWi

i )Kiee , (69)

p = pFD
e + pB

i + pHF
e + pWi

i + 2zHF
e zWi

i Kie + 3(zHF
e )2zWi

i Kiee + 4(zHF
e )3zWi

i Kieee . (70)
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The abbreviations are FD: Fermi-Dirac effects; HF: Hartree–Fock effects; Wi: Wigner
effects. These provide the main corrections to the ideal pressure in the quantum case.
The pre-factors zk denote the fugacities of the plasma species, these terms are completely
different for low and for high densities. The expressions we use for low densities are similar
to those used for electrolytes in Chapter 3. Here the fugacities have to be calculated in
Hartree–Fock or Wigner approximations [15,16]. Furthermore, in the high density case, the
bound states must be estimated including so-called Pauli blocking and other high density
effects [32,37,38]. These effects model, for example, the rule that states occupied by atomic
electrons cannot be occupied by free electrons with the same spin state. At high electron
densities, this leads to the destruction of atomic states, which require a relatively large
phase space [20,21]. We also need to account for energy shifts due to Pauli effects. What is
new in contrast to our previous work [20,21] is that here we use the new expressions for
the mass action constants at lower densities.

We perform a composition of all relevant contributions at low and high densities as
Fermi-Dirac, ring, and ladder contributions as well as high-density Hartree-Fock contribu-
tions to the electronic pressure and the Wigner–De Witt contributions to the ionic pressure.
We show in Figure 7 (left) results for Helium plasmas in the range 50,000–80,000 K and in
Figure 7 (right) for lithium plasmas in the range 80,000–200,000 K .

In this way, we have now found closed-form expressions for the pressure of Hydrogen
and other light plasmas expressed by our estimates of the mass action constants. Essentially,
we use an inversion of the fugacity series, applying different formulas for the range of
low densities, including bound states, on one side and large densities on the other side
where bound states are destroyed. Both limits are connected by interpolation, so that some
uncertainties in the transition region are still to be discussed. In Li plasmas, the fourfold
association is relevant and we can again use our estimates for the mass action constant.
We mention the similar situation in hydrogen molecular plasmas, which were studied in a
previous work [19,21]. Our relatively simple formulas allow the calculation of a density
series at a given temperature in only a few minutes on a standard personal computer and
can be extended to other light elements. As in the classical case, complex mixtures, as they
occur in nature, are also within the range of possible calculations, for example, to calculate
the isentropic EoS for solar plasmas [21].

Figure 7. Helium and Lithium plasmas: Low and high-density approximations are concatenated by
complementary tanh(x) functions at the crossing point. Left panel: Helium plasmas at 30,000 K (red),
50,000 K (green) and 80,000 K (blue curve) as functions of the total ion density. Right panel: Lithium
plasmas at temperatures 80,000 K (red), 120,000 K (green), 200,000 K (blue). The minima are due to
the formation of bound states.
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6. Conclusions

In the present review, ion association and ion-electron bonding are discussed in the clas-
sical and quantum cases for electrolytes and for quantum plasmas. Pair, triple, and quadru-
ple association are considered systematically and on same footing, and the mass action
constants are calculated. To a large extent, we follow Onsager’s idea that physics/chemistry
are like a ledger book in which free and bound-state contributions are on different pages
and must be treated differently. However, we have some freedom to move between the
pages of the ledger, provided we respect the general balance. This approach is not restricted
to electrolytes and plasmas; it can be applied to other systems with bound states, such as
quark-gluon plasmas with quarkonium states [6,39,40]. Because of confinement and color
saturation, the forces between quarks are not as simple as in the Coulomb systems discussed
above and will not be discussed in the present work. However, it should be mentioned that
a main issue of our work, compensating for the contributions of bound states and scattering
states and the correct formulation of the mass action law is also an important issue in the
hadron-quark plasma transition region and the consideration of correlations in the quarko-
nium state of matter; see also [39–41]. From our methods of statistical cluster expansion, it
follows as a strict consequence that the low-order contributions in e2 should be excluded
from the definition of the mass action constants, what technically means that instead of the
standard exponential functions known from classical chemical physics, cropped exponential
functions appear for Coulombic systems. In this way the double counting of diagrams is
avoided. The configuration integral or the corresponding quantum statistical trace over
the operator exp(−βHs) of the s-particle bonding group is expanded with respect to the
interaction parameter e2, and all divergent terms in the expansion are identified and omitted.
The resulting convergent temperature function yields the regularized partition function, in
the simplest case in the form of a cropped exponential function, and the mass action constant
of the bound cluster. In fact, the new mass action constants for electrolytes and quantum
plasmas are substantially smaller, often by a factor of two, than the standard values, and
accordingly the association and atom formation is strongly reduced. Furthermore, we show
that the Coulomb association is typically transient in classical and in quantum systems,
reaching a maximum at finite concentrations/densities.

We calculate activity coefficients and relative pressure in 1-1, 1-2, 2-2, and 1-3 elec-
trolytes and, in parallel, the corresponding association effects in Hydrogen, Helium, and
Lithium plasmas. We consider the specific properties of systems with Coulomb forces, such
as electro-neutrality and screening effects, which lead to a constraint that avoids double
counting of diagrams. This point has been overlooked in many previous studies. We show
that these effects lead to quite typical specific structures of the Coulombic mass action
constants derived for examples of binary, triple and quadruple association in classical and
quantum examples. As relevant applications, we have studied a seawater-like ionic mixture
and a Helium quantum plasma. We apply semi-chemical methods corresponding to an
approximation of the law of mass action by rational polynomials. These approximations
do not require a high numerical effort, but are restricted to weak degrees of association.

Our results are first summarized for the classical case: Based on the results of statistical
physics, we recommend, in addition to the standard methods for calculating the degrees
of association of ions and for individual activities and osmotic coefficients, new statistical
tools that work from low to moderate concentrations. In the classical case, we use as a basic
model charged hard spheres with individual non-additive contact distances in combination
with the nonlinear Debye-Hückel approximations for screening. Association effects are
included by allowing us to use cropped exponentials and rational polynomials instead of
exponentials and full nonlinear mass action laws. The new cropped mass-action constants
are generally smaller than the standard expressions based on exponential functions. For
the seawater example, our results for the association are in agreement with available
experimental results. Our semi-chemical approximations are restricted to lower degrees of
association, but allow the treatment of interesting real systems, such as seawater [18] and
solar plasmas [21], without much numerical effort.



Plasma 2023, 6 25

In the quantum case, for example, for Hydrogen, Helium, and Lithium plasmas, we
distinguish, using calculations, between the cases of low-, non- and higher-degenerate
densities. In between, where the strongest bound state-association effects are observed,
the relative pressure develops a minimum, the valley of bound states. Beyond this valley,
all bound states are subsequently destroyed in connection with Fermi, Pauli blocking,
Hartree–Fock, and Wigner effects. Despite the completely different physical nature, we see
that the transient nature of association/bound state effects is the same for classical and for
quantum systems: association or binding to atomic states has a clear maximum degree in a
range of finite concentrations/densities.

For quantum plasmas, we concatenate the curves obtained for the regions to the left
and right of the valley of bound states, near the crossings by smooth concatenation with
tanh functions.

In both the classical and quantum cases, the proposed formulas are analytical. There-
fore, results can be obtained on home computers even for complex mixtures, as shown
here for the example of seawater and in other work for solar plasmas [21]. In this way,
our methods can be offered for semi-quantitative estimates for quite complex mixtures
containing ions with higher charges.
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