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Abstract: The objective of this study was to investigate the variability of flexural strength for flame-
sprayed ceramic components and to determine which two-parametric distribution function was best
suited to represent the experimental data. Moreover, the influence of the number of tested specimens
was addressed. The stochastic nature of the flame-spraying process causes a pronounced variation in
the properties of potential components, making it crucial to characterise the fracture statistics. To
achieve this, this study used two large data sets consisting of 1000 flame-sprayed specimens each.
In addition to the standard Weibull approach, the study examined the quality of representing the
experimental data using other two-parametric distribution functions (Normal, Log-Normal, and
Gamma). To evaluate the accuracy of the distribution functions and their characteristic parameters,
random subsamples were generated by resampling of the experimental data, and the results were
assessed based on the sampling size. It was found that the experimental data were best represented
by either the Weibull or Gamma distribution, and the quality of the fit was correlated with the number
of positive and negative outliers. The Weibull fit was more sensitive to positive outliers, whereas the
Gamma fit was more sensitive to negative outliers.
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1. Introduction

The flame-spraying of ceramic materials is a highly versatile technique [1,2]. The unique
microstructure of the flame-sprayed coatings, including cracks and pores, results in excep-
tional thermal shock resistance [3,4]. That offers numerous possibilities for the preparation
and modification of various substrate materials for refractories in high-temperature ap-
plications. One motivation was the functionalisation of refractory hollowware based on
uniaxially pressed rice husk ash [5] via flame-sprayed alumina potentially used in steel
ingot casting (prototype, see Figure 1). These components must provide excellent resistance
against thermal shock and erosion caused by the flow of the molten steel, as well as high
chemical inertness against the steel melt itself [6,7]. However, materials traditionally used
for this purpose, such as refractory clay, are limited in terms of these properties [8]. With the
flame-spraying technique, a wide range of materials can be utilised [1,2,9]. Accordingly,
their mechanical characteristics are of particular interest when considering the service life
time of such materials in both room and high-temperature applications.

Figure 2 shows the cross-section obtained via scanning electron microscopy of a mate-
rial composite based on rice husk ash and a flame-sprayed alumina coating. The nature of
the rice husk ash and the shaping process results in a rough surface of the bulk material. This
causes an interlocking with the flame-sprayed alumina coating on the coating/substrate ma-
terial interface. This interlocking must be taken into account with regard to the mechanical
properties of the composite material, which is non-trivial. Consequently, the contributing
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materials has to be characterised separately in a first step. In this regard, the flame-sprayed
ceramic coating is of particular interest.

35
0m

m105 mm

Figure 1. Prototype of refractory hollowware based on biogenic silica with flame-sprayed alu-
mina coating.

Recent studies provided an overview regarding the mechanical characteristics of flame-
sprayed components based on different ceramic materials (Al2O3 and Al2O3 with TiO2
and ZrO2 additions) [3,4]. The stochastic nature of the flame-spraying process can result in
a pronounced variability in the mechanical properties of the flame-sprayed components,
particularly in terms of their fracture statistics [4,10]. Thus, a comprehensive characteri-
sation of these properties is essential in order to predict their mechanical behaviour and
ensure their successful use in high-temperature applications [11]. Hence, the sampling size
required to obtain statistically reliable data has to be questioned.

Following the suggestion of Danzer et al. [12], a minimum of 30 specimens is required
for determining strength data for ceramic components. According to the law of large
numbers, the probability to obtain the true value for a variable from an experiment ap-
proaches one for the number of performed experiments approaching infinity [13]. However,
in practice, the number of tested specimens needs to be limited and minimised as much as
possible. Therefore, selecting an appropriate sampling size for determining strength data
involves balancing the cost of sample preparation with the desired level of experimental
accuracy. Danzer et al. [12,14] assessed the scatter of strength data for ceramic parts in
dependency of the sampling size. To achieve this, strength data were randomly generated
from an idealised theoretical Weibull distribution. Obviously, the scatter of the Weibull
modulus determined for the generated sample around the true value of the distribution
increases as the sampling size decreases. However, the analysis revealed an asymmetric
deviation with a larger positive difference, leading to an overestimation of the true value.
Thus, the standard suggests a correction factor for the Weibull modulus dependent on the
sampling size. Conventionally, flexural strength data of ceramic components are repre-
sented using the Weibull distribution [15]. However, recent studies showed that the Weibull
modulus of flame-sprayed ceramic components is low (m = 3 to 5.5 [3,4]) compared to
densely sintered ceramic components fabricated by injection moulding (m = 11.8 [16]).
Because of the unique microstructure of flame-sprayed ceramic components (see Figure 2),
it is uncertain whether the assumption of a Weibull distribution, i.e., failure because of the
weakest link, is met in the first place [15,17–19]. Thus, it is also uncertain, whether a similar
behaviour as a function of the sampling size can be expected.
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Flame-Sprayed
Alumina

Rice Husk Ash
Figure 2. Microstructure of a composite material based on rice husk ash (lower part) and a flame-
sprayed alumina coating (upper part) obtained by scanning electron microscopy; interface (dotted
red line).

Therefore, this work statistically investigated the scatter of flexural strength for flame-
sprayed ceramic components on two large data sets including 1000 specimens each. Re-
cently, Gorjan and Ambrožič [20] investigated a large experimental data set of flexural
strength data for low-pressure injection-moulded ceramic parts with regard to its repre-
sentation by different two-parametric distribution functions. It was found that the Weibull
distribution describes the experimental data best, while the Normal, Log-Normal, and
Gamma distributions yielded lower fitting accuracy. However, Fedorov and Gulyaeva [21]
pointed out that the obtained strength data of porous alumina pellets were significantly
better represented by the Gamma distribution compared to the Weibull distribution.

Thus, the current study aims to investigate the suitability of the two-parametric dis-
tribution functions Normal, Log-Normal, and Gamma distribution, in addition to the
standard Weibull approach, for representing flexural strength data of flame-sprayed compo-
nents. Furthermore, this study presents a simulation based on resampling of experimentally
determined strength data to investigate the influence of the sampling size on the robustness
of different distribution functions and their characteristic parameters. This complements
the theoretical simulation presented by Danzer et al. [12,14]. The study examines to what
extent the flexural strength data of flame-sprayed components follows the theoretically
expected fracture statistics of ceramic components.

2. Materials and Methods
2.1. Fabrication and Testing of Specimens

For flexural strength testing, disc-shaped Al2O3 specimens were fabricated using the
flame-spraying technique (Flexicord feedstock, Saint-Gobain Coating Soluations S.A.S.,
Avignon, France) on a graphite substrate (Graphite Materials GmbH, Zirndorf, Germany)
with pins of diameter D = 8 mm and D = 15 mm, respectively. The spray distance between
the flame-spraying gun and the graphite substrate was 150 mm. Table 1 summarises the
parameters of the flame-spraying process. Details of the experimental setup were described
by Neumann et al. [4]. After cooling, the specimens were removed from the graphite
pins, resulting in self-supporting components. To avoid pre-selection of specimens for
B3B testing, the proportion of rejects r, i.e., specimens, which were not removed from the
substrate without rupture, was determined by r = 1− q q−1

a , where q is the number of
usable specimens and qa the number of spraying attempts [4]. This ratio depends on the
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specimens’ geometry and thickness and the substrate properties. For each disc geometry,
a total of 1000 specimens were fabricated with r < 0.01. Following the suggestion by
Neumann et al. [4], such geometries were suitable for estimating Weibull parameters.
The two populations, designated as D08 and D15 according to the specimen diameter, each
consisting of 1000 specimens, were tested for their flexural strength.

Table 1. Parameters of the flame-spraying process (m3 represents a standard cubic metre).

Parameter Dimension Value

flow rate of O2 m3 · h−1 3.2
flow rate of C2H2 m3 · h−1 1.3
flow rate of pressurised air m3 · h−1 38
feed rate m ·min−1 0.28–0.30

The flexural strength was determined using the ball on three ball test (B3B) [22,23].
For both populations, a similar experimental setup was used. The diameter of the used
alumina balls was 5 mm and 10 mm for D08 and D15, respectively. All specimens were
tested with a loading rate of 0.5 mm min−1. The flexural strength was calculated according
to Equation (1) using the maximum load at rupture Fc, the specimens’ thickness t, and the
dimensionless factor f ∗. The latter is dependent on Poisson’s ratio ν and the ratio of both the
specimens’ thickness t and the support balls’ diameter Ds to the specimens’ diameter D and
was calculated by an empirical formula presented by Börger et al. [23]. The Poisson’s ratio
ν of the flame-sprayed material was approximated by ν = 0.2. A thickness measurement of
the flame-sprayed components was carried out using a digital caliper (resolution 0.01 mm).

σc,B3B = f ∗
(

2t
D

,
Ds

D
, ν

)
Fc

t2 (1)

Figure 3 shows exemplary load-displacement curves of one tested specimen each
of the D08 and D15 populations. For both curves, deviation from linearity at peak load
was observed.
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Figure 3. Exemplary Load-Displacement graphs for a tested specimen and specimen photographs
before and after testing from the D08 population (a) and the D15 population (b).

2.2. Statistical Analyses

All calculations described in this work were performed using the statistical software
package R [24]. Whenever required, a local weighted regression (LWR) was applied using
the loess function from base R [25] to smooth certain curves for clarity and readability.
The figure captions indicate the use of LWR. A span width of 0.05 was used, corresponding
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to 5% of the total data points used as nearest surrounding neighbours for the local regression
at each point.

The compatibility of different two-parametric distribution functions, namely Weibull
(W), Normal (N), Log-normal (LN), and Gamma (G) (Equations (2)–(5)) with the exper-
imental data was investigated in the following analysis. The statistical variable was the
flexural strength obtained by B3B designated as σ.

pW(σ) =
m

σ0W

(
σ

σ0W

)m−1
exp

(
−
(

σ

σ0W

)m)
(2)

pN(σ) =
1

δ
√

2π
exp

(
−1

2

(
σ− σ0N

δ

)2
)

(3)

pLN(σ) =
1
σ

1
ω
√

2π
exp

(
−1

2
ln(σ)− ln(σ0LN)

ω

2
)

(4)

pG(σ) =
1

σk
0GΓ(k)

σk−1 exp
(
− σ

σ0G

)
(5)

The compatibility was evaluated using quantile-quantile probability plots (Q-Q plots)
constituting the experimental data against the values calculated with a theoretical distribu-
tion. Moreover, the visual examination of the fit quality was complemented by calculating
the coefficient of determination R2 for each distribution according to Equation (6). There-
fore, the fitting parameters were determined using the maximum likelihood method (for
details, see [20]), while the probability of failure (Pi) was determined for the ascending
ranked experimental data according to Equation (7). Note that quantities determined for
the experimental data receive the index ‘ex’.

R2 =1− ∑
Nj
i=0(σi − σi,th)

2

∑
Nj
i=0(σi − 〈σi〉)2

(6)

Pi =(i− 0.5)N−1
j (7)

The experimentally determined strength data were assumed to be a representative
distribution of the true strength data of the flame-sprayed components. This assump-
tion allowed for the application of the random resampling technique to investigate the
influence of the sampling size on the robustness of different fitted distributions and their
corresponding shape and scale parameters.

Random resampling was used to generate sub-populations from each experimentally
determined population. The sub-populations were of size Nj, with Nj= {30; 31; . . . ; 1000}.
For each value of Nj, 1000 sub-populations were generated by drawing Nj strength values
with replacement from the data sets. This resulted in a total of 971,000 distinct sub-
populations being generated from each of the populations D08 and D15. For each sub-
population, the coefficient of determination, shape, and scale parameters for the Gamma
and Weibull distributions were determined.

Whenever required, percentiles were calculated using the quantile function from R stats
package [24]. The uth percentile of variable X is denoted as X|u. The median of X would
thus follow the denotation X|50. The u− vth interpercentile range X|uv for the variable X is
calculated by subtracting the vth percentile X|v from the uth percentile X|u.

3. Results and Discussion

In Figure 4, the complete experimental data are presented, i.e., the flexural strength
over the specimen thickness. As presented and irrespective of the test series D08 or D15,
for both the specimen thickness and the determined flexural strength, a certain scattering
was observed. As outlined, the basic flame spray settings were kept consistent for both test
series (number of oversprays, etc.). Consequently, from the processing point of view, the
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test series themselves can be considered consistent, meaning a sufficient resemblance of all
individual specimens per series.
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Figure 4. Complete experimental data: flexural strength over the specimen thickness and basic
boxplots of the strength data (w (z) = {σc ∈ (Q1 − zIQR, Q3 + zIQR)}, IQR = inter quartile range,
Q1 = 25% quantile, Q3 = 75% quantile). Asterisks * indicate extreme positive outliers in the scatter
plot, derived from the boxplot representation, i.e., outliers above w (z = 3).

Following Equation (1), the influence of the specimen thickness should already be
accounted for and thus the flexural strength should be independent of the specimen
thickness. Referring to the scatter plots from Figure 4; however, a correlation between the
specimen thickness and the flexural strength cannot be rejected from visual inspection
alone. For that reason, the data were tested for correlation by the non-parametric Spearman
rank sum correlation test. Basically, such test results in a correlation factor ρ ∈ [−1, 1].
For ρ ∈ [−0.1, 0.1], no correlation would be given, for ρ ∈ ±[0.1, 0.5], a mild correlation
can be assumed, and for ρ ∈ ±[0.5, 1.0], a strong or very strong correlation is present [26].
In the present study, mild correlation is considered the maximum tolerated correlation
in order to hold the basic premise of one consistent data set. Mild correlation may trace
back to the influence of the human operator and could be arbitrary. Known from the
literature, several flame-spray process parameters can affect the final coating properties,
such as the spray angle, distance between the spray unit and the substrate, or the horizontal
travel- or rotation-speed of the spray unit, to name a few [1,2,27]. As an operator, a human
would be unable to reproduce those settings exactly for each specimen, for example, due to
human fatigue. Eventually, that may result in an inherent scatter of the specimen thickness
and the derived flexural strength, as it was observed (cf. Figure 4). That is why mild
correlation between the specimen thickness and the flexural strength is accepted (per test
series). In contrast, a strong or very strong correlation would mean that the specimens are
not similar due to strong variation in the spray process parameters. If so, the specimens
could differ too much in terms of their microstructure, modulus of elasticity, local phase



Ceramics 2023, 6 1056

composition, etc. In the present study, the resulting ρ of D08 and D15 amounted to 0.39
and 0.10, respectively. Henceforth, for both series, only a mild correlation is present from
the data and both series can be considered as one entire population each.

The boxplot representation reveals a rather symmetric distribution of the strength data
around its median for both test series. Equal for both, a certain amount of outliers can be
derived from the standard boxplots, i.e., for w (z = 1.5). Also equal for both, an extreme
positive outlier was found, i.e., for w (z = 3) (cf. Figure 4). For the present study, extreme
positive outliers are excluded from the experimental data (in Figure 4 indicated by asterisks).
Extreme positive outliers oppose the conservative point of view insofar as they would
lead to an overestimation of the flexural strength limits even for robust statistical measures
(median, upper and lower quartile, etc.). Overestimation is considered the more harmful
way of misestimation. Excluding such positive outliers can be understood as a ‘concept of
maximum doubt’. Extreme negative outliers on the contrary (whenever present), should not
be excluded at any rate. Hence, for the following resampling procedures, the experimental
data pool comprises Nex = 999 strength values per series.

3.1. Fitting of Two-Parametric Distributions for Experimental Data

Figure 5 presents Q-Q plots for D08 and D15 assuming either the Weibull, Normal, Log-
Normal, or Gamma distribution for the experimental data. The corresponding coefficients
of determination R2

ex as well as shape and scale parameter for each fit are summarised in
Table 2.
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Figure 5. Q-Q plots assuming Weibull, Normal, Log-normal, and Gamma distribution for D08
population (a–d) and D15 population (e–h).

Visually, both populations fit well to a straight line for the Weibull or the Normal
distribution. However, the fit for the Weibull distribution was slightly worse for D08
compared to D15. Accordingly, the Normal or the Weibull fit gave the highest R2

ex values for
the D15 population and slightly lower values for the D08 population (Table 2). In contrast,
the data points deviate from a straight line when assuming Log-Normal distribution,
resulting in lower R2

ex values, particularly for the D15 population. This indicates a poor
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representation of the data points, leading to the rejection of the Log-Normal distribution
for flexural strength data of flame-sprayed materials.

The Gamma distribution gave an excellent fit to the D08 population with an
R2

G,ex = 0.9954. However, the accuracy of the fit was worse for the D15 population. Nev-
ertheless, a high R2

G,ex > 0.94 was observed for both populations. Therefore, the Gamma
distribution was considered for further investigation.

Figure 6 shows the histogram of the experimental data for both populations with the
fitted lines for the Weibull and the Gamma distributions. It can be seen that the right tail of
the Gamma distribution is larger compared to the Weibull distribution. This means that
positive outliers are less detrimental to the Gamma distribution fit. On the other hand, when
fitting the Weibull distribution, the left tail was found to be larger. This suggests a greater
tolerance for negative outliers. The box plots show that the outliers of the D08 population
were mainly positive outliers (Figure 6a), while those of the D15 population were mainly
negative outliers (Figure 6b). Because of that, the fit quality of the D08 population was
better with the Gamma distribution than with the Weibull distribution (R2

G,ex > R2
W,ex).

Conversely, the fit quality of the D15 population was better with the Weibull distribution
than with the Gamma distribution (R2

W,ex > R2
G,ex), see Table 2.

Table 2. Parameters of fitted distributions for experimental data of D08 and D15 populations (shape
parameter of Normal distribution in MPa).

Distribution
Coeff. of Det. Shape Par. Scale Par. in MPa

D08 D15 D08 D15 D08 D15

Normal 0.9892 0.9959 6.481 7.460 27.640 25.003
Log-Normal 0.9847 0.8057 0.246 0.366 26.857 23.631

Weibull 0.9691 0.9957 4.478 3.753 30.189 27.650
Gamma 0.9954 0.9410 17.556 9.025 1.574 2.770

The Q-Q analysis showed that both D08 and D15 were equally well represented by the
Normal distribution. However, Neumann et al. [4] reported that the Normal distribution
underestimates the loss of strength in flame-sprayed components due to thermal shock.
This is critical for components subjected to substantial thermal shock such as refractory
hollowware [6,7]. Therefore, the Normal distribution was rejected.
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3.2. Random Sub-Population Analysis–Random Resampling

Based on the Q-Q analyses, the Weibull and the Gamma distribution functions were
found to be suitable for representing the experimental strength data. Consequently, these
distributions were used to fit the sub-populations generated by random resampling of the
experimental strength data.

3.2.1. Coefficient of Determination

Figure 7 shows the relationship between R2 and the sampling size (Nj) based on
random resampling of the strength data. With the increasing sampling size, the median fit
quality (represented by R2|50) improved and approached the fit quality of the underlying
experimental data set (R2

ex, Table 2). Accordingly, the interpercentile range between the 5th
and the 95th percentiles (R2|95

5 ) decreased with the increasing Nj. This trend is in line with
the law of large numbers [13].
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Figure 7. Fit quality R2 dependent on sampling size Nj for assuming either the Weibull (W) or
the Gamma (G) distribution for the sub-populations from D08 (a) and D15 (b); curves smoothed
using LWR.

However, the span width of R2|95
5 for the D08 and D15 populations varied depending

on the assumed distribution. Specifically, when the Weibull distribution was used, R2
W|95

5
was larger for the D08 population compared to D15, and the lower boundary reached
smaller values for the decreasing Nj. On the other hand, when the Gamma distribution
was used, R2

G|95
5 of the D15 population was larger than that of the D08 population, and the

lower boundary reached smaller values for decreasing Nj.
The following has to be discussed:

• Among others, the fit quality of a data set depends on the number of its outliers, which
also affects the fit quality of sub-populations derived from the data.

• A sub-population from a data set containing a high number of outliers may have
a high or low fit quality, depending on chance.

• Generating a sub-population with a high fit quality is more likely if the number of
outliers in the underlying experimental data is low. This also reduces the scatter in the
fit quality of the generated sub-populations.

Figure 8 indicates that sub-populations from D08 had a larger median number of
positive outliers than negative outliers, regardless of Nj. Moreover, the variability of the
positive outliers was higher than that of the negative outliers (wider span of the IPR).
Because the Weibull distribution is more sensitive to positive outliers than the Gamma
distribution, this caused R2

W|50 to be lower than R2
G|50 for all Nj and a higher variability in

R2
W compared to R2

G for the D08 sub-populations. The share of positive and negative outliers
showed an opposite behaviour for sub-populations from D15, resulting in a reversal of the
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R2 values and their scatter for the Weibull and Gamma distributions. This was because the
Gamma distribution is more sensitive to negative outliers than the Weibull distribution.
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Nevertheless, the median fit quality R2|50 of the generated sub-populations was
similar to the fit quality of the corresponding experimental data independently of Nj.
Table 3 illustrates the required Nj to achieve R2

ex within specified boundaries. This shows
that R2|50 was robust even for small sampling sizes.

Table 3. Minimum sampling size Nj,min for which R2|50 ∈ R2
ex · (1± i) with i = {0.05; 0.025; 0.01}.

i 0.05 0.025 0.01

R2
W|50-D08 30 30 74

R2
W|50-D15 30 34 93

R2
G|50-D08 30 35 98

R2
G|50-D15 30 30 30

3.2.2. Distribution Parameters

In the following, the shape and scale parameters of the Weibull distribution (m and
σ0W) and the Gamma distribution (k and σ0G) were investigated as a function of the sam-
pling size Nj for the resampled sub-populations.

Figure 9 presents the shape parameters m and k for assuming the Weibull and Gamma
distributions, respectively, for the D08 and D15 sub-populations as a function of the sam-
pling size (Nj). As Nj increases, the IPRs (m|95

5 and k|95
5 ) and the median shape parameters

(m|50 and k|50) of the resampled populations approach the experimentally determined
values (mex and kex) due to the law of large numbers [13]. However, the IPRs were found
to span asymmetrically around mex, with a larger upper range. As presented, m|50 > mex
was valid independent of the investigated range of Nj. However, the difference m|50 −mex
decreased as Nj increased, which is consistent with previous studies [12,14]. This suggests
that mex, which in this regard was considered as the true m of the resampled distribution,
would be likely overestimated, particularly for small sampling sizes. Similarly, the median
shape parameter for the Gamma distribution k|50 was found to positively deviate from kex
for small sampling sizes (Figure 9b,c).
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Therefore, the standard EN 843 5 recommends a correction of the Weibull modulus m
to mcor using Equation (8), while b can be approximated with Equation (9) where s = 1.593
and h = 1.047 (determined based on a Monte-Carlo-Simulation).

mcor = b ·m (8)

b = 1− s · N−h
j (9)

kcor = c · k (10)

c = 1− s · N−h
j (11)
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Figure 9. Shape parameter of the Weibull distribution (a,b) and the Gamma distribution (c,d) in
dependence on the sampling size Nj for D08 and D15 sub-populations.

Similarly, an empirical correction factor was estimated based on the data obtained
from the random resampling. The badj was fitted with mcor = mex and m = m|50(Nj)
using Equation (8) and a non-linear least-squares method. Using the same approach and
Equations (10) and (11) with kcor = kex and k = k|50(Nj), a correction factor cadj,D08 and
cadj,D15 was determined for the Gamma distribution based on the data of D08 and D15,
respectively. As mentioned above, extreme positive outliers were removed from both
populations, which was a single data point in each case. At this point, the influence of
a single extreme outlier shall be investigated. Therefore, the correction factors b∗adj and c∗adj
were estimated for an identical random resampling of the distribution of strength data
including the extreme outliers. Table 4 summarises the obtained coefficients s and h.
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Table 4. Empirical determined parameters s and h for different correction factors.

Correction Factor s h

Weibull Distribution:
bstd 1.5931 1.0470
badj,D08 1.4361 1.0328
badj,D15 0.9905 0.9694
b∗adj,D08 0.9070 0.7458
b∗adj,D15 0.6821 0.9694

Gamma Distribution:
cadj,D08 1.6765 0.8711
cadj,D15 2.7654 1.0399
c∗adj,D08 1.2296 0.8085
c∗adj,D15 1.8863 0.9664

Figure 10 shows the adjusted correction factors as a function of Nj for the D08 and
D15 populations. It can be seen that the adjusted correction factors badj,D08 and badj,D15
were in excellent agreement with bstd. Thus, using bstd as a correction factor for a Weibull
analysis of flexural strength data for flame-sprayed components is suitable. However,
for the Gamma distribution, a stronger correction factor than bstd was required for both
populations. A stronger correction b∗adj for the determined Weibull Modulus was required
for both populations, if extreme outliers were included in the generation of sub-populations.
Conversely, the correction factor c∗adj differed only negligibly from cadj of the corresponding
distribution. This again emphasises the robustness of the Gamma distribution against
positive outliers, while the Weibull distribution was susceptible in this regard.
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Figure 10. Empirical determined correction factors for the shape parameter of the Weibull distribution
(a) and the Gamma distribution (b).

Figure 11 shows that the 5th to 95th interpercentile range of the characteristic strength
σ0W|95

0 was symmetrical around σ0W,ex independently of Nj and became smaller as Nj in-
creases. This was in excellent agreement with the simulation based on a theoretical Weibull
distribution presented by Danzer et al. [12,14]. Moreover, the obtained median σ0W|50 of
the simulated data deviated negatively from σ0W,ex for small values of Nj. Similarly, σ0G|95

5
spans symmetrically around σ0G,ex. The median scale parameter σ0G|50 determined for
the Gamma distribution deviated negatively from σ0G,ex as well. This means an underesti-
mation of the experimentally determined scale parameter of the underlying distribution.
While an overestimation would have more adverse effects and presents a higher degree
of risk, an underestimation is a more conservative approach and therefore acceptable.
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Therefore, no correction factor was required, which is in accordance with the EN 843-5
standard. In the case of the Gamma distribution, the characteristic strength is obtained
by multiplication of shape and scale parameter. Thus, the underestimation of the scale
parameter compensates for the overestimation of the shape parameter k to a certain extent.

0

1

2

3

4

5

6

Sc
al

e 
P
ar

am
et

er
 s

G

200 600 1000

Sampling Size Nj

0

1

2

3

4

5

6
Sc

al
e 

P
ar

am
et

er
 s

G

200 600 1000

Sampling Size Nj

26

28

30

32

34
Sc

al
e 

pa
ra

m
et

er
 s

0W

200 600 1000

Sampling Size Nj

26

28

30

32

34

Sc
al

e 
pa

ra
m

et
er

 s
W

200 600 1000

Sampling Size Nj

Weibull Distribution
σ0W,ex

σ0W,sim

σ0W|95
5

σ0W|50

Weibull Distribution
σ0W,ex

σ0W,sim

σ0W|95
5

σ0W|50

Gamma Distribution
σ0G,ex

σ0G,sim

σ0G|95
5

σ0G|50

Gamma Distribution
σ0G,ex

σ0G,sim

σ0G|95
5

σ0G|50

D08 population D15 population

D08 population D15 population

(a) (b)

(c) (d)

Sc
ale

Pa
ra

m
et

er
σ

0W
in

M
Pa

Sc
ale

Pa
ra

m
et

er
σ

0W
in

M
Pa

Sc
ale

Pa
ra

m
et

er
σ

0G
in

M
Pa

Sc
ale

Pa
ra

m
et

er
σ

0G
in

M
Pa

Sampling Size Nj Sampling Size Nj

Sampling Size Nj Sampling Size Nj

Figure 11. Scale parameter of the Weibull distribution (a,b) and the Gamma distribution (c,d) in
dependency on the sampling size Nj for D08 and D15 sub-populations.

Figure 11 shows that the median characteristic strength σ0W|50 of the Weibull distri-
bution was higher for the D08 population compared to the D15 population. This was in
excellent agreement with the size effect theory, which predicts a decreasing characteristic
strength with increasing volume under load [11]. Taking into account the multiplication
of shape and scale parameter from the Gamma distribution, the characteristic strength of
27.6 MPa and 25.0 MPa was determined based on the experimental data from the D08 and
D15 population, respectively. Thus, an identical trend of the size effect was observed.

3.3. Conditional Sub-Population Analysis–Conditional Data Cropping

A final note shall be made on the correlation between the specimen thickness and the
flexural strength, exemplary for D08. Among the two test series, despite being of an overall
mild nature, a positive correlation was present for D08. However, to isolate an origin of this
relation remains a difficult question to be answered. A likely reason was already discussed,
i.e., the fact of relying on a human operator. Despite this uncertainty, a resampling on the
basis of the variation in the specimen thickness as a condition allows for some insight,
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taking the scattering of specimen thickness as an inherent characteristic of the manual
flame-spray process. First, the quantiles of the specimen thicknesses were determined.
Then, starting at the median of the specimen thickness t|50, interpercentile ranges t|50+x

50−x
around this median can be defined (abbreviated by IPR; including the borders). Referring to
the Figures 9 and 11, this principle of interpercentile ranges was applied before in this study.
In consequence, the higher the interpercentile range of the specimen thickness around the
median is set, the more variability in the specimen thickness is accounted for. By cropping
the experimental D08 data set on the basis of this premise, conditioned sub-populations
were built, which were analysed for their statistics as performed before, including the
correction of the determined Weibull modulus.

From that conditioned data cropping, two boundaries can be derived: allowing for no
variation in the specimen thickness (lower boundary) or allowing for the maximum scatter
of the specimen thickness (upper boundary). For the lower boundary, only the specimens
with a thickness equal to the median of all thicknesses were taken into account and for the
upper boundary, all specimens were taken into consideration (minus the extreme positive
outlier, excluded before). Consequentially, the conditioned data cropping results in sub-
populations of different sampling sizes N and thus, for comparability, it is necessary to
account for that in regard of the Weibull modulus. At this point, the measurement precision
of the specimen thickness became relevant. In the present study, the thickness was measured
on two decimal digits. Due to the mere number of experimentally tested specimens and
this measuring precision, the original experimental data sets contain multiple specimens
of similar thickness. As a consequence, it was possible to form a data subset at the lower
boundary (only specimens of median thickness), which comprises a statistically reasonable
number of 30 individual specimens. Note that the following statements exclusively apply
to the D08 series. Their transfer to other test series, materials, or testing methods has to be
considered separately.

Starting at the lower boundary, no correlation between the specimen thickness and
the flexural strength can be postulated, i.e., an ideal Spearman correlation factor of ρ = 0.
The respective statistical parameters of the Weibull and Gamma fitting are listed in Table 5,
relative to the corresponding experimental parameters from Table 2. For the upper bound-
ary, i.e., the full data set, the Spearman correlation factor amounts to ρ = 0.39 (as presented
before). Regarding the Weibull fitting (actually the less suited distribution for D08) it
occurred that after reducing the specimen thickness variation to zero, the Weibull fitting
was improved (R2

W/R2
W,ex > 1). Simultaneously, the Weibull modulus was increased

(m/mex > 1), while the characteristic strength was lower (σ0W/σ0W,ex < 1). In comparison,
the difference in the characteristic strength by 1% (only median thickness vs. the full data
set) is lower than the difference in the Weibull modulus by about 30%. As further presented
in Figure 12, a difference in either the Weibull modulus (positive difference up to 18%)
or the characteristic strength (negative difference of about 2%) was observed nearly for
the complete range of IPR. For the Gamma distribution fitting, it was observed that the
fitting improved at a higher variation in the specimen thickness (R2

G/R2
G,ex < 1). Moreover,

both distribution parameters k and σ0G lay above the experimental data for 0 < IPR < 100
(cf. Figure 12). The strictest conclusion that can be drawn from this is that the experimen-
tal scatter in the flexural strength of the D08 series was to some extent affected by the
variation in specimen thickness, i.e., it was increased. Here, a trade off has to be found:
stating a more pronounced scattering in the flexural strength would again be the more
cautious/conservative point of view and prevent an overestimation of the material. In the
present case of flame-sprayed alumina, it was thus indeed permitted to neglect the mild
correlation between the flexural strength and the specimen thickness.
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Table 5. Relative Weibull and Gamma fit parameters for specimens of only the median thickness
t|50 resulting in N = 30 considered specimens (R2—coefficient of determination of the QQ analy-
sis, m—Weibull modulus, σ0W—characteristic strength, k—Gamma distribution shape parameter,
σ0G—Gamma distribution scale parameter; extension ‘ex’ indicates experimental supported data of
the D08 test series).

R2
W/R2

W,ex 1.012 R2
W/R2

G,ex 0.955
m/mex 1.329 k/kex 1.539
σ0W/σ0W,ex 0.990 σ0G/σ0G,ex 1.531
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Figure 12. Exemplary sub-populations of D08 for different interpercentile ranges around the median
specimen thickness (IPR, for t|45

55, t|25
75, and t|95

5 ), generated by thickness-conditioned data cropping
and the resulting relative Weibull and Gamma fit parameters and the Spearman correlation factor
as function of the IPR (R2—coefficient of determination of the QQ analysis, m—Weibull modulus,
σ0W—characteristic strength, k—Gamma distribution shape parameter, σ0G—Gamma distribution
scale parameter; extension ‘ex’ indicates experimental supported data of the D08 test series).

4. Conclusions

According to textbook standards, the variability of failure, i.e., the scattering of the
mechanical strength, poses a fundamental and design-relevant material-specific feature
to be introduced into the lifetime prediction of ceramic components, next to the fracture
resistance and the sub-critical cracking behaviour. In this work, the flexural strength of
two populations of flame-sprayed self-supporting ceramic components based on alumina
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including 1000 disc-shaped specimens each, were tested using the ball on three ball test.
The suitability of the two-parametric distribution functions, i.e., the Normal, Log-Normal,
Weibull, and Gamma distribution to describe the data were investigated using Q-Q analysis.
Based on random resampling of the flexural strength data, the suitability of different
distribution functions in dependency of the sampling size in the range from 30 to 1000 was
investigated. Moreover, the distribution parameters, i.e., the shape and the scale parameters
were determined and their dependence on the sampling size was evaluated.

The Q-Q analysis revealed the Weibull and Gamma distribution to be most suitable to
represent flexural strength data of flame-sprayed self-supporting components. Moreover,
it was shown that because of their skew, the Gamma distribution is more robust against
positive outliers in a data set, while the Weibull distribution is more robust against negative
outliers. The random resampling of the strength data showed that the fitting accuracy
of the distribution was robust independently of the sampling size. Even for the smallest
sample size investigated (30), the median fit quality was in a range of ±5% of the fit quality
from the underlying experimental data set. An analysis of the distribution parameters
revealed that for both the Weibull and the Gamma distribution, the shape parameter of the
underlying distribution would be overestimated for small sampling sizes. Nevertheless,
the study also showed that the suggested correction factor for the Weibull modulus was in
excellent agreement with the simulated data (as long as extreme outliers were excluded
from the analysis). Based on these results, a correction factor for the shape parameter
of the Gamma distribution was suggested. Conversely, the characteristic strength (scale
parameter) was slightly underestimated by both distribution functions for small sampling
sizes and requires no correction.
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