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Abstract: Finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05,
0.10, 0.15, 0.20, 0.25) powders were synthesized via liquid-phase techniques based on the co-
precipitation of hydroxides and were used to obtain ceramic materials comprising fluorite-like
solid solutions with CSR in the range 69–88 nm (upon annealing at 1300 ◦C) and open porosity in the
range 0.6–6.2%. The physicochemical properties of the synthesized materials were comparatively
characterized. In general, the prepared materials were found to possess a mixed type of electrical
conductivity, but in the medium-temperature range, the ionic component was predominant (ion
transfer numbers ti = 0.93–0.73 at 300–700 ◦C). The highest ionic conductivity was observed for
CeO2-based samples containing 20 mol.% Sm2O3 (σ700◦C = 3.3 × 10−2 S/cm) and 15 mol.% Nd2O3

(σ700◦C = 0.48 × 10−2 S/cm) was in the temperature range 500–700 ◦C. The physicochemical proper-
ties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic
materials make them promising as solid oxide electrolytes for medium temperature fuel cells.

Keywords: co-precipitation of hydroxides; oxides; finely dispersed powders; nanoceramics; density;
porosity; electric properties; fuel cells; electrolytes

1. Introduction

A permanently growing demand for power sources has contributed to the deterio-
ration of the worldwide environmental situation. This problem can be addressed by the
development of effective and environmentally friendly power generation technologies
involving the safe application and disposal of power sources and the products of their
conversion. A particularly promising approach was based on the implementation of highly
efficient and inexpensive solid oxide fuel cells (SOFC), which afforded an effective di-
rect conversion of the chemical energy of organic fuels into electric power. SOFCs with
power from 1 W to 1 kW were particularly important for various mobile and portative
devices (electric cars, gadgets, etc.), especially in remote areas lacking centralized power
supply systems.

The direct electrochemical conversion of the fuel was promising with respect to their
environmental protection since these processes feature a minimal yield of harmful com-
pounds in the absence of intensive noise and vibrations compared with internal combustion
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engines and other types of power-generating systems [1–3]. Electrochemical fuel cells con-
vert hydrocarbon fuels into power without any yield of heavy particles, nitrogen oxides,
sulfur compounds and other contaminants contributing to the formation of smog and acid
rains [4,5], thus providing a “clean” power generation. In view of these factors, an essential
goal is the development of components for medium-temperature fuel cells, which can
be useful for power generation using all types of hydrocarbons when converted into the
synthesis gas (H2-CO). Particularly, one of the main components of fuel cells is electrolytes.
According to the ion transport mechanisms, they can be divided into anionic, proton and
ion-mixed ones. The operation of medium- and high-temperature fuel cells is based on the
transport of oxygen ions (O2

−) from the cathode to the anode. This process is only possible
in the presence of oxygen vacancies and requires the application of electrolytes containing
anionic vacancies in the crystal lattice [6–8].

However, in order to impart solid oxide electrolytes with an electrical conductivity
level that is acceptable for SOFC operation, they should be heated to very high temperatures.
For example, for electrolytes based on yttrium-doped zirconia, these temperatures are about
900−1000 ◦C. In recent decades ceria-based electrolytes featuring quite a high conductivity
in the medium temperature range (500−700 ◦C) were considered as an alternative to
zirconia-based systems. The use of CeO2-based electrolytes can provide both a decrease in
the SOFC working temperature by 300–400 ◦C and enhance their efficiency.

Particularly promising for SOFC are electrolyte materials that possess high overall
electric conductivity in couple with an optimal ionic conductivity, such as ceramics in the
systems CeO2–Sm2O3 and CeO2–Nd2O3. Hence, the development of novel ceria-based
electrolytes with the required conductivity values is an important goal in materials science.
Generally, the preparation of solid electrolytes with optimal exploration performances (ionic
conductivity, gas density, thermal stability, mechanical strength) requires the application of
finely dispersed powders [9–13]. The electrical properties of the considered electrolytes
depend on numerous factors, including the applied synthetic procedure, dispersion of the
precursor powders, ceramic material density, grain size, etc. [14–18].

The most inexpensive and simple approaches to obtaining nanopowders include
liquid phase methods such as hydrothermal synthesis [19], the sol-gel method [20], the
co-precipitation of hydroxides from the solutions of inorganic salts and co-crystallization of
salts [21–23]. The co-precipitation of hydroxides coupled with low-temperature treatment is
the most promising procedure since it provides the most precise control over the dispersion
and microstructure of the target products and can obtain weakly agglomerated xerogels
and nanoscale powders with high specific surface area [10,21,22].

An available approach to reduce the sintering temperature, increase the density and
mechanical strength as well as reduce the porosity of ceramics is based on the controllable
addition of sintering additives to the charge mixture. Such additives can play an important
role even at a very small content according to different mechanisms and depending on the
nature of the base material and the additive, as well as regarding their high-temperature
interaction. Additives can activate with this sintering process by blocking grain the growth,
being localized at grain boundaries in an initial state or in the form of a compound [21].

Although this problem has been addressed in a number of works, no comparative data
have been reported on the relationships among the synthesis conditions, microstructure and
electromigration properties of solid electrolytes based on CeO2–Sm2O3 and CeO2–Nd2O3
systems.

The aim of this research is the synthesis of finely dispersed (CeO2)1−x(Sm2O3)x
(x = 0.05; 0.10; 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05; 0.10; 0.15; 0.20, 0.25) powders
by the liquid phase method based on the co-precipitation of the corresponding hydrox-
ides, followed by low-temperature treatment and a comparative analysis of the effect of
the elemental and concentration composition on the microstructure and physicochemical
properties of the powders and ceramics based thereon.
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2. Materials and Methods
2.1. Synthesis of (CeO2)1−x(Sm2O3)x (x = 0.05; 0.10; 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05;
0.10; 0.15; 0.20; 0.25) Powders by Co-Precipitation of Hydroxides

The liquid phase synthesis of the xerogels and nano-dispersed (CeO2)1−x(Sm2O3)x
(x = 0.05; 0.10 and 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05; 0.10; 0.15; 0.20; 0.25) powders
was performed by the co-precipitation of hydroxides with low-temperature processing.

For this synthesis, the nitric acid salts of cerium Ce(NO3)3·6H2O (analytical purity
grade with the reagent content higher than 98% wt.), samarium Sm(NO3)3·nH2O (an-
alytical purity grade with the reagent content higher than 98% wt.) and neodymium
Nd(NO3)3·6H2O (chemical purity grade with the reagent content higher than 99% wt.)
were used, from which the diluted (~0.1 M) solutions were prepared.

The co-precipitation of hydroxides was carried out according to the scheme shown
in Figure 1 using a 1 M aqueous solution of ammonia hydrate (NH3·H2O) as a precipitat-
ing agent.
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Figure 1. Synthetic approach to obtaining CeO2–Sm2O3 and CeO2–Nd2O3 ceramic materials.

Taking into account the pH values required for the precipitation of each hydroxide,
the pH of the reaction mixtures for Ce-Sm and Ce-Nd systems was maintained on levels
10–11 and 11–12, respectively. This precipitation was performed with a minimal rate
of 0.02 cm3/s and thorough mixing. The prepared gelatinous precipitate of hydroxides
was filtered, followed by freezing at −25 ◦C within 24 h to provide deagglomeration
and maintain a fine dispersion of the prepared co-precipitates. The freezing of these
gels provided the removal of the adsorbed and crystallization water from the gelatinous
precipitate, as well as its fastest hardening to maintain a high chemical homogeneity of
the solid phase. The application of low-temperature processing determined the evolution
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of the product’s microstructure and allowed for the preparation of more finely dispersed
materials [13].

The resulting X-ray amorphous xerogels were dried at 120 ◦C within 1 h, followed
by heating at 600 ◦C within 1 h to form nanopowders with a stable crystal structure. The
prepared powders were consolidated by single-axis cold compression at the pressure of
150 MPa followed by sintering at 1300 ◦C within 2 h.

2.2. Characterization Methods

XRD analysis was performed using a D8-Advanse diffractometer (Bruker, Billerica,
MA, USA), WINFIT 1.2.1 software for data processing with the Fourier transformation and
an international database ICDD-2006 for the diffraction patterns interpretation. The size of
coherent scattering regions (CSR) was estimated using the Selyakov–Scherrer equation:

DCSR = 0.9·λ/(β·cosθ)

where λ is the CuKα wavelength and β is the diffraction peak FWHM [24].
The thermolysis processes in co-precipitated xerogels and powders were studied at

heating in the temperature range of 20–1000 ◦C using a Q-1000D MOM derivatograph
(Paulik-Paulik-Erdey, Budapest, Hungary). The specific surface area of the synthesized
nanopowders was characterized according to the BET model by low-temperature nitrogen
adsorption using a QuantaChrome Nova 4200B analyzer. The pore size distribution was
characterized based on the obtained nitrogen desorption isotherms according to the Barrett–
Joyner–Khalenda (BJK) method. Heat treatment of these samples was carried out using
a Naberterm oven with programmed heating in the range of 25–1300 ◦C within 1–2 h,
followed by slow cooling in an oven.

The open porosity and apparent density were measured by hydrostatic weighing in
distilled water according to the Russian standard GOST 473.4-81 [25].

The surface functionality of the prepared samples was studied using a dynamic pH-
metry technique [26,27]. The acid-base properties of the powder surface were characterized
by measuring the changes in the pH value of the suspensions obtained by immersing
30 mg of the studied powders in 30 mL of distilled water at permanent agitation with a
magnetic stirrer. pH measurements were performed using Multitest IPL-301 pH-meter
(NPP SEMICO, Novosibirsk, Russia) in 5, 10, 20, 30, 40, 50 and 60 s after the sample
immersion and subsequently, every 30 s up to 5 min from the powder immersion.

The electrical resistance of the obtained ceramic materials was measured by a two-
contact method using a direct current in the temperature range of 250–1000 ◦C and using
the “Hardware-software installation to investigate the electrical properties of nanoceramics
in different gas media” [28]. The transfer numbers of the ions and electrons in bulky
solid electrolytes were determined by the West–Tallan method [29] using a CO2 + CO
mixture (corresponding to the oxygen partial pressure of 103 Pa) as an inert gas. The
measurements were carried out using a direct current in weak (U = 0.5 V) fields after a long
(up to 30 min) drop of the current. The contributions of ionic and electronic conductivity
were estimated as:

te = Rair/Re

and
ti = 1 − te

where te and ti are the transport numbers of the electrons and ions, respectively, and Rair
and Re are the sample resistance measured in air and in an inert gas atmosphere.

The resulting ceramics microstructure was characterized using a Tescan Amber GMH
(Tescan, Chech Republic) electron microscope with a secondary electron detector (Everhard-
Tornley) at magnification ×75,000.
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3. Results and Discussion
3.1. Study of the Thermolysis of the Synthesized Xerogels

The thermal behavior of the synthesized xerogels was studied using differential
thermal analysis up to 1000 ◦C (heating rate 20 ◦C/min). An exemplary DTA thermogram is
shown in Figure 2 for a (CeO2)0.95(Sm2O3)0.05 xerogel obtained by co-precipitation without
(Figure 2a) and with subsequent freezing (2b). The endothermic effect with a minimum
at ~110 ◦C in Figure 2a is due to the removal of solvent residues and the desorption of
physically bound water from the surface of xerogel particles. The dehydration of crystalline
hydrate and decomposition of nitrate salts occurred in one stage, corresponding to a weight
loss of ~ 33%. In the temperature range of 260–280 ◦C, these powders exhibited a narrow
exothermic effect due to the crystallization of a fluorite-like cubic solid solution based on
cerium oxide, which was accompanied by a small weight loss, probably associated with the
removal of water through the pores that were formed as a result of the transformation of
the xerogel microstructure. However, for the sample subjected to freezing, no endothermic
effect corresponding to a similar dehydration process was observed (Figure 2b), suggesting
that freezing led to the removal of most of the water. Freezing also provided a decrease
in the temperature range of ceria-based solid solution crystallization from 260–320 ◦C to
230–280 ◦C. The weight loss of the crystalline hydrate prepared without freezing (Figure 2a)
was ~11%.
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Figure 2. TG/DTA results for (CeO2)0.95(Sm2O3)0.05 xerogels prepared without (a) and with (b)
freezing at −25 ◦C within 24 h.

An exemplary DTA thermogram for (CeO2)0.80(Nd2O3)0.20, prepared by co-precipitation,
followed by freezing, is shown in Figure 3.
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In this case, an exothermic effect corresponding to dehydration at ~100 ◦C was not
observed, suggesting the removal of physically sorbed water in the course of freezing. Peaks
relating to the desorption of structurally bound water and the decomposition of residual
nitrates are present in the range 320–390 ◦C. A narrow exothermic peak at 260–280 ◦C could
be determined by the crystallization of the cubic solid solution.

3.2. Characterization of the CeO2–Sm2O3 and CeO2–Nd2O3 Powders Microstructure

An exemplary adsorption–desorption isotherm and differential pore size distribution
for a (CeO2)0.95(Sm2O3)0.05 precursor powder dried at 120 ◦C is presented in Figure 4. As
can be seen from Figure 4a, the powder had a mesoporous structure, as evidenced by the
adsorption–desorption isotherm relating to type IV according to the IUPAC classification. The
type of capillary-condensation hysteresis for the H2 type, according to the IUPAC classification,
indicated the predominance of bottle-shaped pores, mainly small mesopores (2–10 nm). The
total pore volume was 0.083 cm3/g, and the specific surface area was 50 m2/g.
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The textural parameters of co-precipitated CeO2–Sm2O3 and CeO2–Nd2O3 samples
are comparatively summarized in Table 1.

Table 1. Textural parameters of the synthesized powders determined by BET method.

Composition Specific Surface Area
Ss, m2/g

Average Pore Diameter
Dpor, nm

Specific Pore Volume
Vpor, cm3/g

Co-precipitation

(CeO2)0.95(Sm2O3)0.05 50 3.6 0.080

(CeO2)0.90(Sm2O3)0.10 78 2.5 0.086

(CeO2)0.80(Sm2O3)0.20 83 1.5 0.092

Co-precipitation (after drying at 120 ◦C)

(CeO2)0.95(Nd2O3)0.05 119 3.5 0.111

(CeO2)0.90(Nd 2O3)0.10 57 3.6 0.048

(CeO2)0.85(Nd 2O3)0.15 70 3.7 0.086

(CeO2)0.80(Nd2O3)0.20 27 3.8 0.076

(CeO2)0.75(Nd2O3)0.25 41 3.7 0.093

The synthesized powders had a mesoporous structure with a pore size in the range of
1.5–3.8 nm, a total pore volume in the range of 0.048–0.111 cm3/g, and a specific surface
area of 41–119 m2/g.

3.3. Density and Open Porosity of CeO2–Nd2O3 Ceramics Synthesized Using Different
Sintering Additives

To provide the required functional performances, the resulting electrolyte materials
must possess an optimal density and low porosity since the target electrolytes must be
gas-tight. Since CeO2–Nd2O3 was found to possess an undesirably high porosity, the
addition of silica (SiO2) and zinc oxide (ZnO) as sintering additives before the ceramics
were consolidated was attempted in order to improve this parameter. The comparative
data summarized in Table 2 revealed that the addition of silica resulted in an increase in
the porosity and a reduction in the material density, while in the case of ZnO application,
significant growth of density and a decrease in the porosity was observed. Consequently,
the following studies were performed only using zinc oxide as a sintering additive.

Table 2. Effect of sintering additives on the density and open porosity P of (CeO2)1−x(Nd2O3)x

(x = 0.05, 0.10, 0.15, 0.20 and 0.25) ceramic samples.

Composition

No Sintering
Additives 3% SiO2 3% ZnO

Apparent
Density

$app,
g/cm3

P, %

Apparent
Density

$app,
g/cm3

P, %

Apparent
Density

$app,
g/cm3

P, %

(CeO2)0.95(Nd2O3)0.05 5.47 23.9 5.57 23.5 6.41 0.6

(CeO2)0.90(Nd2O3)0.10 4.67 29.9 4.30 32.9 7.02 3.4

(CeO2)0.85(Nd2O3)0.15 4.74 29.4 4.53 23.8 6.62 6.5

(CeO2)0.80(Nd2O3)0.20 6.16 16.2 4.13 29.6 6.54 0.6

(CeO2)0.75(Nd2O3)0.25 5.11 21.8 4.69 25.6 6.52 1.0

3.4. Crystal Structure Characterization of Solid Solutions in the Systems (CeO2)1−x(Sm2O3)x
(x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25)

XRD data revealed the formation of the fluorite-like cubic solid solutions in both CeO2–
Sm2O3 and CeO2–Nd2O3 systems. The sequence of this cubic solid solution formation in the
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sintered (CeO2)0.85(Nd2O3)0.15 sample and (CeO2)0.80(Sm2O3)0.20 samples is exemplarily
shown in Figures 6 and 7, respectively.
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The XRD spectra for all the studied compositions in the systems (CeO2)1−x(Nd2O3)x
and (CeO2)1−x(Sm2O3)x are presented in Figures 8 and 9, accordingly.
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According to the presented XRD data, the firing of the CeO2–Nd2O3 sample at 600 ◦C
for 1 h yielded finely dispersed solid solutions featuring a fluorite-type cubic structure
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with a unit cell parameter a = 5.4360 Å and average CSR~14 nm, while sintering at 1300 ◦C
resulted in a change in these parameters to a = 5.4545 Å and CSR = 88 nm. Similar values
for the CeO2–Sm2O3 sample at 600 ◦C were CSR 8 nm, at 1300 ◦C a = 5.4651 Å and CSR
69 nm.

Thus, the prepared ceramic samples in both systems maintained a single-phase nature
in the temperature range of 600–1300 ◦C.

The SEM image of the (CeO2)0.90(Nd2O3)0.10 sample fired at 600 ◦C (Figure 10a)
indicated the formation of a crystalline phase including 5–25 µm sized crystals and certain
pore space. The subsequent annealing at 1300 ◦C resulted in a complete crystallization with
the formation of crystals and separate grains (Figure 10b). The granular composition of this
sample is illustrated in Figure 10c, indicating the presence of 200–700 nm-sized grains with
well-defined boundaries and pores between some grains.

Ceramics 2023, 6, FOR PEER REVIEW  10 
 

 

According to the presented XRD data, the firing of the СeO2-Nd2O3 sample at 600 °C 
for 1 h yielded finely dispersed solid solutions featuring a fluorite-type cubic structure with 
a unit cell parameter a = 5.4360 Å and average CSR~14 nm, while sintering at 1300 °C re-
sulted in a change in these parameters to a = 5.4545 Å and CSR = 88 nm. Similar values for 
the CeO2–Sm2O3 sample at 600 °C were CSR 8 nm, at 1300 °C a = 5.4651 Å and CSR 69 nm. 

Thus, the prepared ceramic samples in both systems maintained a single-phase na-
ture in the temperature range of 600–1300 °C. 

The SEM image of the (СeO2)0.90(Nd2O3)0.10 sample fired at 600 °C (Figure 10a) indi-
cated the formation of a crystalline phase including 5–25 µm sized crystals and certain 
pore space. The subsequent annealing at 1300 °C resulted in a complete crystallization 
with the formation of crystals and separate grains (Figure 10b). The granular composition 
of this sample is illustrated in Figure 10c, indicating the presence of 200–700 nm-sized 
grains with well-defined boundaries and pores between some grains.  

 
(a) 

 
(b) 

Figure 10. Cont.



Ceramics 2023, 6 1220Ceramics 2023, 6, FOR PEER REVIEW  11 
 

 

 
(c) 

Figure 10. SEM image of the (СeO2)0.90(Nd2O3)0.10 sample fired at 600 °C (a) and annealed at 1300 °C 
(b), as well as the granular composition (c). 

The comparison of physicochemical properties of СeO2–Sm2O3 and СeO2–Nd2O3 is 
shown in Table 3.  

Table 3. Physicochemical properties of (СeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (СeO2)1−x(Nd2O3)x 
(x = 0.05, 0.10, 0.15, 0.20, 0.25 samples. 

Composition 
Theoretical 

Density 
ρteor, g/cm3 

Apparent 
Density 
ρapp, g/см3 

Relative 
Density ρrel, 

% 

CSR, nm 
(1300 °C) 

Open Porosity 
Р, % 

CeO2–Sm2O3 
(CeO2)0.95(Sm2O3)0.05 7.23 6.55 91 69 2.0 
(CeO2)0.90(Sm2O3)0.10 6.98 6.33 91 68 3.8 
(CeO2)0.80(Sm2O3)0.20 6.90 6.25 91 65 6.2 

СеО2–Nd2O3 (with 3% ZnO sintering additive) 
(CeO2)0.95(Nd2O3)0.05 6.82 6.41 94 88 0.6 
(CeO2)0.90(Nd2O3)0.10 7.57 7.02 93 75 3.4 
(CeO2)0.85(Nd2O3)0.15 7.15 6.62 93 73 1.5 
(CeO2)0.80(Nd2O3)0.20 6.98 6.54 94 69 0.5 
(CeO2)0.75(Nd2O3)0.25 6.96 6.52 94 66 1.0 

3.5. Characterization of the Surface Acid-Base Properties by Dynamic pH-Metry of Aqueous 
Suspensions 

The pH kinetic plots for aqueous suspensions of CeO2–Nd2O3 and СеО2–Sm2O3 sus-
pensions are shown in Figure 11. These data suggest that the immersion of non-doped 
CeO2 in water resulted only in a distinct (by 0.02–0.03) decrease in the pH of the slurry 
followed by growth to the initial level in 4–5 min, suggesting the passive state of the sur-
face with a low content of active centers.  

Figure 10. SEM image of the (CeO2)0.90(Nd2O3)0.10 sample fired at 600 ◦C (a) and annealed at 1300 ◦C
(b), as well as the granular composition (c).

The comparison of physicochemical properties of CeO2–Sm2O3 and CeO2–Nd2O3 is
shown in Table 3.

Table 3. Physicochemical properties of (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x

(x = 0.05, 0.10, 0.15, 0.20, 0.25 samples.

Composition
Theoretical

Density $teor,
g/cm3

Apparent
Density

$app, g/cm3

Relative
Density $rel,

%

CSR, nm
(1300 ◦C)

Open Porosity
P, %

CeO2–Sm2O3

(CeO2)0.95(Sm2O3)0.05 7.23 6.55 91 69 2.0

(CeO2)0.90(Sm2O3)0.10 6.98 6.33 91 68 3.8

(CeO2)0.80(Sm2O3)0.20 6.90 6.25 91 65 6.2

CeO2–Nd2O3 (with 3% ZnO sintering additive)

(CeO2)0.95(Nd2O3)0.05 6.82 6.41 94 88 0.6

(CeO2)0.90(Nd2O3)0.10 7.57 7.02 93 75 3.4

(CeO2)0.85(Nd2O3)0.15 7.15 6.62 93 73 1.5

(CeO2)0.80(Nd2O3)0.20 6.98 6.54 94 69 0.5

(CeO2)0.75(Nd2O3)0.25 6.96 6.52 94 66 1.0

3.5. Characterization of the Surface Acid-Base Properties by Dynamic pH-Metry of
Aqueous Suspensions

The pH kinetic plots for aqueous suspensions of CeO2–Nd2O3 and CeO2–Sm2O3
suspensions are shown in Figure 11. These data suggest that the immersion of non-doped
CeO2 in water resulted only in a distinct (by 0.02–0.03) decrease in the pH of the slurry
followed by growth to the initial level in 4–5 min, suggesting the passive state of the surface
with a low content of active centers.
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Figure 11. pH kinetics in aqueous suspensions of CeO2–Nd2O3 and CeO2–Sm2O3 samples of different
compositions in comparison with non-doped CeO2.

The addition of 10% Nd2O3 led to a slight change in the pH kinetics featuring a more
significant (by 0.04) pH drop in the first 2–2.5 min, followed by a similar growth to the
initial level. The increase in the Nd2O3 content to 20% resulted in a qualitatively similar
but much more prominent effect, including a decrease of 0.08 in the first minute followed
by a gradual growth to the value exceeding the initial level by 0.08. Additionally, a similar
but even more pronounced effect with a decrease in pH by 0.08 after a minute, followed by
an increase to a value exceeding the initial value by more than 0.3 after 5 min was observed
in the case of introducing Sm2O3 at the amount of 10%. On the contrary, for a powder
suspension containing 20% Sm, a decrease in the pH by 0.06 was observed during the first
1.5 min, followed by stabilization at this level. It should be noted that this sample differed
from the rest by a pronounced hydrophobization of the surface, i.e., the absence of wetting,
with the material remaining on the surface of the water, and did not sink throughout the
experiment with stirring the suspension.

The observed trends in pH kinetics could be determined by the following factors. The
decrease in pH in the first minutes after the immersion of the samples was probably due
to the presence of Lewis acid sites (metal cations) and Broensted acid sites (OH-groups
of the acid type yielding protons in an aqueous medium) on the surface. The subsequent
gradual pH growth could be attributed to Broensted basic centers, i.e., hydroxyl groups
dissociating more slowly with the release of the entire OH group. Broensted acidic and
basic centers could be formed, respectively, by M-OH and M(OH)2 groups (M = Ce, Nd,
Sm). The introduction of additive atoms (Nd, Sm) apparently led to the disordering of
element–oxygen bonds in the surface layer resulting in the formation of various Lewis and
Broensted sites in the amounts growing with the additive content.

A drastic pH growth for the suspension of the sample containing 10% Sm2O3 could be
accounted for by the more basic nature of this additive since, unlike neodymium, samarium
can take the oxidation state +2 intrinsic to basic compounds, including the corresponding
hydroxyls. The increase in the Sm2O3 content to 20% could lead to further growth in the
content of hydroxyl groups and their condensation due to their proximity to each other,
resulting in a relatively passive and hydrophobic surface covered with the element–oxygen
bridging bonds with the predominance of cations (Lewis acid sites) on the surface providing
the observed decrease in pH during the first minutes.
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3.6. Electrophysical Properties of (CeO2)1−x (Sm2O3)x (x = 0.05, 0.10, 0.20) and
(CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25)

The electrical conductivity of the studied samples was measured using a two-contact
method at a direct current. The mechanism of electrical conductivity in these systems
was mixed, including the electronic and ionic components, since the formation of oxygen
vacancies was accomplished via the introduction of samarium and neodymium oxides
with the lower oxidation state of the metal compared to cerium. At temperatures above
600 ◦C, cerium dioxide was easily reduced to Ce3+, providing the electronic component
of conductivity. Electrons also took part in charge transfer and determined the mixed
nature of the conductivity of a cubic solid solution based on cerium oxide, in which the
charge transport was simultaneously carried out by several types of carriers. In this regard,
CeO2-based materials could be considered as solid electrolytes (operating temperature
range 400–600 ◦C) for medium-temperature solid oxide fuel cells.

The temperature dependences of the specific electrical conductivity for the prepared
CeO2–Sm2O3 and CeO2–Nd2O3 (with ZnO sintering additive) ceramic samples are shown
in Figures 12 and 13, respectively. The conductivity values at 700 ◦C and corresponding
activation energies are summarized in Table 4.
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As shown in Figures 8 and 9, the specific conductivity of all the samples grew with
the temperature in the range 500–1000 ◦C. Generally, the addition of Sm2O3 provided a
significantly higher conductivity compared to Nd2O3. Furthermore, according to Table 4,
the conductivity of CeO2–Sm2O3 steadily grew with the Sm2O3 content while. in the case
of CeO2–Nd2O3 samples, it passed through a prominent maximum at 15 mol.% Nd2O3 and
drastically dropped at higher contents of neodymium oxide. This observed behavior could
probably be determined by the formation of “quasi-chemical complexes” (Nd′Ce–VO

••)•

involving Nd3+ ions and mobile oxygen vacancies VO
•• [8], consequently reducing the

number of oxygen vacancies.

Table 4. Specific electrical conductivity at 700 ◦C and activation energy of (CeO2)1−x(Sm2O3)x

(x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25 samples.

Composition
Specific Conductivity

σ·10−2, S·cm−1

(700 ◦C)
Activation Energy Ea, eV

CeO2–Sm2O3

(CeO2)0.95(Sm2O3)0.05 1.2 1.35

(CeO2)0.90(Sm2O3)0.10 2.7 1.31

(CeO2)0.80(Sm2O3)0.20 3.3 1.29

CeO2–Nd2O3 (with 3% ZnO sintering additive)

(CeO2)0.95(Nd2O3)0.05 0.14 1.30

(CeO2)0.90(Nd2O3)0.10 0.36 1.07

(CeO2)0.85(Nd2O3)0.15 0.48 1.05

(CeO2)0.80(Nd2O3)0.20 0.18 1.01

(CeO2)0.75(Nd2O3)0.25 0.22 0.98

The highest conductivity σ700◦C = 3.3× 10−2 Cm/cm in the studied temperature range
500–1000 ◦C was observed for the sample containing 20 mol.% Sm2O3.

The transfer numbers of ions and electrons determined by the West–Tallan method
are exemplarily shown in Table 5 for the (CeO2)0.95(Sm2O3)0.05 sample and in Table 6 for
(CeO2)0.95(Nd 2O3)0.05 and (CeO2)0.90(Nd2O3)0.10 systems.

Table 5. Transfer numbers of ions ti and electrons te characterizing the mixed electrical conductivity
of (CeO2)0.95(Sm2O3)0.05 sample at different temperatures.

T, ◦C ti te

300 0.85 0.15

400 0.80 0.20

500 0.78 0.22

600 0.75 0.25

700 0.73 0.27

Table 6. Transfer numbers of ions ti and electrons te characterizing the mixed electrical conductivity
of (CeO2)0.95(Nd 2O3)0.05 and (CeO2)0.90(Nd2O3)0.10 samples as a function of temperature.

Composition T, ◦C ti te

(CeO2)0.95(Nd2O3)0.05
400 0.85 0.15

700 0.83 0.18

(CeO2)0.90(Nd2O3)0.10
400 0.93 0.07

700 0.85 0.15
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The ion transfer number ti generally ranged from 0.73 to 0.93 and dropped with
increasing temperature. The CeO-Nd2O3 system featured a higher part of ionic conductivity
compared with CeO-Sm2O3, especially (CeO2)0.90(Nd2O3)0.10, which provided ti = 0.93 at
400 ◦C.

The obtained results indicated that the hydroxide coprecipitation method provided
finely dispersed powders and dense low-porous nanoceramics in both studied systems
with specific electrical conductivity in the range (0.48–3.3) × 10−2 Cm/cm.

4. Conclusions

A series of finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10 and 0.20) and
(CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) nanopowders with CSR~8–14 nm
were prepared by the co-precipitation of hydroxides followed by freezing which was con-
solidated into ceramics with a fluorite-type cubic structure. The obtained ceramic materials
were characterized by CSR 69–88 nm (1300 ◦C), open porosity in the range of 0.6–6.2%, and
an apparent density of 7.02–6.25%.

Comparative studies of the porosity and density performed for ceramic samples in
the systems CeO2–Sm2O3 and CeO2–Nd2O3 revealed that in the CeO2–Nd2O3 system, the
optimal values of density and open porosity could be achieved by the introduction of ZnO
as a sintering additive. Samples of approximately the same density were obtained in both
systems; however, CeO2–Nd2O3-based ceramics featured the lowest open porosity.

For both series of ceramics samples, electrical conductivity occurred according to the
vacancy mechanism. Ionic conductivity prevailed with ion transfer numbers ti = (0.93–0.73)
in the medium temperature range (300–700) ◦C. The highest specific conductivity at
700 ◦C for CeO2–Sm2O3 and CeO2–Nd2O3 systems were achieved in the case of (CeO2)0.80
(Sm2O3)0.20 (σ700◦C = 3.3× 10−2 S/cm) and (CeO2)0.85(Nd2O3)0.15 (σ700◦C = 0.47× 10−2 S/cm).
The significantly higher conductivity for CeO2 -Sm2O3 samples are probably determined
by their finer dispersion.

The characterization of surface acid-base properties for the obtained materials revealed
that the addition of both Sm2O3 and Nd2O3 resulted in either the activation of the sur-
face due to the distortion of element–oxygen bridging bonds or to passivation at a high
(20 mol.%) Sm2O3 content, probably as a result of the condensation of the neighboring
hydroxyl group upon the achievement of their critical concentration.

The conductivity of CeO2–Nd2O3-based ceramics passed through a maximum at 15 mol.%
Nd2O3 and drastically dropped at higher contents of neodymium oxide, probably as a result
of the formation of “quasi-chemical complexes” (Nd′Ce–VO

••)• involving Nd3+ ions and
mobile oxygen vacancies VO

••, consequently reducing the number of oxygen vacancies.
According to the achieved mechanical (density, open porosity) and electrophysical

(the type, value and mechanism of electrical conductivity) the obtained ceramic electrolyte
materials are promising as components of medium-temperature solid oxide fuel cells.
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