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Abstract: Uranium-containing glass samples with an age of 140–145 million years were collected
within the volcanic rocks of the largest volcanic-related uranium ore deposit in the world. Main
features of their composition are high concentrations of silica and uranium, the largest for the rocks
of this type. In contrast to this, the ages of fresh (unaltered) low-silica natural glasses of a basic
composition (basalts) usually do not exceed a few million years. The volcanic low-silica glass is
unstable at longer times and in older ancient rocks is transformed into a crystalline mass. The
geochemistry of uranium including the behavior in solids and solutions is similar to that of long-lived
transuranic actinides such as radioactive Np and Pu from high-level radioactive waste. This allows
uranium to be used as a simulant of these long-lived hazardous radionuclides both at the synthesis
and for the study of various nuclear wasteforms: glasses, glass crystalline materials and crystalline
ceramics. The data obtained on long-term behavior of natural glasses are of importance for prognosis
and validation of stability of nuclear wasteforms disposed of in geological disposal facilities (GDF).

Keywords: volcanic glasses; nuclear waste; uranium retention

1. Introduction

Glasses are solids quenched from liquids without phase separation, which can be
avoided using enough rapid cooling rates. For example, metallic glasses are produced
using fast cooling whereas silicate glasses are formed on the natural cooling of melts
because crystallization in such systems proceeds at very low cooling rates. Upon heating,
glasses continuously change their properties to those of a liquid-like state (melt) in contrast
to crystals, where such changes occur abruptly at the melting point, Tm. The ranges of
solid-like and liquid-like behavior of amorphous materials are divided by glass transition
temperature, Tg. Whether a material behaves either as a liquid or a solid depends on
the connectivity between its elementary building blocks—atoms, molecules, or clusters.
Solids are characterized by a high degree of connectivity whereas structural blocks in melts
have a lower connectivity. There is a threshold connectivity determining the Tg in each
actual system being a function of composition and logarithmically dependent on cooling
rate [1,2]. Being solid-state solutions, glasses are highly tolerant to compositional changes.
Properties of glasses change continuously with variation of composition. The high chemical
durability and tolerance of glasses to compositional variations as well as the ease of their
production by cooling of molten mixtures of substances have determined vitrification to be
an effective method of nuclear waste immobilization. Indeed, nuclear waste vitrification
provided a high degree of retention of radionuclides and significantly contributed to the
increased safety of the storage, transportation and final disposal of high-level nuclear
waste, which is a dangerous by-product of the peaceful use of nuclear energy [3–5]. Several
countries have operated vitrification facilities for decades, significantly reducing the hazard
of environmental contamination arising from highly radioactive liquid waste generated at
spent nuclear fuel reprocessing (Table 1).
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Table 1. Data on industrial vitrification of high-level nuclear waste [6].

Country, Facilities Performance Data

France, R7/T7, AVM 8252 tonnes, 291·106 TBq to 2019
USA, DWPF, WVDP, WTP 7870 tonnes, 2.7·106 TBq to 2012

Russia, EP-500 6200 tonnes, 23.8·106 TBq to 2010
UK, WVP 2200 tonnes, 33·106 TBq to 2012

Belgium, Pamela 500 tonnes, 0.5·106 TBq. Completed.
Japan, Tokai 70 tonnes, 14.8·103 TBq to 2007

Germany, Karlsruhe 55 tonnes, 0.8·106 TBq. Completed.
India, WIP (1), AVS, WIP (2) 28 tonnes, 9.62·103 TBq to 2012

Slovakia, Bohunice 1.53 m3 to 2012

Silicate glasses have been generically selected as the most reliable wasteform to immo-
bilize high-level nuclear waste (HLW) apart from Russia, which uses phosphate glass and
partially the joint Belgium–Germany vitrification program Pamela (Table 2).

Table 2. Composition of HLW glasses, wt% [7].

Country Plant Glass Composition

Belgium Pamela 70.7P2O5·7.1Al2O3·22.2Fe2O3 and
52.7SiO2·13.2B2O3·2.7Al2O3·4.6CaO·2.2MgO·5.9Na2O·18.7 Misc. 1

France AVM 46.6SiO2·14.2B2O3·5.0Al2O3·2.9Fe2O3·4.1CaO·10.0Na2O·17.2 Misc.
France R7/T7 54.9SiO2·16.9B2O3·5.9Al2O3·4.9CaO·11.9Na2O·5.5 Mis.

Germany Karlsruhe 60.0SiO2·17.6B2O3·3.1Al2O3·5.3CaO·7.1Na2O·6.9 Mis.
India WIP 30.0SiO2·20.0B2O3·25.0PbO·5.0Na2O·20.0 Mis.
India AVS 34.1SiO2·6.4B2O3·6.2TiO2·0.2Na2O·9.3MnO·43.8 Mis.
Japan Tokai 46.7SiO2·14.3B2O3·5.0Al2O3·3.0CaO·9.6Na2O·21.4 Mis.
Russia EP500 53.3P2O5·15.8Al2O3·1.6Fe2O3·23.5Na2O·5.8 Misc.

UK WVP 47.2SiO2·16.9B2O3·4.8Al2O3·5.3MgO·8.4Na2O·17.4 Misc.
US DWPF 49.8SiO2·8.0B2O3·4.0Al2O3·1.0CaO·1.4MgO·8.7Na2O·27.1 Misc.
US WVDP 45.8SiO2·8.4B2O3·6.1Al2O3·11.4Fe2O3·1.4MgO·9.1Na2O·17.8 Mis.
US WTP 50.0SiO2·20.0B2O3·5.0Al2O3·25.0Na2O

1 Miscellaneous, including oxides of radioactive waste.

Nuclear waste management is a mature internationally regulated industry that deals
with all aspects of nuclear waste generated as dangerous by-products of the application
of nuclear energy. Although there are not unresolved problems with controlling and
handling nuclear waste, many scientific areas related to nuclear waste management focus
the attention of experts. These activities include the analysis of long-term behavior of
vitrified nuclear waste in deep geological facilities (GDF) after its disposal [8]. Natural glass-
like materials can therefore be useful as analogues of vitrified nuclear waste in extrapolating
short-term experiments to longer time frames and projections about the long-term safety
of disposal [9,10]. Natural glasses to a certain degree similar in composition to that of the
HLW glasses (Table 2) are found in nature and have been subjected to conditions similar to
that expected if the GDF is becoming flooded with water and the canisters are breached,
allowing groundwater to react with the glassy wasteform. The study of natural glasses
with ages of millions of years can provide the necessary link between theoretical models on
the long-term vitreous nuclear waste stability, study of historical vitrified material with
ages of up to 1800 years [11,12] and laboratory tests aiming to provide information on the
long-term durability of a glassy wasteform [13].

Volcanic rocks such as those with a silica-rich (rhyolites, obsidians) or low silica content
(basalts) composition are usually used as natural analogues for borosilicate (B-Si) vitreous
nuclear wasteforms to predict their alteration in a long-time perspective [9,14]. Studies
are devoted to the analysis of their alteration from the mineralogical point of view and
mechanical stability. Investigations were also performed on the geochemistry of U, Th and
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rare earth elements (REE) in the rocks, but these studies are mainly connected with the
problem of the source of uranium of deposits [15–17]; for example, for uranium ores of
Transbaikalia, Russia [18,19]. The common oxidation states of uranium in nature are +4 and
+6, whilst in synthetic ceramics and glasses, three valent forms of uranium are observed:
+4, +5 and +6, which are also typical for Np and Pu [20,21]. Therefore, uranium can serve
as a good radioactive simulant for the investigation of behavior of transuranic actinides
both at the synthesis and aging of nuclear wasteforms.

It is generally accepted that vitreous basic volcanic rocks (basalts) can be used as
natural analogues (counterparts) of borosilicate glass [22–24] due to the similarity in mech-
anisms of their alterations. Both basaltic and borosilicate glasses are characterized by a
decrease in leaching rate with time by three to five orders of magnitude in comparison with
the initial rate. An extremely low rate of long-term dissolution for both kinds of glasses is
controlled by the very slow diffusion through the altered layer. Basaltic glasses have low
concentrations of uranium, usually at the order of a few ppm (10−4 wt%), thus the analysis
of its behavior is rather difficult. For this reason, only some silica-rich (acid) volcanic rocks
with uranium content up to 140 ppm [25,26] are of special interest for characterization of
uranium behavior in natural glasses as analogues of synthetic vitreous materials, including
wasteforms for actinide-containing waste. The description of such uranium-rich glasses is
given below.

2. Natural Radioactive Glasses

The rocks investigated were formed from melts that naturally and rapidly cooled
enough to form glasses rather than forming crystalline rocks. The high chemical resistance
of silicate glasses allows them to remain stable and almost unaltered in the environment
for many millions of years. For example, the highly siliceous volcanic glass found in the
Novogodnee deposit (the U-glass) with an age of 135–145 million years (My) contains
uranium at concentrations ranging from tens to 140 ppm [18,19,25,26] that is an order of
magnitude superior to the average concentration of this element in such rocks.

The Novogodnee deposit is situated within a reducing geochemical environment of
the volcano-sedimentary cover of a volcano caldera in the southern part of the Streltsovska
uranium ore field (Figure 1).
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Figure 1. Novogodnee deposit (shown by the red star) is located in the central part of the Streltsovka
ore field within the Streltsovka caldera (within the yellow contour) with three paleovolcanoes:
1—South-Western, 2—Krasniy Kamen and 3—Maliy Tulukuiy (see details in [25,26]).

The volcanic caldera of Jurassic–Cretaceous age (145–140 Ma) has a diameter of about
20 km and a total area of 180 km2 comprising 20 uranium deposits. The host rocks are up
to 1.4 km thick of volcano-sedimentary accumulation within the caldera lying on a granitic
Proterozoic–Paleozoic basement. Ore concentrates of U (thousands ppm) are observed
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within veins, as sub-vertical stockworks and along stratiform layers in the volcanic and
sedimentary units. The mineral phases of U present are oxide (pitchblende), silicates
(coffinite) and titanate (brannerite). The total resources are about 280 ktU with average
uranium content in ore equal to 0.2 wt%.

The uranium deposits can serve as natural analogues of currently deployed deep
geological disposal facilities (GDF) in stable geological conditions [27–31]. Indeed, features,
events and processes (FEPs), which occurred during previous periods of time of such
deposits, can be analyzed so that by reversing the time, one can appraise the most probable
scenario of GDF evolution [32]. A sheetlike body of highly preserved rhyolite–rhyodacite
glass of an obsidian–perlite type rich in U was found in the Novogodnee deposit at a depth
of 300 m from the surface of the Earth. Data on the behavior of glasses with uranium
at the Novogodnee deposit are essential to investigations of actinide migration paths,
mobilization, retardation, redistribution and accumulation under existing redox conditions.

The unaltered volcanic high-silica glass in this field was found to contain abnormally
high concentrations of uranium detected by f -radiography (XRF). Uranium retardation
can be caused by sorption. This factor, together with the deformational alteration and
partial devitrification of volcanic glass, is of particular significance at the Novogodnee
deposit [26]. The local reducing barriers are formed along the periphery of a sheetlike body
of obsidian–perlites near mineralized and open fractures and in intensely altered cataclastic
zones. The results of detailed micro-studies indicate an intensive redistribution of uranium
with the accumulation of its ultra-high contents up to 500–1000 ppm. Such local favorable
conditions within the sheetlike body are formed in the presence of sorption-intensive
mineral phases (leucoxene–hematite aggregate) and a higher degree of fracturing of glasses.
Here, the ability of the sorption-intensive phases to retard uranium was fully manifested.

3. Bulk Characterization of the Natural Uranium Volcanic Glass

The sheetlike body of rhyolite–rhyodacite volcanic glass has a zonal structure with
unaltered massive and fluidal obsidian–perlites (U-glasses) in the core, surrounded by the
zone with volcanic bombs and rock fragments developed in the central part (Figure 2 and
Tables 3 and 4).
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Figure 2. Samples and position of volcanic glass bed-like body in felsite rhyolite layer: (a) the top of
the fresh obsidian–perlite volcanic glasses bed; (b) well-preserved obsidian–perlite glasses; (c) bottom
of the cataclastic and altered glasses bed; and (d) sample of U-glass NY5 from depth of 300 m.

Chemical analyses of the rock samples were performed in the Centre for Collective
Use of Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry
Russian Academy of Sciences—Analitika using an X-ray fluorescence analysis and Ax-
ios mAX&PAN analytical spectrometer for rock-forming elements as well as ICP mass
spectrometry, Nexion 2000 c for rare elements (Tables 3 and 4).

Table 3. Compositions of glasses (rock-forming elements, wt%), description in the text.

No. SiO2 TiO2 Al2O3 ΣFeO MnO MgO CaO Na2O K2O P2O5 S F LOI 1

NY1 70.77 0.12 11.51 1.26 0.081 0.18 0.75 4.16 4.24 0.01 0.03 0.32 6.04
NY5-1 71.38 0.13 11.23 1.29 0.085 0.06 0.44 5.83 2.55 <0.01 <0.01 - 6.59
NY5-2 71.78 0.17 11.41 1.37 0.041 0.29 1.80 2.58 5.24 0.02 <0.01 - 5.05
NY5-3 71.76 0.12 11.30 1.24 0.071 0.16 0.84 4.33 3.66 <0.01 0.03 0.07 6.22
NY22-1 71.50 0.12 11.20 1.23 0.085 0.11 0.49 5.66 2.49 <0.01 <0.01 0.05 6.63
NY22-2 71.51 0.12 11.32 1.26 0.072 0.19 0.95 3.96 3.78 <0.01 <0.01 0.05 6.44
NY19-2 66.81 0.13 0.13 1.30 0.062 0.24 2.42 2.81 3.26 0.02 0.06 0.29 10.48
NY15 61.60 0.14 0.14 2.43 0.194 3.93 2.27 1.32 1.92 0.02 0.14 0.53 12.05
NY17 62.76 0.15 0.15 1.89 0.536 1.24 2.65 1.05 2.72 0.01 0.06 0.25 12.64
NY18 64.57 0.14 0.14 2.29 0.226 1.37 2.31 1.41 1.99 0.02 0.06 0.33 12.02
NY12 59.59 0.14 0.14 1.53 0.207 4.03 2.55 0.55 2.30 0.01 0.09 0.83 14.90
NY7-2 66.80 0.14 0.14 1.42 0.259 1.01 2.15 1.58 3.78 0.02 0.03 0.45 9.41

1 LOI—loss on ignition. Dash (-): the element was not determined.

Table 4. Compositions of glasses (description in the text) for rare and radioactive elements 1, ppm.

No. Li Rb Sr Cs Co Zr Nb Mo Ba Ta Pb Th U

NY1 96.9 808.9 173.4 933.6 2.5 197.1 55.0 5.2 23.1 4.7 42.6 45.9 25.8
NY5-1 89.9 752.5 33.2 291.9 0.3 189.8 51.6 7.9 6.5 4.5 28.9 44.6 19.1
NY5-2 245.4 410.5 343.1 758.3 0.9 195.1 56.6 6.6 71.2 4.4 35.8 56.7 23.5
NY5-3 132.6 790.5 155.2 753.4 0.4 199.7 55.3 7.9 18.9 4.7 38.5 53.6 23.7
NY22-1 94.4 913.1 56.8 605.3 0.2 196.8 49.1 6.5 5.3 2.7 30.3 32.4 17.8
NY22-2 127.2 666.3 149.3 827.7 0.3 198.7 51.7 5.7 10.8 3.9 28.2 15.9 12.8
NY19-2 63.7 179.2 680.6 1201.7 17.1 183.6 48.9 3.8 36.2 12.3 23.3 36.3 18.4
NY15 77.4 152.7 493.9 1485.2 402.1 205.3 47.5 2.5 237.5 4.6 57.0 52.1 9.7
NY17 134.2 186.9 3244.2 744.6 3.9 228.5 62.2 - 137.3 5.9 81.1 70.7 15.6
NY18 87.6 182.2 595.8 1715.8 59.4 212.5 118.1 - 186.4 1032.4 17.8 65.8 14.2
NY12 538.7 140.9 443.5 273.2 69.7 211.3 59.0 2.9 102.3 5.5 49.3 53.5 15.3
NY7-2 172.9 238.8 1057.8 966.3 4.8 195.6 53.2 0.6 61.4 4.5 45.4 45.3 15.2

1 Dash (-): the element was not determined.



Ceramics 2023, 6 1157

Volcanic rock samples NY1, NY5 and NY22 are seen as glasses being relatively fresh
and unaltered whereas samples NY19-2, NY15, NY17 and NY18 are characterized as
intensively altered and devitrified glasses. Samples NY18 and NY19-2 are cataclastic and
altered glasses. The fresh obsidian–perlites NY5 (such as shown below in Figure 2) and
NY22 were divided into three groups: NY5-1 and NY22-1 (obsidian), NY5-2 and NY22-2
(perlite) and NY5-3 (interbedding of obsidian and perlite).

Devitrification of the glass led to the formation of crystallites within glasses such as
hair trichites, globulites and aggregates of scopulites. At terminal stages of crystallization,
spherulites and microlites were formed (Figure 3, see also [26]).
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Figure 3. Massive (1) and fluidal (5) glasses of Novogodnee deposit with successive devitrification
stages: hair trichites, (a)—globulites; (3)—scopulite aggregates; (2)—spherulites; and (4)—crystallites.
The long side of thin section is 1.09 mm (a) or 2.78 mm (b), parallel nicols; The BSE image is shown in
the center of the figure.

Volcanic glasses of the Novogodnee deposit, although being significantly older than a
hundred million years, still contain uranium at relatively high concentrations, retaining
it both in the glassy and crystalline phases. The distribution of uranium in volcanic
glasses was studied with f -radiography using polished thin sections covered by film of
special track detectors, which were irradiated by thermal neutrons [26]. The f -radiography
method is based on the fission of uranium nuclei in a nuclear reactor under irradiation by
neutrons and allows, with high sensitivity and accuracy (mass sensitivity threshold of the
order of ·10−10) detecting the distribution of uranium, as well as determining local and
total concentrations. The fundamental possibility of determining the uranium content is
based on the fact that fragments of the spontaneous or forced fission of nuclei of heavy
elements leave destruction areas (tracks) in the environment, which can be detected under
a microscope after the chemical etching of the surface. Qualitative assessments of uranium
distribution and calculation of its contents were performed by analyzing micro-images
from lavsan detectors, following the methods and software developed at the Institute of
Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry Russian Academy of
Sciences. Polished thin sections of the samples mounted on quartz glasses and covered by
lavsan track detectors were irradiated at the National Research Nuclear University (MEPhI)
Atomic Center with a thermal neutrons fluence of 3× 1016 neutrons/cm2 for low (1–3 ppm)
uranium contents, and 3 × 1014 and 4 × 1013 neutrons/cm2 for high (>3–5 ppm) and very
high (>500–1000 ppm) contents, respectively. Relatively high content of uranium is hence
characteristic for both unaltered and altered volcanic rocks of the Novogodnee deposit
including partly devitrified glasses (Table 5).
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Table 5. Distribution of uranium in volcanic glasses.

Samples Number of Sites
Studied

Content of U, ppm
Variation Coefficient

Average Range

Relatively unaltered massive and fluidal glasses 1

Fresh glass (NY22-1) 8 25.26 23.97–27.47 5.31
Fresh glass (NY5-1) 9 19.30 18.17–21.03 4.97

Initial devitrified I (NY22-1) 9 17.85 17.30–19.11 3.59
Initial devitrified II (NY5-1) 9 14.12 12.54–15.18 6.94

Altered and devitrified glasses
Altered I glass (NY23-1) 9 14.75 13.12–17.75 10.78
Altered II glass (NY0-1) 9 11.42 9.49–12.19 8.06
Altered III glass (NY2-1) 9 5.34 5.06–6.62 10.86

Altered IV glass (NY26-1) 9 1.72 1.60–2.69 26.16
Area with HEM (NY26-1) 2 5 39.55 32.12–55.33 22.66

1 The term fluidal glass denotes a glass where the direction of melt flow that occurred before its vitrification is
revealed from the image of glass. 2 Areas uniformly impregnated with sorption-capacious hematite (HEM) were
identified in brown volcanic glass (perlite) with elevated uranium content detected.

4. Discussion

Two aspects of the geochemical and mineralogical studies of natural glasses are of
particular interest. The first one is related to their study as a potential source of useful
elements, e.g., U, in the uranium ore deposits in volcanic-related mineral systems. The
second direction concerns the use of volcanic rocks as analogues of vitreous actinide
wasteforms used for HLW immobilization in assessing their long-term stability under
underground disposal conditions. Data revealed through such type analyses can be a
significant addition to existing short-term testing protocols used in laboratories [33].

Silicate glasses have been used for some five decades to immobilize HLW radionuclides
including residual uranium and plutonium isotopes remnant from spent nuclear fuel
reprocessing [3–6,12,34]. They were also proposed for the immobilization of nuclear fuel
containing lava, which resulted from the Chernobyl catastrophe [35]. HLW glasses used
in practice are characterized by a high content of crystalline phases within their vitreous
body [3,5,36]; moreover, there is a technological trend to increase the content of crystalline
phases [37], accounting for advantages offered by glass-crystalline wasteforms [38–40].
Volcanic glasses investigated do also contain crystalline phases, which could be either
initially formed at magmatic melt (volcanic lava) solidification or be products of glass
devitrification. The most important structural feature of them would then be the speciation
of uranium within glass and the crystalline phase’s structure. Although uranium can exist
in the oxidation states U6+, U5+ and U4+ in alkali borosilicate glasses, most of the uranium
(~90%) occurs as U6+ with a small amount of U5+ under standard melting conditions using
the air atmosphere. Moreover, U4+ is not observed, with the exception of strongly reducing
conditions. The U6+ occurs in the form of the uranyl species UO2

2+ with an additional four
or five equatorial oxygens coordinating to the uranium cation [41–44]. It is supposed that
uranium acts essentially as a glass intermediate within the alkali silicate glass following
the rearrangements [44]:

UO3 + 4Si
(
O−

)(
O 1

2

)
3
+ 4M+ → U6+(= O)2

(
O 1

2

)
6
+ 4Si

(
O 1

2

)
4
+ 4M+, (1)

where M+ is the alkali ion. Each mole of UO3 thus requires two moles of alkali for charge
balance, which results in little structural rearrangement of the glass where uranium occupies
sites in the interstices of the glass network related to the alkali channels [44]. This allows
for the high solubility of UO3 in silicate glasses, which is in a borosilicate glass above
40 wt% under an atmosphere of air, whereas under reducing conditions it is only about
10 wt% [4,41,42]. The authors of [43] have shown that two distinct first neighbor distances
occur for the U–O correlations, the first being at 1.8 ± 0.05 Å having 1.9 ± 0.2 oxygens and
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the second at 2.2 ± 0.05 Å with 3.7 ± 0.2 oxygen atoms. They have observed significant
second neighbor atomic pair correlations between uranium and the network formers (Si,
B) and the modifiers such as Na, concluding that uranium ions take part in the network
forming, and that this may be the reason for the observed good stability of uranium
containing silicate glasses and their high hydrolytic resistance. It is supposed that uranium
atoms in the borosilicate glass are connected through an oxygen atom with the network
former and modifier atoms, forming a network structure that consists of mixed tetrahedral
made of SiO4, units, tetrahedral made of BO4 units and BO3 trigonal units, which are
partly connected by uranium atoms [43,44]. Obtained data and the similarity in the U6+

environments in layered alkali uranates and in silicate glasses have allowed the authors
of [44] to suggest the possible structural model for silicate glasses containing uranium
where the uranyl ions sit in the alkali channels of the modified random network of silicate
glasses (see e.g., [2]).

Radiation from decaying radionuclides gradually alters the glass structure, leading
to changes in its properties including valence states and migration potential of radionu-
clides [7,45,46]. Although the content of uranium in the above-described glasses is consid-
ered anomalously high for natural volcanic samples, their radioactivity is much lower than
that of high-level waste [3–5] when radiation-induced effects are evident [7,47]. The direct
determination of uranium valent states in volcanic glasses thus remains a key challenge
and its complexity is partly caused by both its content, which is about tens of ppm, and
complex composition that are complicating the characterization. This will assist in resolving
the unique and scientifically most difficult aspect of nuclear waste management, aiming
to extrapolate wasteform short-term laboratory testing results to the long-time periods
ranging from thousands to millions of years [48].

Migration of uranium is initiated by glass corrosion in contact with groundwater.
Silicate glasses corrode in water via two main processes—(a) diffusion-controlled ion
exchange and (b) hydrolysis [5]. The ion exchange mechanism involves the mutual diffusion
and exchange of a cation in glass with a proton (probably in the form of H3O+) from water
via the reaction:

(≡Si-O-M)glass + H2O↔ (≡Si-O-H)glass + M-OH, (2)

In dilute near-neutral solutions, the ion exchange controls the initial release of cations
and at relatively low temperatures and not very high pH it can dominate over hydrolysis
for many hundreds or even thousands of years [49]. Ion exchange reactions cause selective
leaching of cations and are characterized by the normalized leaching rate given by:

NRxi = ρ(Di/πt)1/2 = ρ10−pH/2[κD0H/Ci(0) πt]1/2exp(−Edi/2RT), (3)

where ρ (g/cm3) is the glass density, Di (cm2/day) is the effective interdiffusion coeffi-
cient, Edi (J/mol) is the interdiffusion activation energy (e.g., British magnox waste glass
has Edi = 36 kJ/mol [49]), R is the universal gas constant R = 8.314 J/mol, T (K) is the
temperature, D0H (cm2/day) is the pre-exponential coefficient in the diffusion coefficient
of protons (hydronium ions) in glass, Ci(0) (mol/L) is the concentration of cations at the
surface of the glass and κ is a constant that relates the concentration of protons in glass
to the concentration of protons in water, i.e., to the pH of the solution. The leaching rate
decreases with time t, as t−1/2, and the lower the pH of the contacting solution, the higher
the NRX,i. Hydrolysis, which is a near-surface reaction of hydroxyl ions with the glass
network, destroys it, and this leads to congruent dissolution of all glass components into
contacting water and subsequent deposition of silica gel layers as secondary products on
the surface of glass. Hydrolysis occurs through the reaction [5]:

(≡Si-O-Si≡)glass + H2O↔ 2(≡Si-O-H). (4)
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This leads to the complete dissolution of the glass network (disordered glass lattice)
and the formation of ortho-silicic acid, H4SiO4. Glass hydrolysis is characterized by a
normalized dissolution rate [5]:

NRxi = ρrc = ρka−η[1 - (Q/K)σ]exp(−Ea/RT), (5)

where rc is the normalized rate of dissolution measured in unit cm/day, k is the charac-
teristic rate constant, a is the activity of hydrogen ions (protons), η is the pH-dependent
exponent (typically η ~ 0.5), Ea is the activation energy of hydrolysis (e.g., British magnox
waste glass has Ea = 60 kJ/mol [49]), Q is the product of the ionic activity of the rate control
reaction, K is the equilibrium constant of this reaction and σ is the order of the reaction. The
rate of hydrolytic dissolution does not depend on time. The higher the pH of the contacting
water, the higher the NRH.

The total corrosion rate NRi (normalized with respect to the content of component
labelled (i)) is determined by the sum of the contributions from (a) ion exchange, (b) hy-
drolysis and (c) very rapid (so-called instantaneous) dissolution of radionuclides from the
glass surface, i.e., surface contaminants [5,49]:

NRi = NRX,i + NRH + NΦsi, (6)

where the factor NΦsi accounts for instantaneous dissolution. When the pH changes, the ion
exchange rate (NRX,i) changes as 10-pH/2, while the hydrolysis rate (NRH) is proportional
to 10pH/2, so the dependence of the glass corrosion rate (NRi) on pH appears as a U-
shaped curve with a minimum for neutral solutions [50]. In saturated solutions, Q →
K, which is typical for glasses in a geological environment such as volcanic glasses in
a volcano caldera or vitrified HLW in a GDF; therefore NRH → 0. That is, in this case,
the corrosion of the glass is determined by diffusion-controlled ion exchange. In dilute
aqueous solutions, ion exchange is characteristic for the initial stages of corrosion, and
hydrolysis for the later stages. The time it takes to transition from one mechanism to
another depends on the composition of the glass and environmental conditions such as
pH and temperature. The higher the temperature, the shorter the transition time [49]. The
newly formed glass surfaces, due to the cracking of large glass blocks, will follow this
pattern of transition of corrosion mechanisms from the initial selective corrosion via ion
exchange to the late mechanism controlled by hydrolysis; thus, the overall composition of
components leached out of glasses is complex. The analysis shows that the typical rate of
corrosion via the hydrolysis (rc) of borosilicate glasses used to immobilize nuclear waste
is about 0.1 µm/y [51]. Without contact of glass with water, the radionuclides including
uranium will remain retained within the glass body structure.

5. Conclusions

Volcanic-type uranium deposits of the Streltsovskoye ore field provide a unique
opportunity to study uranium-bearing volcanic glasses under various redox conditions.
Joint geological–structural, mineralogical–geochemical, petrophysical, hydrogeochemical
and isotope–geochemical monitoring studies of fracture veins and atmospheric waters
have been conducted for more than 20 years and continue at present. It is shown that
the rocks of the Novogodnee deposit are unique objects, which can be used for studying
the conditions, migration paths, migration mechanisms and accumulation of uranium
in different structural settings under varying redox conditions. Despite devitrification
processes within the geological time frames, the ancient volcanic rocks within the large
Streltsovka uranium ore field were found to contain large-size blocks of natural glasses
having the highest content of silica. The silica-rich rocks located in the southern part of the
ore field, formed about 140–145 million years ago, have retained uranium for geological
time scales, preventing its migration out of its body. Silica-rich volcanic glasses still confine
the uranium as a proof of the high reliability of vitreous and glass crystalline wasteforms,
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based on silicate glasses, used as nuclear waste immobilizing matrices at geological time
scales.
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