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Abstract: This study regards the development of lightweight geopolymer composites through the
valorization of various construction and demolition wastes. Brick waste was utilized as the sole alu-
minosilicate precursor for the geopolymerization reactions, expanded polystyrene and polyurethane
wastes were used as artificial lightweight aggregates, and short polyethylene fibers developed from
CDWs reinforced the geopolymer matrix. The curing conditions of the geopolymer synthesis were
optimized to deliver a robust geopolymer matrix (T = 25–80 ◦C, t = 24–72 h). Both raw materials and
products were appropriately characterized with XRD and SEM, while the mechanical performance
was tested through compressive strength, flexural strength, Poisson’s ratio and Young’s modulus
measurements. Then, a comprehensive durability investigation was performed (sorptivity, wet/dry
cycles, freeze/thaw cycles, and exposure to real weather conditions). In contrast to polyurethane
waste, the introduction of expanded polystyrene (0.5–3.0% wt.) effectively reduced the final density
of the products (from 2.1 to 1.0 g/cm3) by keeping sufficient compressive strength (6.5–22.8 MPa).
The PE fibers could enhance the bending behavior of lightweight geopolymers by 24%; however, a
geopolymer matrix–fiber debonding was clearly visible through SEM analysis. Finally, the durability
performance of CDW-based geopolymers was significantly improved after the incorporation of
expanded polystyrene aggregates and polyethylene fibers mainly concerning freeze/thaw testing.
The composite containing 1.5% wt. expanded polystyrene and 2.0% v/v PE fibers held the best
combination of properties: Compr. Str. 13.1 MPa, Flex. Str. 3.2 MPa, density 1.4 g/cm3, Young’s
modulus 1.3 GPa, and sorptivity 0.179 mm/min0.5.

Keywords: lightweight geopolymers; CDWs; expanded polystyrene waste; polyurethane waste;
polyethylene waste; curing conditions; mechanical properties; microstructure; durability

1. Introduction

Construction and demolition wastes (CDWs) are one of the massive and the most
voluminous waste streams generated in the European Union (EU) and globally [1,2]. More
specifically, CDWs constitute over 35% of all waste generated by different economic activi-
ties in EU (Figure 1a) and they are associated with operations occurring in the construction
sector such as the excavation, construction, and demolition of buildings [3]. CDWs are
composed of numerous materials such as cement, bricks, plaster, wood, glass, metals,
plastic, asbestos and soil, tiles, treated marble, etc., many of which are recyclable. A typical
composition [3] is shown in Figure 1b.

Construction and demolition wastes (CDWs) have been classified as a “priority waste
stream” by the European Union [4], both from an environmental and economic point of
view, as nowadays, they are of considerable interest for recycling and reusing because
many of these materials have a high economic value. Furthermore, CDWs have a high
environmental impact, mainly due to the large volume of waste that has to be managed.
Their disposal is associated with impacts such as the degradation of the natural environ-
ment, visual pollution, the production of dust–air pollution, the pollution of surface and
groundwater, soil pollution, risks to human health, etc. [5].
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In the European Union, CDW management policy is reflected in a series of measures
and directives, the main one being the revised Waste Framework Directive 2008/98/EC,
amended 2018/851 [6], which aims at the prevention, recovery, and proper disposal of
waste. Following this directive, the average recovery rate in the EU significantly increased
to 89% for the year 2020 [3].

To date, the most widespread practice of recycling the mineral part of CDWs is its use
as aggregates in various construction projects in order to reduce the consumption of natural
resources [7,8]. Indeed, concrete waste has replaced natural coarse aggregates in concrete
production, thus increasing the sustainability of concrete technology [9–14]. However,
more efforts such as the aforementioned are required to utilize the full recycling potential
of CDWs to develop high-added-value products.

The fact that a large part of mineral CDWs are of aluminosilicate origin reveals the
great potential of using such wastes as raw materials in the production of geopolymers.
Geopolymers [15–17] are sustainable building materials valorizing waste and by-products
generated by other industries as raw materials, and thus cut down the consumption of nat-
ural resources while at the same time obtaining a smaller environmental footprint than con-
ventional cement [16,18,19]. Recently, several scientific papers have been published [20–26]
where concrete and masonry wastes were applied as geopolymer precursors. In most
studies, these CDWs are used in combination with supplementary cementitious mate-
rials (SCMs) such as ground granulated blast furnace slag [27–30], ferronickel slag [31],
OPC [23,32–34], silica fume [35], metakaolin [23,29,36–38], and fly ash [29,38–43]. In all
these cases, SCMs play the role of the main active precursor.

However, the synthesis of geopolymers through the use of a CDW source as the
sole aluminosilicate precursor is crucial to explore their full geopolymerization potential
and, therefore, to maximize their recycling rate, according to EU legislations. A number
of studies have dealt with the aforementioned aspect, mainly focused on the synthesis
optimization of pastes and mortars [22,33,44–49]. Particularly, parameters such as the
type and processing of the CDW precursor, the applied curing conditions, and the type
and concentration of the alkali activator were evaluated in terms of microstructure, fresh
state, and mechanical properties. Our group has also studied the CDW brick geopolymer
synthesis through the performance of a multifactorial design of experiments in a previous
study, highlighting the significant parameters of the synthesis [50].

Although considerable progress has been made in CDW synthesis optimization, the
literature concerning the development of CDW-based products and their service life perfor-
mance is limited. A few works so far have dealt with the performance of CDW geopolymer
concrete [51], and the potential application of CDWs in the production of bricks, pavers,
tiles [25,52], geopolymer composites [53,54], or 3D-printable mixtures [55]. Therefore,
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further research in this field is required to explore the application capabilities of CDW-
based geopolymers.

A major application field concerns the lightweight building materials market. These
materials have had increased demand in recent years since they have numerous advantages
such as superior thermal and acoustic performance, the minimization of construction dead
load, the construction time, and the labor expenses involved in handling or transportation,
and are responsible for significant energy savings within buildings [56–59].

Furthermore, a vital part of building materials’ service life is the assessment of their
durability performance. It is well known that geopolymer products exhibit similar and, in
some cases, better durability performance in relation to ORC [60]. More specifically, studies
in the literature show that the geopolymers derived from certain wastes have superior
performance when exposed to high temperatures [61], aggressive environments (acids,
chlorides, and sulfates) [62–65], and weathering (humidity, freezing, etc.) [63,66,67]. There-
fore, it is highly important to conduct such tests in order to assess the effect of geopolymers
composition on their long-term performance. Concerning the durability of CDW-based
geopolymers, their water absorption [68] and behavior in acid environments [69] and high
temperatures [31] have been examined so far for samples prepared with different synthesis
parameters, pointing out that a more comprehensive investigation is needed to fully define
the durability of the produced materials.

The main scope of this study is to develop durable, lightweight, CDW-based geopoly-
mer composites that can be applied as building materials in the construction sector. The
synthesis of the composites was performed using the combinational valorization of four
different CDW streams, namely, bricks rejected during the manufacturing process and
expanded polystyrene, rigid polyurethane, and polyethylene wastes from construction and
demolition activities. To the best of authors’ knowledge, this is the first attempt to combine
such wastes to produce lightweight building materials with a high CDW recycling rate and
low embodied energy.

After the appropriate processing of the CDW materials, brick waste was used as the
sole aluminosilicate precursor of the geopolymer synthesis, expanded polystyrene and
polyurethane wastes played the role of lightweight aggregates, while PE waste in the form
of short plastic fibers reinforced the geopolymer matrix. The curing conditions were also
investigated to maximize the geopolymerization of brick wastes. Apart from examining
the microstructure and physicochemical and mechanical properties of the composites,
a comprehensive experimental setup for the durability investigation was performed to
point out variations in the long-term performance depending on the geopolymer synthesis.
The combination of brick, EPS, and PE wastes in certain amounts can effectively produce
durable lightweight geopolymer composites with a high CDW content (>70%).

2. Materials and Methods
2.1. Raw Materials

Brick waste (BW) used as an aluminosilicate source comes from rejected products of
the brick industry that do not conform to quality standards. The brick waste was supplied
from NR-GIA BUDOWNICTWO Sp. z o.o. (Poland). Table 1 and Figure 2 present the
chemical and mineralogical composition of BW measured using XRF and XRD analysis,
respectively. The XRD analysis of a BW geopolymer is also presented in Figure 2, showing
no significant changes in the mineralogical content among the precursor and product. The
BW was pulverized prior to its use to obtain a mass median particle diameter (d50) of 20 µm
(Figure 3). This fineness is in the typical range for raw materials used in the industrial
formulation of cementitious materials.

Table 1. Chemical composition of BW.

Source SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2 P2O5 Cl LOI

BW 61.02 18.85 7.87 1.73 3.03 3.40 1.27 0.26 0.89 0.17 0.02 1.32
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Expanded polystyrene (EPS) and polyurethane foam (PU) wastes are applied as
lightweight aggregates to produce geopolymers of reduced density. These wastes come
from construction and demolition activities of the building sector and were provided by
NR-GIA BUDOWNICTWO Sp. z o.o. (Poland). The wastes were appropriately processed
prior to their use in order to obtain the desired particle size. In particular, fragments
of EPS and PU wastes were broken by hand into small pieces (<10 cm) and then were
shredded in an appropriate shredding machine. Finally, the resulting material was sieved
to obtain aggregates with particle diameters between 1 and 3 mm. This particle size was
based on a previous study [70], where commercial EPS beads with the same nominal
particle size effectively reduced the density of fly-ash-based geopolymers. Table 2 shows
the characteristic properties of EPS and PU aggregates.
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Table 2. Properties of lightweight aggregates.

Aggregate Density
(g/cm3)

Water
Absrption (%)

UCS
(MPa)

λ

(W/mK)
Particles with
d > 2 mm (%)

EPS 0.038 1.0 0.46 0.035 97.0
PU 0.051 <2.0 0.21 0.025 78.6

The reinforcement of the BW geopolymer matrix was carried out through the incor-
poration of short plastic fibres developed from polyethylene (PE) C&D wastes (Leitat
Technological Center, Terrassa, Spain). The developed PE fibres were alkali-resistant and,
therefore, compatible with the chemistry of geopolymers. The crucial PE fibre properties are
presented in Table 3. Representative images of the raw materials used for the development
of the BW geopolymer composites are shown in Figure 4. All CDW materials (BW, EPS, and
PU), as well as the PE fibres, were collected, processed, and developed in the framework of
the GreenInstruct project [71,72].

Table 3. PE fibers’ properties.

Property Value

Length (mm) 6–12
Maximum diameter (µm) 331
Minimum diameter (µm) 114
Average diameter (µm) 213
Diameter—standard deviation (µm) 46
Density (g/cm3) 0.97
Tensile modulus (MPa) 258.60
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2.2. Geopolymer Preparation

The first step of geopolymer synthesis includes the preparation of the activation
solution that provides the appropriate alkalinity for the dissolution of the aluminosilicate
precursor and, at the same time, the charge-balancing ions (Na+ or K+) that will participate
in the formation of the aluminosilicate matrix. Apart from the alkaline species, the presence
of adequate soluble silicon amounts in the activation solution is crucial for the development
of a robust geopolymer matrix. Therefore, the activation solution was prepared through the
dissolution of NaOH (>99%, CAS: 1310-73-2) and KOH (>85%, CAS: 1310-58-3) anhydrous
pellets in water, and then the addition of soluble Si in the form of SiO2 solution (50% in
H2O, colloidal dispersion, CAS: 7631-86-9). The mixing of the geopolymer precursor (BW)
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with the activation solution and the aggregates/fibers was performed with a standard
mortar mixer (Controls 65-L0005). Then, the prepared geopolymer slurries were casted in
metallic molds, cured at 25–80 ◦C for 24–72 h, and, finally, demolded and kept in plastic
bags. The geopolymers’ preparation was based on the optimization of BW geopolymer
synthesis reported in a previous study using the following synthetic ratios: Si/Al = 3.0 (the
Si/Al molar ratio expresses the overall amount of Si involved in the geopolymerization
process originating from both the brick precursor and activation solution), R/Al = 0.75 (the
R/Al molar ratio expresses the alkalinity of the activation solutions in terms of the Na and
K contents), Na/Na+K = 0.35 (the Na/Na+K molar ratio expresses the kind of the alkali
in the activation solution), and solids/liquids = 5.2 (solids/liquids is the mass ratio that
expresses the workability of the geopolymer pastes related the total solid mass with water
mass) [50]. Therefore, the composition of the geopolymer matrix in all of the samples was
kept constant: 70.1% wt. BW, 7.9% wt. SiO2 solution, 2.7% wt. NaOH, 7.1% wt. KOH, and
12.2% wt. H2O.

In the first part of the experiment, the curing conditions of the geopolymer synthesis
were optimized in order to maximize the geopolymerization of the BW. More specifically,
reference geopolymer specimens were prepared and cured at varying conditions (T = 25, 50,
or 80 and t = 24, 48, or 72 h) and then mechanically tested under compression and bending.
Then, lightweight geopolymers were prepared with the incorporation of EPS (0.5–3.0% wt.)
and PU (1.0–6.0% wt.) aggregates following the same synthesis procedure as before. The
aggregates were added to the mixes after the preparation of the BW geopolymer slurries.
Finally, the incorporation of fibers was examined to improve the mechanical behavior
under bending. The composites were developed by incorporating the PE fibers at varied
contents (0.5–2.0% v/v). As in the case of lightweight-geopolymer preparation, PE fibers
were added to the geopolymer mixes after the preparation of the geopolymer slurries.

Figure 5 presents a flowchart of the experimental procedure, while Table 4 presents
the geopolymer mixes prepared in this study.
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Table 4. BW geopolymer mixes prepared in this study.

Samples EPS * (% wt.) PU * (% wt.) PE Fibers (% v/v)

GBW_REF - - -
GBW_0.5EPS 0.5 - -
GBW_1.0EPS 1.0 - -
GBW_1.5EPS 1.5 - -
GBW_2.0EPS 2.0 - -
GBW_2.5EPS 2.5 - -
GBW_3.0EPS 3.0 - -
GBW_1.0PU - 1.0 -
GBW_2.0PU - 2.0 -
GBW_3.0PU - 3.0 -
GBW_4.0PU - 4.0 -
GBW_5.0PU - 5.0 -
GBW_6.0PU - 6.0 -
GBW_REF_0.5PE - - 0.5
GBW_REF_1.0PE - - 1.0
GBW_REF_1.5PE - - 1.5
GBW_REF_2.0PE - - 2.0
GBW_1.5EPS_0.5PE 1.5 - 0.5
GBW_1.5EPS_1.0PE 1.5 - 1.0
GBW_1.5EPS_1.5PE 1.5 - 1.5
GBW_1.5EPS_2.0PE 1.5 - 2.0
GBW_2.0EPS_0.5PE 2.0 - 0.5
GBW_2.0EPS_1.0PE 2.0 - 1.0
GBW_2.0EPS_1.5PE 2.0 - 1.5
GBW_2.0EPS_2.0PE 2.0 - 2.0

* Brick-waste-based.

2.3. Mechanical Properties

The mechanical performance of the BW geopolymers was evaluated through compres-
sive strength (UCS) and flexural strength (FS) measurements according to the EN 196-1
and ASTM C109 standards after 7, 28, or 90 days of aging, depending the experiment.
The geopolymers were casted in cubic (5 × 5 × 5 cm) or prismatic (4 × 4 × 16 cm) molds
(Figure 6). For each synthesis, 3 specimens were prepared and tested.
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GBW_REF_1.0PE - - 1.0 

GBW_REF_1.5PE - - 1.5 

GBW_REF_2.0PE - - 2.0 

GBW_1.5EPS_0.5PE 1.5 - 0.5 

GBW_1.5EPS_1.0PE 1.5 - 1.0 

GBW_1.5EPS_1.5PE 1.5 - 1.5 

GBW_1.5EPS_2.0PE 1.5 - 2.0 

GBW_2.0EPS_0.5PE 2.0 - 0.5 

GBW_2.0EPS_1.0PE 2.0 - 1.0 

GBW_2.0EPS_1.5PE 2.0 - 1.5 

GBW_2.0EPS_2.0PE 2.0 - 2.0 

* Brick-waste-based. 
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Young’s modulus and Poisson’s ratio were also measured following the ASTM C
469 standard. Cylindrical specimens (20 × 10 cm) were prepared and tested 7 days after
their preparation. The measurements were performed by using strain gauges supplied by
KYOWA Co., Ltd. (Tokyo, Japan).
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2.4. Analytical Characterizations

Brick waste was characterized through X-ray diffraction (XRD) on a Bruker D8 AD-
VANCE X-ray diffractometer. Diffractograms in a 2θ range 5–70◦ with 0.1◦ step size and
1 sec per step were collected and then were evaluated by using Diffrac.Eva v3.1 software.

The microstructure of the BW geopolymers was examined by using a JEOL JSM-5600
scanning electron microscope equipped with an OXFORD LINK ISIS 300 energy-dispersive
X-ray spectrometer (EDX). Fragmented pieces of the samples were gold-coated prior to the
measurement.

2.5. Durability Tests

Sorptivity tests, following the ASTM C1585 standard, were performed to determine the
water absorption of the BW geopolymers through capillary suction. The specimens were
dried at 105 ◦C for 24 h prior to testing. Then, the lower side surface of each specimen was
covered with a water-impermeable film. The specimens were placed on special supports so
that they were submerged to a depth of approximately 5 mm. The water mass absorbed by
the specimens was measured after 10, 20, 30, 45, 60, 90, and 120 min from the beginning of
the test. The sorptivity test was based on measuring the rate of water absorption attributed
to the capillary pores in a geopolymer sample. Sorptivity (S) is defined as:

S =
i√
t

i: total increase in the specimen’s mass per adsorption surface area unit (g/mm2).
t: time (min).
The long-term stability of the BW geopolymers was determined through repeated

cycles of wetting/drying (ASTM D 559M) and freezing/thawing (ASTM C 666). In these
tests, material losses and shape changes produced during the cycles determined the stability
of the examined samples. Prior to testing, the examined specimens were water-saturated
and then weighed. A total of 50 cycles were performed for each test. Concerning the wet-
ting/drying tests, each cycle included the immersion of the specimens in water (25 ± 2 ◦C)
for a period of 4 h and then the drying at 80 ± 5 ◦C for 4 h. In the freezing/thawing tests,
each cycle included the freezing of the specimens at −18 ± 2 ◦C for a period of 4 h and then
immersion in water (25 ± 2 ◦C) for another 4 h. The mass of the specimens was recorded
after a period of 5 to 10 cycles.

The stability of the BW geopolymers was also tested by exposing the BW geopolymer
specimens to real weather conditions (Athens, Greece) for a period of 6 months (October
2019 to March 2020). The stability was evaluated in terms of mass and shape changes that
were periodically measured.

For each sample, 3 cubic (5 × 5 × 5 cm) specimens were prepared and tested, while
compressive strength measurements were conducted after the end of the tests.

3. Results and Discussion
3.1. Curing Conditions Optimization

The curing of the geopolymer specimens is an essential requirement for the completion
of the geopolymerization reactions. Using improper conditions in terms of temperature and
time may result in either incomplete geopolymerization or the degradation of the reaction
products [45]. In this study, the optimization of curing conditions delivered a robust
binding matrix (geopolymer) from BW that was effectively applied for the preparation of
lightweight geopolymer composites though the inclusion of lightweight aggregates and
short plastic fibers.

Figure 7 presents the effect of curing time (a) and temperature (b) on the mechanical
properties of the BW geopolymers. To evaluate the curing time, the prepared specimens
were cured at a constant temperature of 80 ◦C, while those prepared for evaluating the
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curing temperature were cured at a constant time of 72 h. Finally, the mechanical properties
were measured 7 days after the synthesis of the specimens.
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Figure 7. Effect of curing time (a) and temperature (b) on geopolymers’ properties.

As was expected, an increase in the time or temperature enhanced the mechanical
performance of the BW geopolymers. This is attributed to the ion diffusion phenomena
among the solid and liquid phase of the geopolymer slurries [73]. In particular, the increase
in curing time prolongs the diffusion duration, while the increase in curing temperature
accelerates the diffusion. Both cases are beneficial to the geopolymerization reactions up to
a point, with the effect of temperature being more significant.

The results showed that robust BW geopolymers can be prepared after curing at 80 ◦C
for 72 h, having a UCS and FS of 42.5 and 3.6 MPa, respectively. These conditions will
be applied for the preparation of lightweight geopolymer composites even though they
are relatively more intense than those usually applied for the geopolymerization of other
aluminosilicate sources such as fly ash [70] due to the lower geopolymerization potential of
BW [50].

Concerning the aging of the specimens (Figure 8), a variation in aging time (7, 28, and
90 days) did not significantly change the values of UCS and FS at any tested curing time (24,
48 and 72 h), revealing that the geopolymerization reactions were almost completed 7 days
after the synthesis. Indeed, any variation in the strength value lies within the standard
deviation range. From the aforementioned, the mechanical strength tests were performed
7 days after the preparation of the specimens except the durability testing (after 28 d).
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3.2. Lightweight BW Geopolymers

The impact of EPS introduction on the properties of the BW geopolymers is shown
in Figure 9. The use of EPS as lightweight aggregate in the geopolymer synthesis, as
expected from its hollow structure, promotes the preparation of low-density building
materials [70,74–76]. Indeed, the introduction of 3% wt. EPS into the geopolymer matrix
lowered the density from 2.1 to 1.0 g/cm3, corresponding to a 52% decrease. Apart from
the density, the EPS introduction affected the mechanical strength of the specimens. More
specifically, 3% wt. EPS addition led to a reduction in UCS by 85%. The aforementioned
observations are linked with the high-volume fraction capacity of EPS into the geopolymer
specimens causing the dilution of the geopolymer matrix and, subsequently, the deteriora-
tion of the mechanical properties. The product that contained 3% wt. EPS had a UCS of
6.5 MPa and density of 1.0 g/cm3.
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Correspondingly, Figure 10 depicts the effect of PU introduction on the properties of
the BW geopolymers. In contrast to the EPS behavior, the addition of PU to the geopolymer
mixes did not result in a significant reduction in the density of the BW geopolymers. Indeed,
the addition of 6% wt. PU resulted in just a 25% drop in the density values, while at the
same time, the UCS was reduced by 75%. This behavior may be related to the higher
compressibility of PU than EPS (Table 2) during the mixing and molding of the geopolymer
slurries. Similar results on the property alterations were reported by Kismi et al. [77].
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Figure 10. Geopolymers’ properties (UCS and density) when incorporating PU waste.

The results demonstrated that EPS waste can be effectively used as artificial lightweight
aggregates in the preparation of CDW lightweight geopolymer matrices, fulfilling, at
the same time, the minimum mechanical strength requirements. The EPS introduction
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(0.5–3.0% wt.) resulted in the development of products with densities ranging from 1.0 to
1.7 g/cm3 and a UCS ranging from 6.5 to 22.8 MPa. The developed products, depending the
EPS concentration, can be used as structural (≤0.5% wt. EPS) or nonstructural (>0.5% wt.
EPS) building materials [78].

3.3. Fiber Reinforcement

Both the reference and lightweight BW geopolymers were subjected to fiber rein-
forcement in order to evaluate the performance of the PE fibers. Concerning lightweight
geopolymers, GBW_1.5EPS and GBW_2.0EPS were selected since higher EPS contents led
to products with limited mechanical properties (UCS < 10 MPa). Figure 11 presents the
effect of PE fiber incorporation on the properties of the GBW_REF (a), GBW_1.5EPS (b),
and GBW_2.0EPS (c) composites, respectively.
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EPS, (b) 1.5% wt. EPS, and (c) 2.0% wt. EPS.

The reinforcement of the reference geopolymer (Figure 11a) showed that PE fibers had
a negative impact on the FS of the produced composites. More specifically, the progressive
introduction of PE fibers inside the geopolymer matrix led to worse behavior under flexion.
As a result, the GBW_REF_2.0PE sample exhibited a 28% lower FS value (2.6 MPa) in
relation to its unreinforced counterpart (3.6 MPa). This behavior is in contrast to other
authors’ observations when using polyethylene fibers [79], where an increase in the fiber
content up to 2% led to an improvement in the bending behavior of the geopolymer
composites. This might be attributed to the significantly lower resistance under tension
of the developed PE fibers from CDWs (Table 2) in relation the commercial PE fibers used
in other studies [80]. The UCS and density of the specimens seemed to be nearly constant
throughout the PE fiber incorporation range.
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The reinforcement of the geopolymer containing 1.5% wt. EPS (Figure 11b) showed an
enhancement of the FS values for the PE fibers’ content higher than 1% v/v. The composite
prepared with 2% v/v PE fiber content exhibited the highest FS value (3.2 MPa), which was
23% higher than that of the unreinforced geopolymer. These results are in accordance with
the related literature, where it was reported that 2% v/v PE fiber content is the optimum one
for enhancing the flexural performance of the geopolymer composites [79]. Contents higher
than 2% v/v result in fiber aggregation inside the geopolymer matrix, negatively affecting
the mechanical performance of the composites [81]. As in the case of GBW_REF, the UCS
and density of the specimens remained almost unaffected during fiber reinforcement.

In the case of the GBW_2.0EPS geopolymer (Figure 11c), a slight increase in FS values
was observed up to 1% v/v PE fiber content. Beyond this content, a considerable decrease
in FS values was recorded, possibly associated with the high dilution of the binding matrix
(geopolymer) that cannot homogeneously integrate both EPS aggregates and PE fibers. This
was also reflected in the slightly lower values of UCS of the composites containing 2.0% v/v
PE fibers. From the aforementioned, it is clear that even though PE fibers developed from
CDWs have poor behavior under tension in comparison to their commercial counterpart,
they can effectively reinforce samples with low and moderate mechanical properties such as
lightweight geopolymers. Indeed, the fiber reinforcement of GBW_1.5EPS and GBW_2.0EPS
samples led to an enhancement in flexural strength by about 24% when 2.0 and 1.0% v/v
PE fiber contents were added, respectively.

The sample containing 1.5% wt. EPS and 2.0% v/v PE fibers held the best combination
of properties for the development of a lightweight composite since it exhibited the highest
resistance under bending (FS of 3.2 MPa) combined with a density and UCS of 1.4 g/cm3

and 13.1, respectively. Therefore, this sample was chosen for further investigation in terms
of microstructure analysis and durability testing. For comparison reasons, GBW_REF was
also tested to reveal any differences in the structure and performance of the samples.

Table 5 presents the modulus of elasticity and Poisson’s ratio values of the GBW_REF
and GBW_1.5EPS_2.0PE samples. The incorporation of EPS waste and PE fibers in the
geopolymeric matrix had an effect on the reduction in the elasticity modulus. Both EPS and
PE fibers possess low values of elasticity modulus and the dilution of the geopolymeric
matrix with such materials leads to products with improved ductile behavior. The Poisson
ratio of the GBW_1.5EPS_2.0PE lies within the typical range (0.1–0.2) of the low-weight
cementitious materials [82,83]. Concerning the reference material, a higher value of Pois-
son’s ratio was measured. This fact is in good accordance with the Poisson ratio values of
cement pastes and mortars which generally possess values between 0.20 and 0.35 [83].

Table 5. Young’s modulus and Poisson’s ratio of GBW_REF and GBW_1.5EPS_2.0PE.

Sample Young Modulus (GPa) Poisson Ratio

GBW_REF 4.3 0.27
GBW_1.5EPS_2.0PE 1.3 0.11

3.4. Microstructure

The microstructure of the reference geopolymer (a, b) and its fiber-reinforced coun-
terpart (c, d, e, and f) is presented in Figure 12. It is worth mentioning that the examined
samples are fragments of specimens subjected to mechanical strength tests. GBW_REF
appears to be relatively dense (a, b) with pores with diameters between 5 and 500 µm.
GBW_1.5EPS_2.0PE exhibits a slightly higher concentration of pores that affects the final
porosity of the geopolymer matrix (c, d). This porosity acts synergistically with the EPS
particles in the reduction in samples’ density.



Ceramics 2023, 6 849

Ceramics 2023, 6, FOR PEER REVIEW  13 
 

 

of microstructure analysis and durability testing. For comparison reasons, GBW_REF was 
also tested to reveal any differences in the structure and performance of the samples. 

Table 5 presents the modulus of elasticity and Poisson’s ratio values of the GBW_REF 
and GBW_1.5EPS_2.0PE samples. The incorporation of EPS waste and PE fibers in the 
geopolymeric matrix had an effect on the reduction in the elasticity modulus. Both EPS 
and PE fibers possess low values of elasticity modulus and the dilution of the geopoly-
meric matrix with such materials leads to products with improved ductile behavior. The 
Poisson ratio of the GBW_1.5EPS_2.0PE lies within the typical range (0.1–0.2) of the low-
weight cementitious materials [82,83]. Concerning the reference material, a higher value 
of Poisson’s ratio was measured. This fact is in good accordance with the Poisson ratio 
values of cement pastes and mortars which generally possess values between 0.20 and 
0.35 [83]. 

Table 5. Young’s modulus and Poisson’s ratio of GBW_REF and GBW_1.5EPS_2.0PE. 

Sample Young Modulus (GPa) Poisson Ratio 
GBW_REF 4.3 0.27 

GBW_1.5EPS_2.0PE 1.3 0.11 

3.4. Microstructure 
The microstructure of the reference geopolymer (a, b) and its fiber-reinforced coun-

terpart (c, d, e, and f) is presented in Figure 12. It is worth mentioning that the examined 
samples are fragments of specimens subjected to mechanical strength tests. GBW_REF 
appears to be relatively dense (a, b) with pores with diameters between 5 and 500 µm. 
GBW_1.5EPS_2.0PE exhibits a slightly higher concentration of pores that affects the final 
porosity of the geopolymer matrix (c, d). This porosity acts synergistically with the EPS 
particles in the reduction in samples’ density. 

  
(a) (b) 

  
(c) (d) 

Ceramics 2023, 6, FOR PEER REVIEW  14 
 

 

  
(e) (f) 

Figure 12. SEM micrographs of GBW_REF (a,b) and GBW_1.5EPS_2.0PE (c–f) samples. 

Apart from that, the EPS particles had good cohesion with the geopolymer matrix, 
while they seemed to remain relatively uncompressed. The fibers’ surface and texture as 
well as the fiber–matrix interface can act as indicators of the bonding quality between the 
fiber and geopolymer matrix [84]. In this case, the fiber surface (e and f) was smooth since 
few geopolymer products covered them, clearly showing the debonding between the ma-
trix and PE fibers. Indeed, a factor that negatively affects the matrix–fiber bonding is the 
hydrophobic nature of PE fibers [80]. Furthermore, the PE fiber–matrix interface (f) also 
presented a weak bonding that reveals a pull-out failure mechanism. The aforementioned 
observations explain the moderate effect that the PE fibers had on the improvement in the 
flexural behavior of the samples. Therefore, modifications can be adopted for PE fiber 
synthesis to improve the geopolymer matrix–fiber surface bonding. Furthermore, no con-
siderable deformation in the shape and surface of the fibers was observed. 

A more sophisticated method of analysis is X-ray-computed tomography, which can 
accurately define the microstructure of such materials in terms of aggregate and fiber dis-
tribution, composite porosity, crack paths, etc. [85,86]. 

  

Figure 12. SEM micrographs of GBW_REF (a,b) and GBW_1.5EPS_2.0PE (c–f) samples.

Apart from that, the EPS particles had good cohesion with the geopolymer matrix,
while they seemed to remain relatively uncompressed. The fibers’ surface and texture
as well as the fiber–matrix interface can act as indicators of the bonding quality between
the fiber and geopolymer matrix [84]. In this case, the fiber surface (e and f) was smooth
since few geopolymer products covered them, clearly showing the debonding between the
matrix and PE fibers. Indeed, a factor that negatively affects the matrix–fiber bonding is
the hydrophobic nature of PE fibers [80]. Furthermore, the PE fiber–matrix interface (f) also
presented a weak bonding that reveals a pull-out failure mechanism. The aforementioned
observations explain the moderate effect that the PE fibers had on the improvement in
the flexural behavior of the samples. Therefore, modifications can be adopted for PE
fiber synthesis to improve the geopolymer matrix–fiber surface bonding. Furthermore, no
considerable deformation in the shape and surface of the fibers was observed.

A more sophisticated method of analysis is X-ray-computed tomography, which can
accurately define the microstructure of such materials in terms of aggregate and fiber
distribution, composite porosity, crack paths, etc. [85,86].
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3.5. Durability Performance
3.5.1. Sorptivity Tests

In Figure 13, the water absorption plots of the GBW _REF and GBW_1.5EPS_2.0PE
samples are presented. The GBW_1.5EPS_2.0PE specimens exhibited a little higher water
absorption rate in relation to the reference sample. This observation agrees well with
the findings of microstructure analysis, where the lightweight product exhibited higher
porosity than the reference, resulting in higher water absorption via capillary suction.
Furthermore, the loose connection between the matrix and PE fibers may also result in
increased absorption.
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The sorptivity values of the tested samples along with the R2 factors of linear re-
gression are presented in Table 6. The values’ fitting is near excellent for all the tested
specimens. The sorptivity of GBW_REF was calculated at 0.131 mm/min0.5, while that
of GBW_1.5EPS_2.0PE was found to be a little higher (0.179 mm/min0.5). Similar results
were reported in the literature regarding EPS incorporation in geopolymer matrices [70,87].
Furthermore, the sorptivity values of both samples lay within the acceptable range set for
the sorptivity of cementitious materials [88].
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Table 6. Sorptivity and R2 values of tested geopolymers.

Samples Sorptivity
(mm/min0.5) R2 (%)

Average S
(mm/min0.5)

GBW_REF
0.1295 97.9

0.13090.1271 96.8
0.1361 98.0

GBW_1.5EPS_2.0PE
0.1840 98.6

0.17900.1974 98.4
0.1583 97.4

3.5.2. Long-Term Stability Tests

In this section, durability tests concerning repeated wetting and drying, freezing and
thawing, and exposure to outdoor conditions (Athens, Greece) are presented. The perfor-
mance of the samples was evaluated in terms of the mass stability and compressive strength
after the end of the durability tests. Figures 15–17 present the mass stability of the GBW_REF
and GBW_1.5EPS_2.0PE geopolymers when subjected to wet/dry cycles, freeze/thaw cy-
cles, and exposure to outdoor conditions, respectively. Figure 18 shows the mechanical
performance of the specimens before and after the completion of durability testing.
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Concerning wet/dry cycles (Figure 15), the masses of all the specimens, regardless of
their composition, remained practically constant after the end of 50 cycles. Indeed, the mass
variation was measured to be as low as 0.3%. This stability indicates a satisfactory durable
behavior in both the GBW_REF and GBW_1.5EPS_2.0PE samples. The composite sample
had a corresponding behavior when subjected to freeze/thaw tests (Figure 16) since it also
presented a nearly zero mass variation (less than 0.4%). However, the reference sample
showed a progressive weight reduction (up to 7.5%), a fact that was also confirmed by the
visual inspection of the specimens, where extended corrosion was observed (Figure 19).
A drop in the weight of the specimens after the conduction of 50 freeze/thaw cycles
was also observed for geopolymers prepared with ceramic powder, slag, and fly ash
precursors [70,89]. EPS and PE fibers seem to act as stabilizing agents in the geopolymer
synthesis, preventing the extended corrosion.

The performance of the geopolymers after their exposure to real weather conditions
(Athens, Greece) for a 6-month period is presented in Figure 17. The masses of the geopoly-
mer specimens fluctuated depending on the daily weather conditions; however, their
variation was rather small. In particular, the GBW_REF and GBW_1.5EPS_2.0PE specimens
exhibited ±1.21% and ±1.02% mass variations after 184 days of testing, respectively.
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Regarding the mechanical performance of the samples (Figure 18), GBW_2.0EPS_1.0PE
exhibitde very good mechanical stability after the conduction of the durability tests. As
was observed, the compressive strength of the geopolymer composites remained practically
unaffected (with a deviation lower than 5%). In a similar manner, the GBW_REF specimens
exhibited good mechanical stability except after the end of the freeze/thaw tests, where a
reduction in the compressive strength by 20% was measured. This fact was expected since
the reference geopolymer specimens presented a total mass loss of 7.5%.

4. Conclusions

This study suggests a way to develop durable, lightweight geopolymer composites by
valorizing different CDW streams. CDW brick was used as the aluminosilicate precursor,
EPS and PU wastes lowered the total weight of geopolymers, and PE fibers from CDWs
reinforced the geopolymer matrix. Apart from the physicochemical and mechanical charac-
terization of the products, a comprehensive investigation of the durability performance
was performed. The conclusions of this study can be summarized as follows:

• Intense curing conditions (T = 80 ◦C and t = 72 h) are required to deliver a robust
binding matrix from CDW brick (UCS = 42.5 MPa and FS = 3.6 MPa) that can be
used as a basis for the incorporation of low-density aggregates and short plastic fibers.
These curing conditions limit the application of the developed lightweight composites
to the precast industry.

• EPS and PU wastes can be valorized in the synthesis of CDW-based geopolymers as
artificial lightweight aggregates for reducing the total weight of the products. However,
EPS achieved a better combination of density and mechanical strength, mainly due
to its lower compressibility. Indeed, the maximum EPS content (3% wt.) achieved
a density and UCS decrease of 52 and 84%, respectively, while the corresponding
PU content (6% wt.) decreased the density and UCS by 25 and 75%, respectively. A
control in the EPS content can lead to the development of geopolymeric materials for
construction (≤0.5% wt.) or nonconstruction (>0.5% wt.) applications.

• The use of short PE fibers developed from CDWs can effectively reinforce lightweight
BW geopolymers, enhancing their bending performance by up to 24%. The lightweight
product containing 1.5% wt. EPS and 2.0% v/v PE fibers held the best combination
of properties: UCS = 13.1 MPa, FS = 3.2 MPa, density = 1.4 g/cm3, and Young’s
modulus = 1.3 GPa.

• The durability testing of the CDW-based geopolymers showed that the incorporation
of lightweight aggregates and fibers (1.5% wt. EPS and 2.0% wt. PE fibers) into the
geopolymer matrix modified their performance. Indeed, the freezing performance of
the lightweight geopolymer composite containing 1.5% wt. EPS and 2.0% v/v PE fibers
was greatly improved in relation to the reference sample. The sorptivity of the afore-
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mentioned sample (0.179 mm/min0.5) lay within the accepted range of cementitious
materials, even though it was slightly higher than that of the reference sample.

• The developed geopolymer composites incorporated a high percent of CDW materials
(higher than 70% on a solid precursor basis), revealing the high potential of geopolymer
technology in the field of the circular economy.

A further step of this research work will be the modification of geopolymer synthesis
through the replacement of the highly corrosive activation solution with solid activators
developed from wastes. In this way, the production of CDW lightweight geopolymer
composites will be simpler, safer, and more environmentally friendly.
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