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Abstract: Hard and wear-resistant coatings created utilizing physical vapor deposition (PVD) tech-
niques are extensively used in extreme tribological applications. The friction and wear behavior of
coatings vary significantly with temperature, indicating that advanced coating concepts are essential
for prolonged load-bearing applications. Many coating concepts have recently been explored in this
area, including multicomponent, multilayer, gradient coatings; high entropy alloy (HEA) nitride; and
functionally modified coatings. In this review, we highlighted the most significant findings from
ongoing research to comprehend crucial coating properties and design aspects. To obtain enhanced
tribological properties, the microstructure, composition, residual stress, hardness, and HT oxidation
resistance are tuned through doping or addition of appropriate materials at an optimized level into
the primary coatings. Such improvements are achieved by optimizing PVD process parameters
such as input power, partial pressure, reactive gas flow rates, substrate bias, and temperature. The
incorporation of ideal amounts of Si, Cr, Mo, W, Ag, and Cu into ternary and quaternary coatings, as
well as unique multilayer designs, considerably increases the tribological performance of the coatings.
Recent discoveries show that not only mechanical hardness and fracture toughness govern wear
resistance, but also that oxidation at HT plays a significant role in the lubrication or wear failure of
coatings. The tribo-induced metal oxides and/or Magnéli phases concentrated in the tribolayer are
the key governing factors of friction and wear behavior at high temperatures. This review includes
detailed insights into the advancements in wear resistance as well as various failure mechanisms
associated with temperature changes.

Keywords: hard coatings; high temperature; HiPIMS; wear resistance; oxidation; tribolayer

1. Introduction and Need for Hard Coatings

Hard, protective coatings on moving mechanical assemblies are essential in modern
industries to protect components operated under high-temperature (HT) and harsh envi-
ronments to extend their lifetime and reduce wear-/corrosion-related losses. Tribological,
hard coatings include metals, nitrides, carbides, oxides, and borides of transition met-
als [1,2]. Nitride-based hard coatings are frequently used as protective coating materials to
protect from wear and corrosion and to extend the prolonged sustainability of high-speed
cutting tools, aerospace components, and gas turbines owing to their superior properties,
such as high hardness, corrosion resistance, high-temperature stability, low friction, and
wear resistance [3,4]. More specifically, recent developments in Al-incorporated transition
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metal nitride (TMN) coatings have already demonstrated their role in the enhancement of
mechanical and HT tribological properties. The thermal stability of TMN coatings is greatly
influenced by the defect structure, interdiffusion, grain refinement, and solid solutions.
These phenomena are scientifically significant since the resulting structure has a large
impact on the mechanical and tribological properties of the coating [5]. Therefore, the
development of advanced hard ceramic coatings can be achieved by tailoring the coating
structure of single-layer coatings by adding suitable elements and fabricating novel coating
architectures, such as multilayer and multicomponent nanocomposite coatings. Many key
findings have indicated that tuning the microstructure of hard coatings has a considerable
effect on friction and wear resistance properties [6–8]. Sabzi et al. [8] observed a significant
reduction in friction (0.08) and wear for a Ni-W2C (20 wt% W2C) nanocomposite coating
compared to a Ni coating (CoF: 0.72), owing to the dendritic microstructure with a uniform
distribution of W2C nanoparticles.

Generally, tribological coatings are classified into three major categories: soft coatings
with hardness less than 10 GPa, hard coatings with hardness greater than 10 GPa, and
superhard coatings with hardness greater than 40 GPa [9,10]. Ceramic coatings such as
aluminum oxide, titanium nitride (TiN), and titanium carbide (TiC) have successfully been
applied to cutting tools, providing enhanced protection against abrasive and diffusion
wear at high temperatures, resulting in a more than ten-fold increase in lifetime. Ceramic
coatings have higher mechanical properties than metal coatings because of the solid solution
strengthening caused by gas atoms that create point defects in the metallic crystal lattice,
preventing dislocation motion [11].

Ternary hard coatings, TiAlN and CrAlN, are commercially employed in a wide range
of industrial applications due to their exceptional physical and chemical properties, which
include high hardness, fracture toughness, and chemical stability [12]. Many studies have
been conducted to overcome the higher friction behavior of these coatings by designing
unique coating architectures and doping and alloying various elements without degrading
the mechanical and thermal stability. Interestingly, Yang et al. [13] achieved enhanced
tribological properties of AlCrN coatings fabricated on volcano-shaped textured surfaces.
These unique structures substantially reduced the real contact of sliding surfaces as well as
the wear particles trapped between the textured surfaces, resulting in less frictional force
and wear. The sliding mechanisms were rather contradictory at high temperatures, where
several fracture deformations and a lower influence of humidity, oxidation process, extreme
wear, tribochemical alterations, softening, and third body influences were predominant.
Such extreme conditions ultimately require coatings with superior withstanding ability at
HT, extreme hardness, and a more precise ability to protect the component against severe
wear and oxidations. Worldwide, numerous studies have been conducted on various hard
ceramic coatings for high-temperature applications.

Previous research findings are useful for understanding these coatings and advancing
the knowledge of utilizing them in various industrial applications. However, due to the
huge volume of research, it may be difficult to identify the needed information regarding
the selection and application of these coatings. Therefore, the current review focuses
on collecting the most essential information required for researchers to understand the
recent advancements in hard coatings to be employed in high-temperature applications.
We provide a detailed overview of the most recent developments, especially in the last
5 years, regarding the design of hard coatings with the potential to be used in high-
temperature applications.

Coating Contact/Failure Mechanisms at Elevated Temperatures

In recent years, numerous research reports have been made available on different
hard coatings for elevated temperature tribological applications [14–18]. The tribological
behavior of the coating under HT conditions is evidently different from that under room
temperature conditions. Many research reports and a few potential review articles are
available regarding the comparative analysis of RT and HT tribological properties of hard
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coatings; however, some results only display the RT tribological behavior [19,20]. It is
highly necessary to understand the various factors of contact and/or failure mechanisms
for coatings that interact with counterbodies at elevated temperatures for any potential
application. Based on the literature, it is clearly demonstrated that different contact and/or
failure mechanisms occur at the coating/counterbody contact interfaces, as illustrated in
the flow diagram in Figure 1. The major wear mechanisms of coatings at elevated tempera-
tures include wear particle adhesion on the interacting surface, abrasive wear, excessive
oxidation, phase transformations, chipping, cutting, mechanical property weakening, and
coating delamination from substrates [21–23].

Ceramics 2023, 6 303 
 

 

Coating Contact/Failure Mechanisms at Elevated Temperatures 

In recent years, numerous research reports have been made available on different 

hard coatings for elevated temperature tribological applications [14–18]. The tribological 

behavior of the coating under HT conditions is evidently different from that under room 

temperature conditions. Many research reports and a few potential review articles are 

available regarding the comparative analysis of RT and HT tribological properties of hard 

coatings; however, some results only display the RT tribological behavior [19,20]. It is 

highly necessary to understand the various factors of contact and/or failure mechanisms 

for coatings that interact with counterbodies at elevated temperatures for any potential 

application. Based on the literature, it is clearly demonstrated that different contact and/or 

failure mechanisms occur at the coating/counterbody contact interfaces, as illustrated in 

the flow diagram in Figure 1. The major wear mechanisms of coatings at elevated temper-

atures include wear particle adhesion on the interacting surface, abrasive wear, excessive 

oxidation, phase transformations, chipping, cutting, mechanical property weakening, and 

coating delamination from substrates [21–23]. 

 

Figure 1. Various contact and failure mechanisms are involved during the tribological contact be-

tween the coating and counterbodies under high-temperature conditions. 

2. Hard Refractory Ceramic Coatings for High-Temperature Applications 

Nitrides and carbides based on transition metal nitrides have undergone extensive 

research and development over the last 20 years for use in high-temperature industrial 

applications. Titanium nitride (TiN) is the primary coating material used for HT applica-

tions because of its superior physiochemical and mechanical properties. However, the ex-

cessive oxidation of Ti at elevated temperatures (above 550 °C) leads to possible abrasive 

wear, and deterioration of mechanical hardness limits its applications [24–26]. 

To overcome this challenge, Al was incorporated into the TiN crystal lattice to create 

a stable TiAlN phase without changing the crystal structure (typically FCC). The operat-

ing temperature of the TiAlN coating was noticeably raised to 1000 °C with a significant 

increase in mechanical hardness. CrAlN is the other significant high-temperature protec-

tive coating material for industrial machining tools owing to its superior oxidation re-

sistance, up to 900 °C. Al-based oxide layers that form on the coatings during HT exposure 

prevent further oxygen from diffusing inside the material, leading to high temperature 

stability [27–29]. Depending on the application requirements, the Al concentration was 

changed by up to 70% to extend the hardness and HT performance of the coatings [30,31]. 

Figure 1. Various contact and failure mechanisms are involved during the tribological contact
between the coating and counterbodies under high-temperature conditions.

2. Hard Refractory Ceramic Coatings for High-Temperature Applications

Nitrides and carbides based on transition metal nitrides have undergone extensive
research and development over the last 20 years for use in high-temperature industrial ap-
plications. Titanium nitride (TiN) is the primary coating material used for HT applications
because of its superior physiochemical and mechanical properties. However, the excessive
oxidation of Ti at elevated temperatures (above 550 ◦C) leads to possible abrasive wear,
and deterioration of mechanical hardness limits its applications [24–26].

To overcome this challenge, Al was incorporated into the TiN crystal lattice to create a
stable TiAlN phase without changing the crystal structure (typically FCC). The operating
temperature of the TiAlN coating was noticeably raised to 1000 ◦C with a significant increase
in mechanical hardness. CrAlN is the other significant high-temperature protective coating
material for industrial machining tools owing to its superior oxidation resistance, up to
900 ◦C. Al-based oxide layers that form on the coatings during HT exposure prevent further
oxygen from diffusing inside the material, leading to high temperature stability [27–29].
Depending on the application requirements, the Al concentration was changed by up to
70% to extend the hardness and HT performance of the coatings [30,31]. However, the
extremely high friction of these coatings at RT and HT settings severely restricts their use
in a variety of industrial applications that demand low-friction properties.
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3. Fabrication of Hard Ceramic Coatings
3.1. Fabrication Methods

Owing to the ease of operation and superior properties of the coatings, physical vapor
deposition (PVD) techniques are the most popular for the deposition of hard ceramic coat-
ings. The most preferable PVD methods for depositing hard coatings include magnetron
sputtering, cathodic arc, pulsed laser deposition, and electron beam evaporation. The
growth mechanisms of hard coatings are highly dependent on the deposition conditions,
plasma kinetics, and physiochemical characteristics of the source elements. Figure 2 shows
the many PVD techniques that have been employed over the last five years for fabricating
hard coatings, as well as the common deposition parameters that affect the characteristics
and functionality of the coatings. Among many PVD methods, magnetron sputtering
methods are the most widely used techniques for fabricating hard coatings, owing to the
ease of controlling the stoichiometry, microstructure, mechanical properties, and highly
dense, defect-free, uniform structure of the coatings by controlling various processing
parameters, such as ion energy, ion flux, sputtering power, substrate bias, gas flow rate,
partial pressure, and substrate temperature [32].

Ceramics 2023, 6 304 
 

 

However, the extremely high friction of these coatings at RT and HT settings severely 

restricts their use in a variety of industrial applications that demand low-friction properties. 

3. Fabrication of Hard Ceramic Coatings 

3.1. Fabrication Methods 

Owing to the ease of operation and superior properties of the coatings, physical va-

por deposition (PVD) techniques are the most popular for the deposition of hard ceramic 

coatings. The most preferable PVD methods for depositing hard coatings include magne-

tron sputtering, cathodic arc, pulsed laser deposition, and electron beam evaporation. The 

growth mechanisms of hard coatings are highly dependent on the deposition conditions, 

plasma kinetics, and physiochemical characteristics of the source elements. Figure 2 

shows the many PVD techniques that have been employed over the last five years for 

fabricating hard coatings, as well as the common deposition parameters that affect the 

characteristics and functionality of the coatings. Among many PVD methods, magnetron 

sputtering methods are the most widely used techniques for fabricating hard coatings, 

owing to the ease of controlling the stoichiometry, microstructure, mechanical properties, 

and highly dense, defect-free, uniform structure of the coatings by controlling various 

processing parameters, such as ion energy, ion flux, sputtering power, substrate bias, gas 

flow rate, partial pressure, and substrate temperature [32]. 

Many types of advanced sputtering techniques, including balanced magnetron sput-

tering, radio frequency, reactive sputtering, and high-power impulse magnetron sputter-

ing (HiPIMS), are frequently used for fabricating hard coatings. Owing to its ability to 

manufacture highly dense, stable, and hard coatings, HiPIMS is presently used as a flexi-

ble technology to deposit hard ceramic coatings for tribological applications [11,33–37]. 

Other potential techniques for fabricating materials for extreme environmental applica-

tions, such as filtered cathodic vacuum arc (FCVA) [38,39], pulsed laser deposition (PLD) 

[40,41], and their hybrid approaches with magnetron sputtering [42–44], have been used 

extensively in recent years. Figure 2 also includes the crucial parameters for tuning the 

microstructure and mechanical properties of the coatings produced by various PVD tech-

niques. 

 

Figure 2. PVD methods to deposit hard ceramic coatings and the major process parameters influ-

encing the coating properties. 

The schematic representations of current coating techniques are shown in Figure 3, 

including filtered cathodic vacuum arc (FCVA), hybrid vacuum arc with RFMS, hybrid 

radio frequency magnetron sputtering (RFMS), HiPIMS, and ultrashort PLD. For the fab-

rication of ZrSiN coatings, Chang et al. [45] employed the co-sputtering approach of 
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ing the coating properties.

Many types of advanced sputtering techniques, including balanced magnetron sput-
tering, radio frequency, reactive sputtering, and high-power impulse magnetron sputtering
(HiPIMS), are frequently used for fabricating hard coatings. Owing to its ability to man-
ufacture highly dense, stable, and hard coatings, HiPIMS is presently used as a flexible
technology to deposit hard ceramic coatings for tribological applications [11,33–37]. Other
potential techniques for fabricating materials for extreme environmental applications, such
as filtered cathodic vacuum arc (FCVA) [38,39], pulsed laser deposition (PLD) [40,41], and
their hybrid approaches with magnetron sputtering [42–44], have been used extensively in
recent years. Figure 2 also includes the crucial parameters for tuning the microstructure
and mechanical properties of the coatings produced by various PVD techniques.

The schematic representations of current coating techniques are shown in Figure 3,
including filtered cathodic vacuum arc (FCVA), hybrid vacuum arc with RFMS, hybrid radio
frequency magnetron sputtering (RFMS), HiPIMS, and ultrashort PLD. For the fabrication
of ZrSiN coatings, Chang et al. [45] employed the co-sputtering approach of RFMS/HiPIMS
(as depicted in Figure 3a). Owing to the combined ability of forming a denser coating
morphology by HiPIMS and grain refinement by the addition of Si through RFMS, the
residual stress of the coatings was reduced, and the resulting increase in hardness and
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elastic modulus were the most promising properties for use in extreme environmental
applications. Pulsed laser deposition is another popular method for creating hard coatings
(Figure 3b) [46,47]. Atoms from the source material are evaporated in this process using a
high-energy, ultra-short, pulsed laser beam. As the atoms migrate toward the substrate,
they produce a homogeneous layer. Furthermore, stoichiometry control from the source
material to the coatings is superior using the PLD method compared to the other techniques,
enabling the development of unique coatings with the desired compositions [48].

Figure 3c shows a schematic of the FCVA deposition system, where the substrates
(anode) are mounted inside the vacuum chamber, while the target (cathode) is mounted at
another end of the filter arch. To avoid larger particle and droplet formation in the coating,
typically C-bend or S-bend arches are used in the FCVA system. Cao et al. [49] developed a
multilayer coating of Ti-DLC on an Al alloy substrate using the FCVA method that exhibited
ultralow friction (0.12), improved wear resistance (2.69 × 10−7 mm3/Nm) at 300 ◦C, and
decreased thermal conductivity, which could be beneficial for engine piston assemblies.
However, hard coatings produced by cathodic arc methods frequently contain surface
droplets that cause friction and wear during the initial period of sliding. Panjan et al. [50]
revealed that post-polishing procedures for cathodic arc-deposited TiN coatings could
improve the wear resistance and shorten the running-in duration. Another interesting
fabrication method is the combined vacuum arc and magnetron sputtering hybrid process
described by Hirata et al. [51], as shown in Figure 3d, for creating amorphous boron carbon
nitride (a-BCN) films for tribological applications. Here, the BN target is mounted on
the RFMS, while the graphite target is positioned on the cathodic arc gun to deposit the
films. The use of a vacuum arc in the hybrid technique enhances the ionization rate and
the kinetic energy of sputtered atoms/particles which bombard the substrate. Moreover,
the diagonal placement of the arc gun in relation to the substrate allows for better control
of droplet deposition in the coatings, a common problem associated with conventional
vacuum arc processes.
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Figure 3. Schematic of the advanced PVD deposition methods used for the fabrication of cutting-edge
hard coatings for tribological applications. (a) Co-sputtering method of RFMS and HiPIMS [45],
(b) ultra-short PLD [46], (c) FCVA [49], and (d) arc-sputtering hybrid method [51]. (Reproduced
with permission.)
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3.2. Binary, Ternary, and Multicomponent Ceramic Coatings

Coating microstructures can be engineered to improve their properties by tailoring
the deposition parameters of PVD techniques. Binary and ternary coatings have been most
widely studied over the past few decades for a variety of industrial applications, including
small-scale devices and large-scale mechanical components. In the last ten years, significant
breakthroughs in coating concepts have been developed and investigated in the search for
improved characteristics and long-lasting coatings for extreme environmental applications.
Multicomponent, multilayer, nanocomposite, and functionally graded coatings have re-
ceived much attention globally during the past five years [52–56]. Recent research trends
indicate a notable interest in the development of multicomponent coatings by co-depositing
or evaporating compound target materials in an atmosphere of reactive nitrogen (N2).
The introduction of elements into the crystalline lattice was developed to refine the grain
growth and thereby enhance the mechanical strength and wear resistance in extreme sliding
conditions [57,58]. For instance, Rodríguez et al. [59] observed a hardness enhancement
from 32 GPa to 36 GPa for a small fraction (0.2 at%) of Hf doped into AlxTi1−xN coatings
to form c-Al0.64Ti0.36Hf0.02N coatings using the cathodic arc method. They suggested that
the oxidation temperature of the coating was increased to 900 ◦C owing to the addition of
Hf, which forms Hf-based oxynitrides and Al/Ti-based oxide layers during HT exposure.
On the other hand, a study by Grigoriev et al. [60] showed that Ti-TiN-(Ti, Al, Nb, and
Zr)N multicomponent coatings significantly enhanced the wear resistance and reduced
the friction and performance of cutting tools with increasing the temperature from 700
to 900 ◦C.

On the other hand, the multilayered coatings showed remarkably improved properties,
such as hardness, fracture toughness, and elastic modulus, compared to the single-layer
coatings. It was revealed that a number of multilayer structures with varied compositions
between sublayers improved the mechanical properties. The interface/superlattice struc-
tures between two alternate layers in this case impede the mobility of plastic deformation,
acting as dislocation gliding barriers [61,62]. Xiao et al. [63], for example, achieved a max-
imum hardness of 38.3 GPa and an elastic modulus of 463.7 GPa, as well as the highest
thermal stability (up to 1000 ◦C) and wear resistance at 800 ◦C, for the AlCrN/TiAlSiN
multilayer compared to single-layer coatings. The multilayer structure, as well as the
unique nanocomposite structure of the Si3N4 matrix around the TiAlN crystals from the
TiAlSiN layers, were responsible for these properties. Similar enhanced mechanical and
tribological properties of different multilayer architectures, such as CrAlN/TiSiN [64],
AlCrSiN/VN [65], TiAlSiN/VSiN [66], and AlCrN/TiAlSiN [63], have been reported.
The consolidated mechanical and HT tribological performances of multicomponent and
multilayer coatings are described in Table 1.
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Table 1. Recent developments in hard coatings for high-temperature tribological applications from
publications in the last five years.

Coating
Deposition

Method/Post
Treatments

Thickness (µm) Mechanical
Properties (GPa) Tribological Properties at HT Major Outcomes Ref.

Multicomponent and nanocomposite hard ceramic coatings fabricated using PVD techniques for HT tribological applications

AlTiVCuN HiPIMS 1.0–1.6 H: 34–41 GPa µ: 0.5
k: 3.2 × 10−15 m3/Nm (600 ◦C)

Cu rich coating involved more
outwards diffusion of Cu to form
the lubricious CuO at HT

[67]

W-DLC Hybrid DCMS
+ HiPIMS 1.7 E: 200 GPa µ: 0.1

k: 2 × 10−7 mm3/Nm (150 ◦C)

As a result of very compact
morphology of nanocomposite
coatings, detachment of larger hard
W–C particles is prevented, resulting
in low-friction and higher wear
resistance

[68]

Al2O3/ta-C

Lateral Arc
with Central
Sputtering and
ALD for Al2O3
layer

(ta-C) and
200 nm (Al2O3
top layer)

–
µ: 0.1 (500 ◦C)
Wear Volume: 1.4 × 10−3 mm3

(500 ◦C)

The suppression of oxidation by a
thin Al2O3 multifunctional layer
improves the thermal stability and
durability of the ta-C coating.

[69]

(Cr, V)N Cathodic
Arc ion-plated 4.5 H: 24 GPa

µ: 0.28–0.37
Wear Volume: 1.4–12.9 × 10−5

mm3/Nm (700–900 ◦C)

Because of the formation of V-O
phases, Cr0.58V0.14N0.28 coatings
demonstrated superior tribological
properties at 700–800 ◦C

[70]

AlCrON,
and
α-(Al,Cr)2O3

Cathodic
Arc 4.0

H: 34.6 GPa
E: 467 GPa
(AlCrON)
H: 26 GPa
E: 446 GPa
(α-(Al,Cr)2O3)

µ: 0.5
k: 150 × 10−17 m3/Nm (AlCrON
at 800 ◦C)
µ: 0.25
k: 10 × 10−17 m3/Nm
(α-(Al,Cr)2O3 at 800 ◦C)

Superior tribological properties of
the α-(Al,Cr)2O3 coating due to the
nitrogen-free, stable alpha-alumina
structure that inhibited HT
oxidation and subsequent wear

[22]

Cr-V-Al-C
Hybrid Arc
and Magnetron
Sputtering

7.5 H: ~22.5 GPa
E: ~280 GPa

µ: 0.5
k: No measurable wear (900 ◦C)

The formation of a combined Cr2O3
and Al2O3 tribolayer can be favored
by optimizing the solid solution
content of V in Cr2AlC coating,
leading to high hardness and HT
tribological performance

[71]

MoCuVN HiPIMS 2.1–2.4

H: 19.0–15.5 GPa
E: 393–316 GPa
(with increasing
N2 flow rate)

µ: 0.43–0.51
k: 3.1–13.5 × 10−8 mm3/Nm
(400 ◦C)

At 400 ◦C, formation of mixed
lubricious oxides of MoO3/CuMoO4
and V2O5 decreases the wear
resistance compared to tests
conducted at RT due to the loss of N
and severe oxidation at HT

[72]

Multilayer hard ceramic coatings fabricated using PVD techniques for HT tribological applications

CrAlN/TiSiN Arc Ion Plating 6.8 2850 HV µ: 0.6
k: 3.95 × 10−6 mm3/Nm (300 ◦C)

Coatings are highly stable at high
temperatures, while the adhesive
wear of the ball on the coating
surface forms the Fe2O3 tribolayer

[73]

TiAlSiN/VSiN RF magnetron
co-sputtering

1.0–1.2
(10–40 nm bilayer
periods)

H: 29 GPa
E: 260 GPa

µ: 0.28
k: 7.01 × 10−6 mm3/Nm (700 ◦C)

Improved tribological properties
due to improved mechanical
properties and the formation of a
self-lubricating V2O5 Magnéli phase
at 700 ◦C

[74]

CrMoN/SiNx
RF magnetron
co-sputtering

1.2
(1 nm SiNx and
10–200 nm
CrMoN)

H: 27 GPa
E: 200 GPa
(for 100 nm
CrMoN/1 nm
SiNx)

µ: 0.22
k: 1.68 × 10−5 mm3/Nm (600 ◦C)

The optimal thickness of bilayer
periods and laminated architecture
for stress dispersal and deflection
results in improved performance

[66]

AlCrSiN/VN
Arc Ion Plating
and Pulsed DC
Sputtering

3.0
(4.6 nm
modulation
period)

H: 30.7 GPa
(Multilayer)
H: 28 GPa
(AlCrSiN)
H: 20.5 GPa (VN)

µ: 0.26 (800 ◦C)
k: 2.6 × 10−15 m3/Nm (600 ◦C) &
39.4 × 10−15 m3/Nm (800 ◦C)

Outwards diffusion pf V and Al to
form V2O5 and AlVO4 phases
results in low friction and increased
wear resistance at HT

[65]

AlCrN/TiAlSiN Cathodic Arc 2.2 H: 38 GPa
E: 463 GPa

µ: 0.45 (800 ◦C)
k: 2.5 × 10−6 mm3/N m (800 ◦C)

Enhanced wear resistance is
provided by the formation of a
dense Al2O3 oxide lubricant layer
on the wear tracks

[63]

TiN-
AlTiN/nACo-
CrN/AlCrN-
AlCrOAlTiCrN

Cathodic Arc 3.6 H: 36–41 GPa µ: 0.45 (800 ◦C)

The formation of stable protective
oxides ((Al,Cr)2O3) increases the
wear resistance at 800 ◦C compared
to 600 ◦C

[75]

3.3. Significance of the Structural and Mechanical Properties of Ceramic Coatings

The tribological properties of hard coatings are primarily governed by several internal
factors of coatings, including compositional, structural, microstructural, and mechanical
properties, as well as other external factors, such as the sliding atmosphere, load, sliding
speed, and humidity. The microstructure of the coating can be tailored to enhance the
mechanical and HT properties depending on the concentration of added components in
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the primary phases of the coating. For the Al60Cr30Si10 compound target, Fan et al. [76]
observed a gradual change in Al and Si composition with a periodic change in sputtering
power from 0.6 to 1.2, then to 2.0, and finally to 2.8 kW. They also observed the variation
in crystallinity and microstructure of quaternary CrAlSiN coatings with the change in
sputtering power from 0.6–1.2, then to 2.0, and finally to 2.8 kW. The coating samples
deposited at 0.6–2.8 kW displayed poor wear resistance due to weaker crack resistance and
higher surface roughness, whereas the highly dense and smooth surface coatings deposited
at 0.6–2.0 kW exhibited improved wear resistance. To compare the microstructure and
morphologies of CrN coatings, Ferreira et al. [77] developed two different coatings under
varying process conditions of N2 gas flow, partial pressure, and bias voltage. With a low N2
gas flow and partial pressure with a higher bias voltage, a highly dense, void free, enhanced
hardness microstructure coating with low friction (0.15) and wear loss was achieved. A
second coating was deposited at higher N2 and lower bias voltage, and the friction and
wear loss were higher because of the presence of more voids inside the coating. Substrate
rotational speed during the sputtering deposition of hard coatings also has a significant
impact on the microstructure and mechanical properties of hard coatings. With increasing
rotation speed, the dense microstructures are transferred to the coarse microstructure. The
film growth direction and the mobility of adatoms during sputtering are greater at lower
rotational speeds due to the almost perpendicular position of sputtered ions to the film
growth surface, resulting in a dense microstructure. At higher speeds, the angle of growth
of the coating structure predominantly varies, reducing the energy of sputtering ions [78].
Wang et al. [79] investigated the effect of reactive N2 partial pressure on TiBN/TiAlSiN
nano-multilayered coatings fabricated by the cathodic arc technique. The coating deposited
at 2.0 Pa partial pressure had a defect-free, smoother surface and a dense microstructure,
resulting in improved hardness (34 GPa), H/E, and H3/E*2; low friction (0.28); and wear
resistance (4.3 × 10−7 mm3/Nm). A higher partial pressure (3.0 Pa) caused target poisoning
and a reduction in coating thickness.

Similarly, changing the bias voltage causes significant changes in the tribological
properties of cathodic arc-deposited ternary and quaternary nitride coatings [80,81]. Cao
et al. [82] observed a change in the preferred orientation from (200) to (111) for TiAlN
coatings deposited using FCVA when the bias voltage was increased from 50 to 75 V. This
is due to an increase in atomic mobility and lattice distortion, which results in a higher
hardness (~30.3 GPa) and wear resistance (~4.4 × 10−5 mm3/Nm). Akhter et al. [83]
achieved a remarkable 85% increase in wear resistance for arc-produced TiNiN coatings
at a 100 V bias voltage rather compared to the coating deposited at 0 V. The enhanced
mechanical and tribological properties in this case were due to the very fine equiaxed
structure and higher compressive residual stress. A similar improvement in tribological
performance was observed for CrN/NbN multilayers deposited via HiPIMS with substrate
biases ranging from −40 to −150 V [84]. The coating deposited at −65 V demonstrated
reduced friction and enhanced wear resistance owing to the increased density of columnar
grains. However, a higher substrate bias caused grain coarsening and increased defect
concentration, which increased friction and wear. It is clear that the coating microstructure,
thickness, composition, roughness, hardness, and toughness are clearly influenced by the
applied substrate bias voltage. Therefore, the optimum bias voltage during PVD coating
deposition plays a critical role in reducing internal stress and improving load-bearing
ability. Interlayer thickness, on the other hand, has a significant impact on the residual
stress and wear properties of hard coatings, according to Lin et al. [85]. They observed that
increasing the Ti interlayer thickness of TiZrN coatings from 50 to 250 nm decreased the
residual stress from −5.67 to −3.75 GPa, and the wear resistance increased by 16%.

4. Recent Progress in Advanced Coatings for Application in Harsh Environments

Many researchers around the world have designed and developed several hard coat-
ings in the last five years to improve load-bearing ability under extreme environmental
conditions. The majority of researchers are concerned with tailoring the microstructure by
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adding appropriate elements to achieve adaptive coatings with multifunctional properties.
Many researchers are interested in multicomponent coatings and novel multilayer struc-
tures, as previously discussed. Table 1 shows the recently developed advanced coatings
deposited using PVD methods, as well as their mechanical and tribological properties,
particularly under harsh operating conditions.

4.1. Recent Advancements in Coating Design Aspects

The improved design of hard coatings shows beneficial effects on the mechanical
and tribological properties of coatings through controlling the microstructure, varying
the composition, altering the nanocomposite design, and combining hard/soft multilayer
coatings. Figure 4 depicts the various coating architectures that have been created using
PVD methods for use in HT environments. For the selection of hard coatings to extend
the performance and life of the base components, there are several primary concerns.
Considering the extreme mechanical hardness of the coating, the influence of internal stress
would limit the coating’s adhesion properties to the substrate, resulting in delamination
during highly stressed sliding operations. Therefore, special coating architectures are
highly inevitable, with specific properties at different zones for HT tribological applications.
Figure 4 depicts the coating concept with desirable properties at different zones, such as
higher adhesion strength between the coating and substrate (zone 1), a mechanical layer
with high fracture toughness and wear resistance in the middle (zones 2 and 3), and active
surface layers (zone 4) that should provide lubricity and superior oxidation resistance
properties.
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Figure 4. Schematic representation of the advanced coatings with important properties at different
zones for high-temperature tribological coatings.

Many researchers have reported different coating architectures using PVD techniques
in the last five years, taking into account the above coating requirements for extreme en-
vironmental applications. Figure 5 depicts the most recent coating architectures studied
for HT tribological applications from the literature. Haung et al. [86] designed gradient
composite TiAlSIN coatings and achieved improved tribological performance as well as
superhardness (42 GPa) and superior adhesion strength (85 N). Figure 5a depicts the three-
layer microstructure of this coating, where TiN and AlTiN provide mechanical stability,
while the formation of SiO2 surface oxides from the top TiAlSiN layer improves lubrica-
tion and protection efficiency. In another study, multicomponent gradient (Ti, Al, Si, Cr,
Mo, S, O, and N) coatings (Figure 5b), fabricated using UBMS, demonstrated improved
tribological performance due to the presence of many nanocrystalline phases, which ef-
fectively impeded the deformation during sliding [87]. Bondarev et al. [88] developed
TiSiN/TiN(Ag) multilayer coatings using DCMS with a total thickness of 2.3 µm and
a bilayer thickness of 40 nm for tribological applications. Chang et al. [89] fabricated
novel multilayer AlTiN/CrN/ZrN coatings using a cathodic arc, as shown by the cross-
sectional TEM micrograph, for tribological applications. They observed that fabricating
an AlTiN/CrN/ZrN multilayer greatly reduced residual stress, resulting in superior wear
resistance (4.21 × 10−7 mm3/Nm).
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image of a gradient layered structure (Ti, Al, Si, Cr, Mo, S, O, and N) coating [87], (c) bright field
TEM, HAADF STEM, and EDS elemental distribution of TiSiN/TiN(Ag) multilayer coatings [88], and
(d) TEM micrograph of novel nanoscale multilayered CrN/[AlTiN/CrN]n/[AlTiN/ZrN]n coat-
ings [89]. (Reproduced with permission.)

As a result, in recent studies, the main consideration to improve the tribological perfor-
mance of hard ceramic coatings is mainly controlled by tailoring the coating microstructure
by introducing additional elements and/or fabricating new coating architectures. The
selected additive materials should possess solubility in the primary coating to some extent,
be able to form strong protective oxides on the coating surface during HT sliding condi-
tions, control the inwards diffusion of oxides, and promote self-lubricating effects. In the
case of multilayer coatings, the interface strengthening mechanism with periodic changes
between sublayers exhibits enhanced resistance to plastic deformation and wear even
at high temperatures. Several metals, nonmetals, and soft metals have been considered
for this purpose in recent research, and the advancements in these nanocomposite and
multicomponent coatings for HT applications are described in the following sections.

4.2. Role of Dopants (Mo, Cr, W, Si, and C) in Hard Ceramic Coatings

As a result of their superior mechanical stability over a wide operating temperature
range, nanocomposite coatings have recently received much attention for high-temperature
tribological applications. However, there is still a problem associated with the lack of
high-temperature lubricity of nanocomposite coatings compared to at room temperature,
resulting in poor wear lifetime. To address this issue, transition metal-based dopants such
as Ti, Mo, V, and W, as well as nonmetallic elements such as Si, C, and B, have been used
to improve the tribological performance at elevated temperatures. The formation of the
Magnéli phase of transition metal oxides with layered crystal structures during exposure
of these metals to high-temperatures provides an improved load-bearing ability at high
temperatures. These layered structures slip more easily during sliding motion, providing
enhanced lubrication due to their attenuated Van der Waals forces between each layer’s
crystal. For example, Tao et al. [90] discovered that adding Mo to magnetron-sputtered
CrAlSiN coatings reduced the friction with increasing Mo concentration. They observed
that the stable MoO3 species, observed in the tribolayer in ESCA analysis, which provides
the self-lubrication properties of nanocomposite CrAlMoSiN coatings at 600 ◦C, is more
stable than the CrAlSiN coatings.

Another study found that adding Mo and C to the TiN crystalline lattice significantly
improved the mechanical and tribological properties. In this case, Mo addition promoted
hardness and toughness by increasing the crystallite charge density as well as forming
Magnéli phases, and C addition promoted the formation of amorphous carbon (a-C) phases
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at grain boundaries, resulting in friction reduction and wear resistance [91]. Similarly,
Cr-rich additions to TiAlN-coated tools provided a greater cutting performance above
600 ◦C due to the formation of a protective Cr-O tribolayer, which is the strongest tribolayer,
compared to Al-O and Ti-O gained from TiAlN coatings at higher cutting speeds [92].
Similar behavior of WO3 triboinduced oxides at high temperatures for the addition of W in
magnetron-sputtered HfN coatings with diverse additive compositions revealed minimal
friction and wear resistance at high temperatures [93]. However, excessive amounts of
these transition metals are prone to oxidative damage at high temperatures.

As previously stated, oxidation of coatings plays a critical role in the formation of
tribolayers on interacting surfaces in the HT environment. Metal oxides, depending on
their nature, may be prone to abrasive and third body wear, as well as some protective
oxides that are stable under extreme temperature conditions. For example, TiO2 formation
from TiAlN coatings under HT (typically above 600 ◦C) provides lubricity, but these oxides
have poor wear resistance. In contrast, the formation of Al- and Cr-based oxides in CrAlN
coatings provides superior wear resistance at extremely high temperatures (900 ◦C) but
with relatively high friction [94,95]. In this regard, adding a small fraction of Si to TiAlN
coatings may prevent Ti from diffusing out of the coating, thereby improving oxidation and
wear resistance. The formation of a stable Si3N4 structure in the TiAlSiN coating, depending
on the Si concentration, significantly improves the mechanical and tribological properties.
However, excessive Si addition will cause the coatings to become brittle, resulting in
increased friction and wear.

Drnovšek et al. [96] investigated the correlation between HT mechanical and tribo-
logical properties for the addition of Si in CrAlN coatings using the magnetron sputtering
method. The mechanical and tribological properties of the CrAlSiN coatings were supe-
rior to those of CrAlN coatings from RT to HT (up to 700 ◦C). However, the mechanical
properties decreased with increasing temperature during indentation (H: 37 GPa to 36 GPa
for CrAlSiN and 31 GPa to 24 GPa for CrAlN). Figure 6a depicts the comparison of the
observed friction and wear rates for both coatings tested from RT to 700 ◦C. The friction
increases in both coatings at intermediate temperatures up to 500 ◦C due to the formation
of wear debris and third body wear. Comparatively, wear predominates in the CrAlN
coatings, as shown in Figure 6b, where abrasive wear of oxides and three body wear pre-
dominate. However, wear resistance was superior for the CrAlSiN coatings, as shown in
Figure 6c, due to the enhanced resistance to oxidation and a critical H/E* ratio of 0.08–0.085
at HT, resulting in improved wear resistance. As a result, they suggested that optimiz-
ing the H/E* ratio of the coatings could be the critical governing parameter for the wear
resistance characteristics.
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Figure 6. (a) Friction curves of CrAlN and CrAlSiN coatings tested under inert atmosphere at
elevated temperature (RT to 700 ◦C). 3D optical profiler images of the wear tracks of (b) CrAlN and
(c) CrAlSiN coatings after testing from RT to 700 ◦C [96]. (Reproduced with permission.)

Cai et al. [97] investigated the effect of B addition to AlCrN coatings using the arc ion
plating method for high-temperature tribological applications. For this, they fabricated
a coating with Cr and CrN layers on the substrate, followed by an AlCrN layer, then
by the incorporation of B in the top layer with different B contents of 1.5 at%, 2.9 at%,
and 4.8 at% to obtain the AlCrBN top layer. They found that a solid solution of B in the
AlCrN columnar structure at 1.5 at% and a small fraction of a-BNx, as seen in the TEM
microstructure and schematic (Figure 7a,d), resulted in superior hardness (38.3 GPa) and
modulus (622 GPa). When the B content exceeded 2.9 at%, composite (Al, Cr, and B)N
nanograins and a-BNx composite structures were formed and crystallinity decreased, as
shown in Figure 7b,c,e,f. This was followed by a decrease in the mechanical properties
to 26 GPa (H) and 389 GPa (E*). The HT tribological results showed that the B content of
4.8 at% had superior wear resistance at 800 ◦C due to the formation of continuous tribofilms
on the wear tracks. Figure 7g depicts the different tribological mechanisms of AlCrBN
(4.8 at%) coatings with respect to temperature change based on the wear track micrograph
and tribochemical analysis. Continuous Cr2O3 tribofilms were observed at 400 ◦C, while at
600 ◦C, continuous Al2O3 and Cr2O3 with a small fraction of discontinuous B2O3/B(OH)3
tribofilms were obtained, and at 800 ◦C, a stable and continuous B2O3/B(OH)3 tribofilm
was formed as a protective layer of the coating from wear. Korneev et al. [98] also observed
improved mechanical, HT tribological, and oxidation resistance with C and N doping,
when they fabricated TaZrSiBCN hard coatings through a sputtering technique.
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Figure 7. TEM microstructure and corresponding schematic representation of the AlCrBN coatings
with B contents of (a,d) 1.5 at%, (b,e) 2.9 at%, and (c,f) 4.8 at%. (g) Schematic of the wear mechanism
of the AlCrBN coating with 4.8 at% B at different temperatures (RT—800 ◦C) [97]. (Reproduced
with permission).

4.3. Soft/noble Metal (Ag and Cu)-Doped Hard Coatings for High-Temperature Applications

Another promising coating design concept for elevated-temperature tribological ap-
plications is the incorporation of soft/noble metals into hard ceramic coatings. In recent
years, metals such as Ag, Au, and Cu have been incorporated as a second phase as well
as a lubricant phase into hard nitride coatings to form a nanocomposite structure (nc-
MeN/metal) to improve high-temperature tribological properties. These materials not only
have improved fracture toughness and hardness due to grain refinement but also have an
excellent lubrication effect due to out-diffusion of soft metals at high temperatures [99].
The morphologies and microstructures of soft metals (Ag and Ag-Cu) doped into hard
coatings for tribological applications are depicted in Figure 8a–c. The microstructure of the
coatings substantially varies depending on the dopant concentration, beginning with the
formation of a solid solution in the primary crystal lattice and progressing to nanosized
grains at lower concentrations. The microstructure of the coating is altered or amorphized
with higher concentrations of soft metals (Ag and Cu), and larger particles are then out
diffused onto the coating’s surface. Figure 8d illustrates the change in the microstructure
with varying Ag content from 0 to 25.3 at%; the columnar microstructure disappears, and
the amorphous structure predominates, which accelerates wear at high temperatures [100].
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Figure 8. Microstructure of soft metal doping/addition to hard ceramic coatings. SEM morphologies 

of (a) CrMoSiCN coatings with Ag doping (3.92 at%) [101], (b) nanocomposite NbN-Ag coatings 

(Ag content of 15.83 at%) [102], and (c) Ag-Cu incorporated TiAlN coatings (Ag-Cu contents of 20 
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Figure 8. Microstructure of soft metal doping/addition to hard ceramic coatings. SEM morphologies
of (a) CrMoSiCN coatings with Ag doping (3.92 at%) [101], (b) nanocomposite NbN-Ag coatings
(Ag content of 15.83 at%) [102], and (c) Ag-Cu incorporated TiAlN coatings (Ag-Cu contents of
20 at%) [102]. (d) Growth morphologies of NbN-Ag (Ag content 0, 1.89, 15.83, and 25.36 at%) [100].
(Reproduced with permission.)

Recently, Rajput et al. [103] conducted a comparative tribological performance analysis
of CrAlN coatings with Ag additions ranging from 2.4 at% to 15.6 at%. They observed
that adding Ag up to 8.6 at% increased the mechanical hardness from 18 GPa to 23 GPa
due to grain refinement, but it tended to decrease (to 14.4 GPa) with further Ag addition
due to the enrichment of softer phases. The friction and wear resistance characteristics
did not change significantly at room temperature, but there was a more than two-fold
reduction in low-friction values for coatings with higher Ag concentrations (9–16 at%) at
elevated temperature (600 ◦C), as shown in Figure 9a,b. Such enhancement in lubricity is
anticipated from the Ag- and AgCrO2-rich tribolayers on the wear tracks of these samples,
as represented in the FESEM and EDX analysis (Figure 9c–g). The self-lubricating properties
are caused by the outwards diffusion of Ag at high temperatures. However, the wear
resistance and mechanical properties of higher Ag content (12 and 16 at%) samples were
drastically reduced due to the excessive presence of soft phases, as seen in the wear
micrographs and EDS results. They found that the optimal addition of Ag (9 at%) shows
low friction and improved wear resistance at HT (600 ◦C) due to the formation of Ag and
AgCrO2 (as seen in Figure 7e).
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Figure 9. Friction, wear behavior, and tribochemical analysis of CrAlN and CrAlN(Ag) coatings.
Variation in the friction coefficient of CrAlN and CrAlN(Ag) coatings tested at (a) RT and (b) 600 ◦C,
and (c–g) wear micrographs of the bare CrAlN and CrAlN(Ag) with different Ag content coatings
tested at 600 ◦C. The EDX spectra (1–8) represent the chemical information of wear tracks for the
coatings tested at 600 ◦C [103]. (Reproduced with permission).

Similarly, various studies have revealed that the optimal concentration of soft/noble
metals in primary ceramic hard coatings has a beneficial effect on elevated temperature
applications [104–107]. Similar observations on Cu incorporated into AlTiVN coatings using
HIPIMS demonstrated that the friction (0.45) and wear resistance (10−16 m3/N·m) were
significantly enhanced at the optimum Cu concentration of 10.7 at% at high temperature
(600 ◦C), as reported by Mei et al. [99]. The friction-induced oxide species, AlVO4, was
primarily transferred to the lubricious Al2O3, V2O5, and CuO oxides with the addition of
Cu, improving the friction and wear characteristics at elevated temperatures. On the other
hand, the addition of soft metals not only improved the tribological performance of hard
coatings under HT but also reduced the internal stress of the primary coatings, providing
further enhancement of the desired properties. Experimental results of Ren et al. [100] on Ag
incorporation into NbN coatings (Figure 10) by sputtering show a significant reduction in
residual stress, which improves the coating adhesion strength, as illustrated in Figure 10a,b.
The change in stress with the addition of Ag from 0–25.3 at% has a direct influence on the
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friction and wear behavior of NbN-Ag coatings at different temperatures, as represented
in Figure 10c,d. In HT sliding conditions, the soft metals promote the oxides, and the
soft phases of these metal-rich tribolayers have self-lubricating effects. Table 2 shows a
recent literature review on the properties of soft metals with hard coatings specifically for
HT applications.
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Figure 10. (a) Change in residual stress with the addition of Ag to NbN nanocomposite coatings at
different concentrations of 0 at% (R1), 1.89 at% (R2), 15.83 at% (R3), and 25.36 at% (R4) and their
corresponding (b) adhesion strength, (c) coefficient of friction, and (d) wear rates [100]. (Reproduced
with permission).
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Table 2. Recent results on Ag- and Cu-doped coatings for high-temperature tribological applications
from publications in the last five years.

Coating and
Dopants

Deposition
Method/Post
Treatments

Thickness (µm) Mechanical
Properties (GPa) Tribological Properties at HT Major Outcomes Ref.

MoN–Ag
(Ag: 0, 2.2,

7.9, 17.3 at%)

DC/RF
magnetron
sputtering

3.6–4.4
H: 14.4 GPa
E: 232 GPa

(for 2.2 at% of Ag)

µ: 0.27 (700 ◦C)
k: 2.52 × 10−6 mm3/Nm

(for 2.2 at% of Ag)

The formation of lubricating oxides
(MoO3, Ag2MoO4, and Ag2Mo4O13)

reduce the friction coefficient, but
wear resistance decreases above

300 ◦C.

[108]

TiSiN(Ag)
(Ag:

0–17 at%)
HiPIMS 2.2–2.8

H: 20 GPa
E: 218 GPa

(for 6 at% of Ag)

µ: 0.5
k: no wear

(600 ◦C)

At 600 ◦C, the tribolayer consists of
superficial Ag and the adhesive

material from the ball counterpart to
form a stable protective layer,

reducing friction and causing no
noticeable wear.

[104]

NbN–Ag
(Ag: 0, 2.62,
15.83, 25.36

at%)

UBMS 1.5–3.0

H: 14 GPa
E: 261 GPa

(for 2.62 at%
of Ag)

µ: 0.4
k: 3.24 × 10−5 mm3/Nm (for

15.83 at% (Ag) at 550 ◦C)

The reduction in friction and the
wear rate at 550 ◦C for the Ag

(15.83 at%) sample is due to the
formation of tribo-induced

compacted glaze tribolayer, which is
primarily composed of Nb2O5 and

AgNbO3.

[100]

Al-Ti-V-Cu-
N

(Cu: 6.2, 8.0,
10.2, 10.7 and

11.7 at%)

HiPIMS 1.1–1.5 H: 35.2 GPa
(for 6.2 at% of Cu)

µ: 0.45 (600 ◦C)
k: 10−16 m3/Nm (600 ◦C)

The formation of predominant V2O5
and CuO lubricating oxide phases

on worn surfaces results in low
friction and wear at 600 ◦C.

[99]

Mo(Cu)N
(Cu: 0, 5.5,

7.5, 17.8 and
24.3 at%)

Magnetron
Sputtering 1.5

H: 25 GPa
E: 359 GPa

(for 5.5 at% of Cu,
i.e., 9.2% of

Cu/(Cu and Mo))

µ: 0.4
k: 3.5 × 10−5 mm3/N m (800 ◦C)

The formation of strong oxide
phases, CuMoO4 and MoO3, at 600
◦C results in low friction and wear

resistance, whereas CuO
predominated at 200 ◦C.

[106]

TiAlN (Ag,
Cu)

(Ag and Cu:
0, 11, 16, 17
and 20 at%)

Magnetron
Sputtering 2.0

H: 15.2 GPa
E: 216 GPa

(for 11 at% of Ag
and Cu)

H: 6.7 GPa
E: 140 GPa

(for 20 at% of Ag
and Cu)

µ: 0.25
k: 7.7 × 10−5 mm3/N m (for 17

at% of Ag and Cu)

Friction and wear reduction were
due to the solid lubrication effect of
out-diffused Au-Cu nanoparticles

up to 17 at% in TiAlN coatings

[102]

4.4. Functionally Modified Coatings

As previously discussed, the addition of Si to the CrAlN and TiAlN ternary ceramic
coatings improves their high-temperature stability and wear and corrosion resistance
properties. In the most promising structures of CrAlSiN and TiAlSiN coatings, a small
amount of Si is used to substitute Cr/Ti atoms, causing lattice distortion due to the dif-
ferent atomic sizes. Additionally, the amorphous Si3N4 matrix structure surrounding the
crystalline phases regulates the grain growth, resulting in the superhard properties of these
coatings. However, these solid solution and amorphous matrix structures increase the
residual stress and brittle behavior of the coatings, leading to delamination of the coatings
from substrates. To address these issues, coating structures are modified to finetune the
microstructure to functionalize the coatings from the surface towards the substrate using
gradient composition coatings. The elimination of sharp interfaces in the gradient coatings
is extremely beneficial for reducing the internal stress of the coatings and improving the
adhesion strength and wear resistance. According to Lu et al. [109], the adhesion strength
and cutting properties of magnetron-sputtered TiAlSiN coatings were superior due to the
newly fabricated out-of-plane gradient distribution of Si in the coatings. In this gradient
structure, the Si content was higher on the TiAlSiN coating surface and decreases towards
the substrate, effectively reducing the internal coating stress.

It can be clearly presumed that oxidation and tribolayer formation are the most crucial
factors in determining the mechanical and tribological properties of hard coatings. Almost
all of the literature shows that abrasive wear of sliding surfaces occurs during the initial
stage and that oxidation of wear particles and coating/sliding counterbodies occurs in the
majority of the samples tested under HT conditions. Depending on the temperature and
nature of oxidative elements present in the coatings, the metal oxide tribolayer is the critical
governing factor of friction and wear behavior. Therefore, before studying tribological
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experiments, some studies have performed pre-oxidation treatments of hard coatings at
elevated temperatures in an air atmosphere. In these treatments, the oxygen species will
diffuse on the coatings and form oxidized surface layers to a certain depth.

For example, Lim et al. [110] conducted a comparative analysis of AlSiTiN, CrAlTiN,
and CrAlSiTiN coatings with oxidized coatings annealed at 800 and 900 ◦C in an air
atmosphere. Interestingly, the oxidized samples had lower friction and wear rates due to
the formation of lubricious SiO2 layers on the surface, which provided better protection
against friction and wear. The machining performance of oxidized coated tools was
improved due to the high presence of protective SiO2 against flank wear. Surface oxides
with improved hardness and low friction are formed on the sliding interfaces of Cr-, Al-,
Ti-, and Si-based hard coatings during post-deposition annealing processes. As a result,
coatings with surface oxide layers can easily form smooth and dense adhesive layers,
potentially reducing friction and wear [111]. Other remarkable functional coating concepts
from recent studies to enhance tribological performance have been achieved by designing
compositionally gradient coatings [109,112–114], novel multilayer coatings [73,75,89,115,
116], and nanocomposite coatings [60].

4.5. High Entropy Alloy-Based Nitride Coatings

High entropy alloys (HEAs) are the most recently developed multimetallic alloys, in
which five or more metallic elements are mixed with equal atomic ratios for the structural
components in extremely high temperature and corrosive environments. The alloying
elements are mixed to form a single-phase alloy based on the requirements. For instance,
Chen et al. [117] reported the study of AlCrNiTiV amorphous coatings fabricated using
the FCVA technique and their oxidation at 400–800 ◦C. The coatings annealed at 600 ◦C
demonstrated higher hardness (22.6 GPa) and lower friction coefficients (0.22) (Figure 11a)
and wear rates (1.1 × 10−5 mm3/Nm) in the tribological test performed at 600 ◦C. The
800 ◦C annealed samples have extremely high oxide contents, such as Al2O3, NiCr2O4, and
Cr2O3, which protect the coatings from further oxidation; however, the sudden decrease in
mechanical properties results in poor tribological performance, as shown in Figure 11a. On
the other hand, nitrides of these HEAs have recently been developed and their superior
hardness and high-temperature stability have been demonstrated, making them suitable
for harsh environmental applications. Recently, Li et al. [118] investigated the effect of
nitrogen content on the mechanical and tribological properties of (MoSiTiVZr)Nx, using
a confocal magnetron sputtering technique with varying N2 flow rates. Remarkably, a
superhardness of 45.6 GPa, an elastic modulus 408 GPa, and low friction (~0.3) (Figure 11b)
were attained for the N concentration of approximately 53.7 at%. The wear micrographs
also show that this coating has wear resistance due to its enhanced resistance to plastic
deformation with almost 50% N content present in the coating.
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Figure 11. Tribological properties of HEA-based nitride coatings: (a) friction curves of AlCrNi-
TiV amorphous HEA coatings annealed at different temperatures (400–800 ◦C) tested from RT to
800 ◦C [117] and (b) (MoSiTiVZr)Nx coatings deposited using DC sputtering with varying N2 con-
tents of 0, 10.3, 43.3, and 53.7 at% [118]. (Corresponding wear morphologies of the HEA coatings
with respect to change in temperature and N content). (Reproduced with permission).

Similar enhancements in wear as well as corrosion resistance properties were observed
for other HEA nitride coatings, such as (AlCrMoSiTi)Nx deposited using FVCA [119],
TiZrNbTaFeN deposited using HiPIMS [120], (AlCrTiZrHf)N deposited using reactive mag-
netron sputtering [121], and AlCrMoZrTi/(AlCrMoZrTi)N multilayer coatings deposited
using RF magnetron sputtering techniques [122]. Similar to other ceramic coatings, the
residual stress plays a critical role in the mechanical and tribological properties of HEA
nitride coatings, and many reports have demonstrated the optimization of substrate bias
to reduce the residual stress. Lo et al. [123] investigated the effect of substrate bias on
the fabrication of (AlCrNbSiTiMo)N using RF magnetron sputtering; the results revealed
that the coating deposited with a (−100 V) substrate bias exhibited a higher hardness
of 34.5 GPa and the lowest wear rate of approximately 1.2 × 10−6 mm3/Nm at 700 ◦C.
Furthermore, the presence of the MoO3 Magnéli phase with the addition of Mo in these
HEA nitride coatings also benefits lubrication under HT sliding conditions. The higher
the substrate bias, the denser the structure and smoother the coatings, which improves the
wear resistance of HEA nitride coatings [124].

5. Failure Mechanisms of Hard Ceramic Coatings Tested under HT Sliding Conditions

The friction and wear behavior of hard coatings are primarily related to the physical,
chemical, and mechanical properties at RT and elevated temperatures. Surface roughness
and composition also play important roles in friction, wear debris formation, and coating
deformations during initial sliding contacts. As shown in Figure 12a, asperities from both
contacting surfaces interact with each other, determining the initial frictions [125]. When
the friction energy is exceeded during continuous sliding motions, wear of one or both of
the surfaces occurs, followed by a change in friction behavior. Depending on the nature
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of the wear particles, the friction decreases when the wear particles are lubricated, and
friction increases when the wear particles have difficulty producing scratches. Coatings
are plastically deformed as a result of continuous sliding interactions, as locally generated
frictional heat decreases the mechanical properties and accelerates the loose wear particles,
resulting in coating material loss. Therefore, one of the most important criteria for harsh
environmental wear protection is the selection of ceramic coatings with smoother surfaces.
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Figure 12. Different wear mechanisms of coatings under elevated temperature conditions.
(a) Schematic of wear and deformation mechanisms [125], (b) cracking and oxidation of Hf1−xWxN
coatings during high-temperature tribological experiments [93], (c) wear mechanism of TiSiN coatings
tested at elevated temperature [126]. (Reproduced with permission).

Oxidation is the most unavoidable factor in determining the friction and wear mecha-
nism of the coatings, especially at elevated temperatures. The formation of cracks during
tribological interactions promotes oxidation at high temperatures. To represent the oxida-
tion behavior, Yu et al. [93] illustrated a schematic of the oxidation process of Hf1−xWxN
coatings with different W contents, as shown in Figure 12b. The crack initiated and devel-
oped at lower W (x = 0.37) content coatings at 600 ◦C, due to the lower fracture toughness.
Therefore, the atmospheric oxides enter through the crack regions and predominantly
cause oxidation across the coating. Higher W additions (x = 0.73) promote higher fracture
toughness as well as WO3 lubricating oxides, resulting in a lower friction coefficient and
improved wear resistance at elevated temperatures (up to 600 ◦C). With the addition of
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W (x = 1.0), the coating became severely oxidized and the surface became more brittle,
resulting in oxidative wear and deformation.

On the other hand, oxidation of coatings at high temperatures is more common in
columnar structured coatings, which degrades the coating composition and causes total
coating wear failure. Figure 12c depicts a schematic representation of the wear life failure
mechanism of columnar coatings. Generally, three steps of failure mechanisms are involved
for such columnar coatings: (i) First, thermal expansion of the coating and substrate
occurs with increasing temperature (stage 1, Figure 12c(i)). (ii) Second, higher contact
stress at HT conditions damage the surface and create cracks and fragments in the coating,
allowing oxygen to easily penetrate and form unstable and shapeless oxides (stage 2,
Figure 12c(ii)). (iii) Finally, oxygen atoms easily propagate through the columnar grains,
and the wear continues with further sliding, resulting in total wear loss of the coating
(stage 3, Figure 12c(iii)) [126]. Therefore, highly dense microstructures would be greatly
advantageous for HT tribological applications; such coatings can be designed using novel
coating structures such as nanocomposite, multicomponent, and multilayer coatings.

Tribochemical Layer Formation and Failure Mechanisms of Coatings under HT Conditions

Most of the research articles used in this present review demonstrate that the friction
and wear behavior of hard coatings under RT to elevated temperatures is highly dependent
on the nature of the tribolayer. Figure 13 depicts the tribological mechanism and formation
of tribolayers in various nanocomposite coatings tested at RT and elevated temperatures.
Figure 13a represents the variation in tribolayer formations of CrMoSiCN/Ag nanocompos-
ite coatings with respect to Ag content (0.83, 1.64, and 2.51 at%). At lower Ag concentrations,
the tribolayer, composed primarily of SiO2, transfers wear debris from Si3N4 balls, as well
as the oxide tribochemical species Cr2O3 and MoO3 from the coating surface (Figure 13a(i)).
With increasing Ag, the tribolayer consists of mild SiO2 from the ball, Cr2O3 and MoO3
oxide species from the coating, and a small fraction of Ag nanoparticles that are subjected
to abrasive wear (Figure 13a(ii)). At higher Ag concentrations, a tribolayer composed
of enriched Ag lubricating layers with Cr2O3, MoO3, and Ag2MoO4 species, as well as
transfer on the ball surface, results in combined tribochemical and abrasive wear behavior,
as illustrated in Figure 13a(iii) [101].
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Figure 13. Schematic of different tribological mechanisms of nanocomposite coatings and the role 
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CrMoSiCN/Ag coatings with different Ag contents: (1) 0.83 at%, (2) 1.64 at%, and (3) 2.51 at% [103] 
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[127]. (Reproduced with permission.) 
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6. Conclusions 
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Figure 13. Schematic of different tribological mechanisms of nanocomposite coatings and the role of
the tribolayer at RT and HT in an air atmosphere. (a) RT tribological behavior of nanocomposite Cr-
MoSiCN/Ag coatings with different Ag contents: (1) 0.83 at%, (2) 1.64 at%, and (3) 2.51 at% [103] and
(b) wear mechanisms of TiAlSiCN coatings at RT and elevated temperatures (400 and 800 ◦C) [127].
(Reproduced with permission).

Changes in the wear behavior of nanocomposite coatings and their tribological mecha-
nisms have been discussed by Guo et al. [127] for TiAlSiCN coatings tested at RT–800 ◦C.
The coatings are composed of nanocrystalline (Ti,Al)(C,N), diamond-like carbon (DLC),
and amorphous Si3N4/SiC phases. Under RT conditions, the segregation of DLC at the
sliding interfaces resulted in low friction and wear resistance; however, at 400 ◦C, the
segregated DLC species started to graphitize, and carbonitride formation in the tribolayer
began to deteriorate the coating fracture toughness. Extremely high graphitization and
oxidative damage of coatings tested at 800 ◦C resulted in the severe interfacial fracture of
coatings and further increased oxidation, resulting in reduced wear resistance. It can be
demonstrated that carbon-rich coatings are beneficial under RT conditions, but excessive
graphitization degrades the mechanical properties. Wang et al. [70] reported a similar
trend in oxide forms on (Cr, V)N coatings at intermediate temperatures. Up to 600 ◦C,
the coatings showed low friction and enhanced wear resistance properties, at 700–800 ◦C,
the wear rate increased progressively with increased oxidation, and at 900 ◦C, coating
breakdown due to high oxidative wear was observed.

6. Conclusions

In the search for hard, wear-resistant coatings for HT tribological applications, numer-
ous research articles are published every day by researchers from all over the world. Many
advanced PVD techniques have been used to create cutting-edge coating architectures with
improved microstructures, grain refinement, hardness, and toughness, and their HT wear
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and oxidation properties for load-bearing applications have been tested. This review exam-
ined the most recent published research articles on state-of-the-art coating architectures and
their HT tribological properties. HiPIMS, FVCA, and their hybrid deposition techniques
have been most recently used for the deposition of hard coatings through optimization
of power, substrate bias, temperature, and partial pressure in their respective methods.
Reactive as well as co-deposition methods are promising routes for these PVD methods for
fabricating novel multicomponent, nanocomposite, multilayer, and gradient coatings in
current research. Highlights of the innovations in recent findings are summarized below
with future research aspects.

• Appropriate addition of Si and B to the TiAlN and CrAlN coatings promotes the
formation of a lubricating layer consisting of SiO2 and B2O3/B(OH)3, which provides
lower friction and wear resistance at 800–900 ◦C. The a-Si3N4 and a-BNx matrices
around the ceramic nanocrystallites strengthen the coatings due to grain refinement.
A similar effect was observed for Mo and V addition due to the formation of Mo-O
and V-O Magnéli phase oxides in the tribolayer at HT (>700 ◦C);

• Multilayer coatings of binary, ternary, and quaternary nitride layers with nanoscale
bilayer thickness exhibit remarkably high hardness (>30 GPa) and wear resistance
under HT conditions. The combined protective surface oxide formation and multilayer
structure restrict crack propagation, and further oxidation results in enhanced wear
resistance;

• Gradient coatings with Si-rich surface layers of hard coatings demonstrate improved lu-
brication and ceramic nitride mechanical strength towards the substrate. Pre-oxidation
of nitride coatings also favors lubricity; however, excessive oxidation deteriorates the
mechanical properties;

• Appropriate soft metal (Ag and Cu) additions exhibit interesting low friction and wear
resistance behavior at intermediate temperatures (up to 500 ◦C) due to the formation
of an out-diffused Ag- and Cu-rich tribolayer;

• At very high temperatures, various coating failure mechanisms are related to the
coating microstructure, compactness, and resistance to HT deformations, as well as
excessive oxidation.
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