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Abstract: In this study, fore-vacuum plasma electron beam sources were used to deposit a few micron-
thick boron coatings on A284 and ZrNb1 alloys and modify their surfaces. The coating deposition
rate with a continuous 1 kW electron beam that evaporated the boron target at a distance of 10 cm was
0.5 µm/min, and the boron coating density was 2.2 g/cm3. Based on the comparison of data on the
mass-to-charge composition, beam plasma density, and coating parameters, the contribution of the
plasma phase of the evaporated material to the growth of coatings was greater than that of the vapor
phase. Using the scanning electron and atomic force microscopy techniques, surface modification
by repeated electron beam pulses with electron energies of 8 and 6 keV and a beam power per
pulse of 2 J/cm2 and 2.25 J/cm2, respectively, transformed a relatively smooth coating surface into
a hilly structure. Based on a structural phase analysis of coatings using synchrotron radiation, it
was concluded that the formation of the hilly coating structure was due to surface melting under
the repeated action of electron beam pulses. The microhardness, adhesion, and wear resistance of
coatings were measured, and their corrosion tests are presented herein. The pure boron coatings
obtained and studied are expected to be of use in various applications.

Keywords: boron coatings; electron beam deposition; fore-vacuum electron source; film properties;
electron beam modification

1. Introduction

Boron-based coatings are promising protective surface coatings [1]. They are used to
harden the surface of parts and structural materials in the field of mechanical engineer-
ing [2]. They are characterized by high hardness, resistance to wear [3], corrosion [4], and
high thermal stability [5]. For example, wurtzite boron nitride has comparable hardness to
natural diamond [6]. Pure boron thin films are used as materials in electronic [7] and optical
devices [8] as well as in protective layers of thermonuclear installations [9]. Moreover,
boron coatings of monoisotopic compositions find applications in the nuclear industry;
for example, 10B-based coatings are promising as burnable neutron absorbers in nuclear
reactors [10] and as absorber coatings of neutron detectors [11]; they are also used for the
delivery of 10B atoms deposited on the surface of nanosized particles to the malignant
neoplasm during boron neutron capture therapy [12], while 11B-based coatings are used for
the 11B aneutronic fusion of protons and 11B atomic nuclei, which may be an alternative to
deuterium and tritium fusion [13]. Hence, developing techniques to deposit boron coatings,
investigating the properties of boron coatings, and revealing the interrelationship between
these properties and conditions that brought about their formation are crucial.

Boriding is an industrial technique that has been used widely for decades to develop
boron-containing layers on metal and alloy surfaces. In this process, boride atoms are
diffused into the surface of a metal component, resulting in the formation of metal borides
in the surface layer, thereby increasing the surface hardness and wear resistance. Con-
ventional boriding can be achieved in a solid, liquid, or gaseous [14,15] medium [16,17].
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However, there are disadvantages to using it, including the high energy consumption
required for heating parts and electrolysis of boron-containing media, the long duration
of surface diffusive saturation with boron, the use of hazardous and toxic substances, and
environmental pollution.

Vacuum-plasma methods, such as magnetron sputtering [18,19] or cathodic arc de-
position [20–22], can be used as alternatives for creating boron surface layers owing to
their eco-friendliness because the equipment of this type generates a boron flux from a
consumable boron-containing solid cathode during an electric discharge in a vacuum cham-
ber. Moreover, there is no heating requirement for the surface because the main process
involves the deposition of boron atoms or ions onto the surface. Another advantage of these
methods over conventional boriding is the short process duration, which is determined
by the flux intensity. The maximum flux intensity is limited by thermal stability in the
discharge of the consumed boron-containing cathode. At maximum discharge parameters,
the deposition rate of boron-containing coatings at a characteristic distance of 10 cm from
the cathode can reach approximately 20–30 nm/min [19] for magnetron sputtering and
approximately 100 nm/min for arc deposition [22].

A method for depositing boron coating has been proposed based on the electron beam
evaporation of a boron solid target using an electron beam at a fore-vacuum pressure [23].
Briefly, a boron or boron-containing ceramic target is heated locally by an electron beam
to the melting temperature and the melted surface area undergoes an intense evapora-
tion. The flux of boron vapor, partially ionized by the beam, deposits onto the substrate
surface forming a boron-containing coating [24]. The maximum temperature of the boron-
containing target is limited in this case not by its thermal resistance, as in magnetron or
vacuum arc deposition of boron coatings [18–22] but by the temperature of intense boiling
of boron, at which an unwanted flux of droplets occurs because of the splashing of the
molten target material. Thus, the boron coating deposition rate under this method is much
higher than that under magnetron sputtering or arc deposition and can reach up to 1
µm/min [24], which provides a higher coating production performance. This work aims to
further develop this method using an additional action of a wide-aperture electron beam
in the fore-vacuum on the deposited boron coating. The characteristics and properties of
boron coatings are studied by surface analysis, which includes structural phase analysis
with synchrotron radiation generated by the VEEP-2 electron storage ring based in the
Siberian Center for Synchrotron and Terahertz Radiation at G. I. Budker Institute of Nuclear
Physics, SB of RAS [25].

2. Experimental Setup and Diagnostics

Figure 1 illustrates the setup for depositing boron coatings by electron-beam heating
and evaporation of a crystal boron target. The target was evaporated using a fore-vacuum
plasma electron source operating in continuous mode [26]. In such a source, electrons are
extracted from a hollow cathode glow discharge plasma. The discharge current varies from
100 to 500 mA, while the discharge burning voltage, depending on the discharge current
and gas pressure, varies from 200 to 500 V. At the maximum discharge current, the source
is capable of generating electron beams with a current of up to 200 mA and energy of up to
20 keV, while the beam can be focused on the target surface by the magnetic field of the
focusing system to a diameter of 3 mm. The electron beam current is controlled by the
discharge current. The average power density in the electron beam focal spot on the target
surface is 500 W/mm2, which is several times greater than the radiation power density on
the sun’s surface (approximately 60 W/mm2). Hence, the source is capable of melting and
evaporating the surface of a target composed of any refractory material.
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Figure 1. Schematic of the electron-beam synthesis of boron-based coatings.

A 4-mm-thick, 1 × 1 cm2 boron plate target fabricated using the hot pressing of 99.6%
pure boron crystals 1–10 µm in size was placed at the bottom of the vacuum chamber on
a carbon crucible. The average density of the target due to the pores between crystals
was 1.2 g/cm3, which is two times less than the density of amorphous boron. Because
the pores occupied 50% of the target volume, the effective surface-to-volume ratio for the
target material was about 3 × 103 cm−1 and the total effective surface area of the target
was about 0.1 m2. The electron beam toward the boron target was transported through
the vacuum chamber filled with 99.9% pure nitrogen at a pressure of 10 Pa. An ISP-500C
helical mechanical oil-free fore-vacuum pump with a pumping rate of 500 l/min was used
to maintain the vacuum in the chamber. Prior to the experiment, the vacuum chamber was
evacuated to a residual pressure of 1 Pa.

Because boron is a wide-gap semiconductor, its specific resistivity is as high as
1 MOhm × cm at a normal temperature of 20 ◦C; [27], which is insufficient for the complete
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drain of the electron beam charge. Therefore, at the initial heating of the boron target,
its negative surface charge introduced by the electron beam was neutralized by a flux
of positive ions from the beam plasma [28]. As the beam heated up the boron target, its
specific resistivity decreased to 0.1 Ohm × cm at a temperature of about 750 ◦C. At this
resistivity, the effect of the target surface charging by the beam becomes immaterial because
of the electron beam current running through the boron target volume.

To prevent the boron target from thermal shock destruction, the target was heated in
two stages, the parameters of which were determined experimentally [24]. Initially, the
electron beam with a current of 80 mA at an accelerating voltage of up to 5 kV heated up
the target to a temperature of approximately 900 ◦C for 70 s. Subsequently, the accelerating
voltage was increased slowly up to 9 kV for 1 min; in this case, there was an observed local
melting of the target surface at the focal spot of the beam. Target evaporation occurred and
the boron coating was deposited on the sample surface at a temperature of the melting pool
of approximately 2400 ◦C, and after increasing the accelerating voltage to 10 kV and the
beam current to 100 mA.

The samples with polished surfaces on which boron coatings were applied were
disks of A284 steel and a special reactor alloy ZrNb1 with a hexagonal crystal lattice;
they had a 2 cm diameter and 0.5 cm thickness. The samples were placed at an angle of
30◦ relative to the electron beam propagation axis. The sample surfaces were normally
oriented to the center of the evaporated target. A high-performance Raytek-MM1MH
optical pyrometer was used to monitor the temperature of the sample surface during the
deposition process; the temperature did not exceed 500 ◦C. Plasma composition during the
coating was controlled with a quadrupole mass analyzer based on an RGA-300 residual
gas analyzer. We have produced several dozen samples with boron coating thicknesses of
1–7 µm throughout the course of our research. Herein, for comparison, we analyze coatings
fabricated under the same conditions, such as a distance of 10 cm from the beam-heated
boron target to the sample surface and an overall coating deposition time of 6 min and 10 s.
Considering that the first two heating stages under which the deposition did not occur took
1 min and 10 s, the direct deposition time was 5 min.

The deposition rate of boron coatings by a 1 kW electron beam was measured with an
MII-4 interferometer and an MNL-1 interference microscope-profilometer. The thickness of
the deposited boron coatings was about 2.1 µm. Thus, under the experimental conditions,
the coating growth rate was about 0.5 µm/min. The weight gain because of boron coating
deposition, measured with a VL-220M analytical balance with a precision of ±10 µg, was
1.45 mg. Considering a sample surface area of 3.13 cm2, the density of boron coatings
was estimated to be ρ ≈ 2.2 g/cm3, which is close to the density of crystalline boron of
2.34 g/cm3.

Figure 2 shows a setup for the modification of boron coatings obtained with a pulsed
electron beam. The pulsed electron beam was generated by a fore-vacuum plasma-cathode
electron source based on an arc discharge [29]. The electron source was mounted on the
vacuum chamber, which was evacuated with an ISP-500C pump. The working gas was
helium at a pressure of 10 Pa. The samples were placed on a movable grounded holder,
which allowed several samples to be sequentially irradiated after the chamber evacuation.
To prevent the sample surface from beam exposure, a protective stainless-steel screen
was applied on top of one of the samples. The treatment of boron-coated samples was
performed in two regimes through a series of 300 pulses with a repetition rate of 2 pulses
per second (p.p.s.). The length of each pulse was τe = 500 µs. The beam diameter was 7 cm.
In regime 1, the treatment was performed at a beam current amplitude of 20 A and an
electron energy of 8 keV; in regime 2, it was performed at a beam current amplitude of 30 A
and an electron energy of 6 keV. The electron current density je on the boron coating surface
and the energy per pulse Pe were 0.5 A/cm2 and 2 J/cm2 for regime 1, and 0.75 A/cm2

and 2.25 J/cm2 for regime 2, respectively. The pulsed beam parameters for modifying the
boron coatings were selected empirically: on the one hand, they should lead to a noticeable
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change in the surface morphology; on the other hand, they should be soft enough to prevent
the coating from cracking, or its evaporation.
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Figure 2. Setup for the modification of boron coatings with a pulsed electron beam.

The morphology of the final coatings was studied using a Hitachi S3400N scanning
electron microscope and a Solver P47 atomic force microscope. Elemental composition was
analyzed with a Bruker X’Flash 5010 energy dispersive spectrometer. The surface hardness
of coatings was determined using the micro-Vickers technique. A square-section diamond
indenter with a dihedral angle of 136◦ acted on the sample surface at various points with
a constant load of 100 g while the penetration depth and indentation area were recorded.
The phase composition of coatings was measured at the Synchrotron Radiation Station
for High-Precision X-ray Diffraction Studies of Materials (also called the “Anomalous
Scattering” station) on beamline No. 2 of the VEPP-3M electron storage ring at the Siberian
Synchrotron Radiation Center (Budker Institute of Nuclear Physics, SB of RAS).

For the evaluation of the adhesive properties of the coatings, the scratch method
was used. The method consisted of applying a force F (linearly growing with time) to
the diamond indenter with its simultaneous uniform displacement along the coating
surface. At the critical load Fc, the coating begins to break down. The critical load Fc is
determined using the sensors of acoustic emission and friction force, indenter immersion
depth, indenter loading force, and optical microscopy.

Adhesion can be characterized by a parameter G (specific peel work). The calculation
formula connecting the parameter G with the critical lateral load Fc at the beginning of the
film detachment from the substrate is as follows:

G = (Fc)2d/π(rc)4EIT ,
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where d is the film thickness; rc is the radius of the contact spot at the moment of peeling;
EIT is the Young’s modulus of the substrate material. The determination of adhesion was
carried out using a Micro-Scratch Tester MST-S-AX-0000 device.

The wear resistance of the obtained coatings was measured using a Pinon Disc and
Oscillating TRIBO tester (France) using the “ball on disk” method. The sample surface was
pressed by a tungsten carbide spherical tip with a load of 2 N. The coefficient of friction
was determined by measuring the deflection of the lever. The wear rate was calculated by
the formula:

V = 2πRA/FL,

where R is the track radius, µm; A is the cross-sectional area of the wear groove, µm2; F is
the value of the applied load, N; L is the distance traveled by the ball, m.

3. Results and Discussion

During the target heating and coating deposition, the ion composition of the plasma
was measured with a quadrupole mass spectrometer based on an RGA-300 residual gas
analyzer [30]. In our previous work [31], at an electric beam power of 0.4 kW, which
corresponds to the preheating of the target at a beam current of 80 mA and an electron
energy of 5 keV, the density of such a plasma is about 3 × 1010 cm−3. Initially, at the target
heating, in addition to nitrogen ions, a significant number of ions, up to 50% of the total
ions, were produced through water vapor ionization processes: HO+, H2O+, and water
dissociation products O+, H3

+, H2
+, and H+. The sources of water molecules were the walls

of the vacuum chamber with a surface area of approximately 1 m2, the overall effective
surface of the boron crystalline target with dimensions 1 × 1 × 0.4 cm, and the total area of
about 0.1 m2. The appearance of water molecules on the walls and in the target was due to
their exposure to the atmosphere prior to the experiments. With the electron beam power
increasing to 0.7 kW, the surface temperature of the boron target at the beam focal spot
reached 2100 ◦C; this started the melting process, and the plasma spectrum recorded traces
of 10B+ and 11B+ ions. At this temperature, water molecules apparently evaporated from
the target and the heated walls, resulting in the appearance of peaks of water vapor ions
and their derivatives.

A further increase in the electron beam power of up to 1 kW led to an increase in the target
temperature at the focal spot to 2400 ◦C. Consequently, a brightly glowing melt area about
4 mm in diameter formed on the target surface, from which an intense evaporation of boron
occurred. In this case, the plasma density increased to approximately 1.6 × 1011 cm−3. The
fraction of boron ions in this plasma, evaluated by the height of its ion peaks in the spectrometer
signals, was approximately 75%, and their total density in the plasma was about 1.2 × 1011

cm−3. The ratio of 10B+ to 11B+ isotopes in the plasma at a beam power of 1 kW was 1:4, which
is close to their natural ratio. Thus, the concentrations of 10B+ and 11B+ in the beam plasma were
2.4× 1010 and 9.6× 1010 cm−3, respectively.

Because boron coatings are formed from two-phase states, namely, plasma and boron
vapor, it is important to know the contribution of each phase in coating formation. Because
the thickness, elemental composition, and specific density of coatings were determined
using independent methods, one can demonstrate that to form such boron coatings, the
flux density of atomic and ion boron onto the sample surface must be approximately
9.6 × 1016 cm−2 s−1. The speed of boron isotope ions of mass Mi that leave the beam
plasma with plasma electron temperature Te, in eV units, is determined by the ambipolar
speed of sound vi =

√
eTe/Mi. At Te ≈ 3 eV, this speed is v10B = 5.4 × 105 cm/s for

10B+ ions and v11B = 5.2 × 105 cm/s for 11B+ ions. Because only singly charged ions
were registered in the beam plasma, the flux density of 10B+ ions on the sample surface
equaled the product of their density in the plasma and their speed from plasma, which is
1.3× 1016 cm−2 s−1. This value was 5.0× 1016 cm−2 s−1 for the 11B+ isotope. Thus, the flux
density of all boron ions on the sample surface was around 6.3× 1016 cm−2 s−1. Comparing
this value with the above estimate of the total boron particle flux both in ionized and neutral
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states, it was concluded that the contribution of the plasma phase to the formation of boron
coatings is about 65 at.%, which exceeds the 35 at.% contribution of boron vapor.

Figure 3 shows the scanning electron microscopy (SEM) images of the surfaces of
the obtained boron coatings. The coatings do not contain any defects, pores, or cracks,
indicative of coating uniformity and smoothness. The boron coating deposited without
the electron beam comprises small tightly packed segments 30–150 nm in size, while
that deposited with a pulsed electron beam (regime 1) has a structure with discernible
round hills on the surface. The characteristic side of the hill base in the image field is
approximately 1–3 µm.
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Figure 3. Scanning electron microscopy (SEM) images of boron coatings on sample surfaces (a) after
deposition on the substrate and (b) after processing with electron beam pulses in regime 1 at a peak
current of 20 A and an electron energy of 8 keV.

Figure 4a shows the elemental composition of the coating, comprising 95.5 at.% boron
with small admixtures of carbon (3.7 at.%) and oxygen (0.9 at.%). Analysis of the elemental
composition of coatings modified and unmodified by the electron beam showed that beam
treatment did not practically change the coating composition. The carbon content in the
coating is caused by the presence of this element in the substrate material (steel A284).
Figure 4b,c shows the coating profiles measured using a Solver P47 SEM before and after
treatment with a pulsed electron beam in regime 2. For a better visual perception of the
beam effect, the scale of the height axes in Figure 4b,c is two orders of magnitude smaller
than the scales of width and length, and the columnar structure of the surface in Figure 4c
is actually a landscape of gently sloping hills. Hence, the deposition of coating forms a
relatively smooth surface with nonuniformities a few fractions of a micrometer in size,
while subsequent treatment by a pulsed electron beam leads to the formation of gentle
hills with a height of up to 1.5 µm. In contrast to SEM, the use of atomic force microscopy
(AFM) to determine the surface relief may screen small nonuniformities adjacent to the
larger ones with a larger height. Thus, Figure 4b shows mostly hills with a base diameter
of 1–10 µm although their structure qualitatively matches the surface structure in Figure 3b
with discernible smaller hills. The change in energy during the pulse action on the coating
does not significantly affect the picture of the surface; however, the size and height of the
hills in regime 1 are approximately 20% greater than those in regime 2.
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Figure 4. (a) Elemental composition of the obtained coatings. The surface profiles of (b) boron-based
coating and (c) boron-based coating after pulse modification in regime 2 measured under a Solver
P47 atomic force microscope.

Accelerated electrons in a solid are decelerated in the layer of their maximal range
of penetration. Based on previous works [32], this range Re in micron units at an electron
beam energy Ee = 0.5–10 keV in a solid with density ρ (in g/cm3) with an accuracy of better
than 15% can be estimated by

Re = 9× 10−2 ρ−0.8E1.3
e (1)

For boron coating ρ ≈ 2.2 g/cm3 and electron beam energy Ee = 8 keV, the value of Re
is 0.72 µm for regime 1, while for Ee = 6 keV, the Re value is 0.49 µm for regime 2. Thus, for
both regimes, the electron energy is released in the layer whose thickness is less than that
of the boron coating.

The dependence of energy density distribution Q absorbed from the beam of acceler-
ated electrons by the boron coating at depth x can be determined by [33]

Q(x) = (Ee/Re)(1− x/Re)
5/4(3− 2 exp(−(Z + 8/4)× (x/Re))(jeτe) (2)

where je and τe are the densities of the electron beam current on the sample surface and the
pulse duration, respectively, and Z = 5 is the number of electrons in a boron atom. When
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evaluating (x), it is convenient to substitute in the first factor in Expression (2), the electron
energy Ee in eV and Re in cm, and the remaining factors should use Re in µm. In this case,
the Q value is expressed in J/cm3 and the depth x is expressed in µm. The dependences
of the energy density distribution for the electron beam in both regime 1 and regime 2 are
shown in Figure 5.
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Figure 5. Distribution of the energy density Q absorbed by the boron coating from the beam of
accelerated electrons versus depth for two regimes. The beam parameters are τe = 500 ms, regime 1:
je =0.5 A/cm2, Ee = 8 keV, regime 2: je =0.75 A/cm2, Ee = 6 keV.

The boron temperature profile with depth x will approximately match the profile of
Q(x), provided that the condition

√
ατe � Re holds true, where α ≈ 0.1 cm2/s is the

thermal diffusivity of the boron coating. At experimental electron energies, this condition
is strictly satisfied for submicrosecond electron beam pulses, when the heat due to the
energy imparted from the beam at a depth Re does not have time to propagate deep
into the surface of the solid. However, even though this condition is not satisfied in our
experimental conditions due to much longer pulse width (hundreds of microseconds),
anyway, as follows from the dependences in Figure 5, about 70% of the released energy
of accelerated electrons and, therefore, the most intense heating of the coating material
occurs at a depth of 0.5Re, which corresponds to 17% of the overall coating thickness at
Ee = 8 keV and about 12% at Ee = 6 keV. That means that a significant part of electron beam
energy can be deposited even at much longer pulses. Moreover, because the experimental
processing of coatings was performed using a series of 300 pulses for 150 s, it is possible
that the gradual heating of the coating surface during this period of time took place.
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The surface hilly structure appeared due to the beam action, which is apparently
related to cyclic temperature effects. The energy density of the pulsed electron beam on the
coating surface is about 2 J/cm2 per pulse, while the thermal conductivity coefficient of
boron is an order of magnitude less than those of the majority of metals. Thus, the surface
of the boron coating at the depth with the maximum release of the beam energy can heat
up to a temperature at which the thin surface layer of the coating begins to melt. A similar
relief of the surface of TiNi alloy was observed during repeated treatment by an electron
beam with an electron energy of 20 keV and a beam power per pulse of 4 J/cm2 [34]. Under
the beam action, a hilly structure was formed; the number of pulses (128) in this case was
comparable to that in our experiments (300 pulses). From a prior study [32], such surface
relief may be associated with the development of instabilities on the melt/vapor phase
interface under repeated action of the electron beam and cyclic melting and cooling of a thin
surface layer. Similar effects seem to take place in our case too. Another thing that can be
noted is that the pulsed electron beam treatment may have an effect on the structure of the
deposited coating at different depths. Although the study of such effects is an interesting
task, it was outside of the scope of the current research focused on the study of the surface
properties of the coating.

The structural phase properties of boron coatings were studied using synchrotron
radiation on beamline 2 of the VEPP-3 electron storage ring at the Anomalous Scattering
station. In the X-ray diffraction patterns of boron coatings treated and untreated with the
electron beam, reflections of low intensity and considerable width are observed. Among
them, there are two remarkable reflections that correspond to interplanar distances of 0.27
and 0.24 nm (areas 1, 2, 3, and 4 in the inset of Figure 6). These reflections are associated with
ultrafine crystals of nonstoichiometric boron nitride. Notably, these reflections decrease for
regime 2, which may be indicative of the partial destruction of crystals by the beam with
a high power density. However, the X-ray patterns do not show any reflections that can
be associated with the crystal structure of boron, as is the case for the hexagonal crystal
structure of the zirconium alloy. Thus, the hilly surface of the boron coating after the
beam treatment does not exhibit a pronounced inner crystalline structure, and the hills
themselves are not specific crystalline formations. This fact again verifies the nature of their
formation as a result of repeated melting and cooling of the coating surface at the depth of
the maximum beam energy release during the cyclic beam action.

Figure 7 shows the microhardness results of a steel substrate, a crystalline boron
target, boron coatings, and boron coatings treated with a pulsed electron beam (regime 1,
regime 2). The microhardness of the crystalline boron target is approximately three times
less than that of the boron coating. This is apparently due to the density of the target
(1.2 g/cm3) being lower than the measured density of the coating (2.2 g/cm3). The micro-
hardness of the boron coating is 12 ± 0.35 GPa, while additional surface modification with
a pulsed beam further increases the microhardness, up to 15.5 ± 0.45 GPa.

The adhesion measurements of the samples with boron-based coatings showed that
the pulsed beam treatment of coatings did not affect the adhesion value between the boron
coating and the sample surface. This is because the beam mainly affected the surface layers
of the coating as adhesion is the interface property of the coating–substrate boundary on
which the effect of beam treatment was weak. Figure 8 shows the typical micrographs
of the surface under different loads F exerted on a diamond indenter with a radius of
100 µm. As the pressure on the indenter increases, it begins to submerge into the coating.
This is accompanied by an increase in the coefficient of friction, indicating the growing
resistance of the sample to the indenter movement. At a load of 6 N exerted on the coating,
the coefficient of friction begins to fluctuate, which is indicative of the destruction of the
surface structure. In the micrograph of the 6 N load, the start of the local film peeling can
be seen. A further increase in the load on the indenter leads to increased fluctuations in the
coefficient of friction and in the submergence depth, which is indicative of the film peeling
off the substrate. The maximum load on the indenter was 30 N; nevertheless, it sufficed to
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completely peel off the coating. Traces of the coating remained on the substrate surface.
Thus, it can be estimated that the specific peel work of the coating was about 100 J/m2.

The wear resistance of the A284 steel samples with deposited boron coatings and the
samples with the same coatings modified by a pulsed electron beam was also measured.
The wear rate of the original sample was 6× 10−4 mm3/N·m, while that of the boron-based
coating sample was significantly lower and equal to 0.8 × 10−4 mm3/N·m. The wear rate
of the coating modified by the pulsed electron beam was 1.3 × 10−4 mm3/N·m, lower than
that for the uncoated samples but higher than that for the boron coating without beam
treatment. Thus, the boron-based coating increases the surface wear resistance by a factor
of 7.5, but the coating modification by a pulsed electron beam rolls it back by about 60%.
Meanwhile, even a surface with boron coating modified by the beam has a wear resistance
4.5 times higher than that without coating. In our opinion, the reduced wear resistance
of the boron coating after modification is associated with an increase in the coefficient of
friction due to the formation of the surface hilly structure.
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indenter with a radius of 100 µm (regime 2), taken with an optical microscope; indenter loads: 1–3 N;
2–6 N; 3–9 N; 4–30 N.

Additionally, a corrosion rapid test was performed. Uncoated and boron-coated steel
samples were placed in 25 wt.% saturated aqueous NaCl solution and exposed at 70 ◦C for
200 h. We tested 2 samples without coatings and 10 samples with deposited boron coatings,
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including those treated with a pulsed electron beam. Uncoated samples bore traces of
pitting corrosion, distinctly seen in Figure 9a. Signs of corrosion were not noticeable on the
surface of all the boron-coated samples. As an example, we include here pictures of the
sample surface with boron coating treated with a pulsed electron beam (regime 2) and the
sample kept in the solution. This verifies the high corrosion resistance of boron coatings
and the absence of slits and cracks in them.
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4. Conclusions

Electron-beam evaporation was used on boron targets to fabricate coatings on the
surface of A284 steel and ZrNb1 alloy with a thickness of a few microns and a uniform
structure. The deposition rate of boron coating at a power of 1 kW of a continuous beam of
a fore-vacuum source was about 0.5 µm/min. The coating density of 2.2 g/cm3 was close to
the density of crystalline boron. On comparing the data on the mass-to-charge composition,
beam plasma density, and coating parameters, it was concluded that the contribution of the
plasma phase to the growth of the boron coating exceeded that of the vapor phase.

The boron coatings were modified by a pulsed beam with electron energies of 8 and
6 keV and powers of 2 and 2.2 J/cm2 for a duration of 300 pulses at a repetition rate of 2 p.p.s.
Using SEM and AFM, it was determined that such modifications yielded a considerable
change in the surface morphology, forming a hilly structure with a characteristic size of
the hill base of 1–10 µm and a height of 0.2–1.5 µm. Analysis of the absorbed beam energy
showed that at a boron coating thickness of about 2 µm, 70% of the electron energy was
released at a depth constituting less than 20% of this thickness. Structural phase analysis of
coatings using synchrotron radiation showed that boron, both in modified and unmodified
coatings, was present in the form of amorphous or ultrafine phases. Based on the bulk of
the data obtained, it was concluded that the formation of the hilly surface structure was not
caused by crystallization due to the electron beam but was associated with cyclic melting
and cooling of the surface under the action of repetitive electron beam pulses.

Research on mechanical properties of the boron coatings showed that modification
of its surface by the electron beam improved the coating hardness from 12 ± 0.35 to
15.5 ± 0.45 GPa. Based on the study of the coating–surface adhesion, it was shown that
the specific peel work of the coating was about 100 J/m2. The measured wear resistance of
boron coatings was of the order of 10−4 mm3/N·m, which exceeded the wear resistance of
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the A284 steel substrate manyfold. Based on the tests conducted in saturated salt solution,
we demonstrated that the deposited coatings have anti-corrosive properties.
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