
Citation: Bykovsky, A.Y.; Vasiliev,

N.A. Data Verification in the Agent,

Combining Blockchain and Quantum

Keys by Means of Multiple-Valued

Logic. Appl. Syst. Innov. 2023, 6, 51.

https://doi.org/10.3390/asi6020051

Academic Editor: Subhas

Mukhopadhyay

Received: 6 March 2023

Revised: 25 March 2023

Accepted: 28 March 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Data Verification in the Agent, Combining Blockchain and
Quantum Keys by Means of Multiple-Valued Logic
Alexey Yu. Bykovsky * and Nikolay A. Vasiliev

P.N. Lebedev Physical Institute RAS, Leninsky pr. 53, 119991 Moscow, Russia
* Correspondence: bykovskiyay@lebedev.ru

Abstract: Network control of autonomous robotic devices involves a vast number of secured data cod-
ing, verification, and identification procedures to provide reliable work of distant agents. Blockchain
scheme provides here the model of the extended linked list for the verification of critical data, ap-
proved by quasi-random hash values assigned by external network nodes. And quantum lines are
the source of high-quality quasi-random keys used as hash values. Discrete multiple-valued logic in
such procedures is a simple and flexible tool to form the logic linked list, combining critical internal
parameters of agents with data taken from external nodes. Such combination enlarges the set of
possible schemes for data protection from illegal modifications and for data restoration.

Keywords: data verification; agent; multiple-valued logic; blockchain; linked list; quantum key

1. Introduction

Modern concepts of communication networks include such collective robotic compo-
nents as autonomous vehicles (or Internet of Vehicles, IoV) [1,2], logistics [3], industrial
machinery [4], and Internet of Things (IoT) [5,6]. As autonomous agents are based on tradi-
tional microprocessors and embedded platforms [7], then attacks of eavesdroppers are quite
possible and efficient distant monitoring plays critical role. Discussions of possible methods
for distant data verification has included special network protocols for mobile agents [8–10],
quantum cryptography [11,12], schemes of distributed computing [13], blockchain (BC)
methods [14–16], position-based cryptography [17], and non-binary k-valued discrete
logic [18]. Interest to blockchain technologies for network agents can be attributed to the
problem of low availability of trusted network nodes for mass robotics, as trusted systems
for communication networks discussed e.g., in [19] need special equipment, personnel,
and intensive monitoring procedures. At the same time, the integration of fiber–optics
and wireless quantum key distribution (QKD) lines [12,20] in communication networks
provides new possibilities to raise security, although QKD is a complicated and expensive
tool, which has its specific vulnerabilities and can be suppressed by intensive optical noise.
QKD schemes and quantum random number generators (QRNG) [21] are the high quality
sources of one-time quasi-random keys, which provide the base for various data protection
schemes. That is why they are also expected to raise the security level of autonomous
robotic systems based on artificial intellect (AI) methods [22], which are strongly associated
with the concept of collectives of intellectual agents or multi-agent systems (MAS) [23]. In
Figure 1 a local network of hardware agents 0, 1, . . . is a part of nodes of the communication
network, and can include mobile and static agents. As autonomous agents should be able
to work without permanent personnel control due to the imitation of human abilities by
means of AI algorithms [19], various verification procedures are quite actual for them,
including schemes based on BC [24–26]. However, data protection of internal subsystems
in autonomous agents is a separate problem, as an agent, see Figure 1 to the left, may
include subsystems with different throughput, software and hardware complexity [27]. As
a result, hardware platform for autonomous agents can be very complicated [27,28], and
model debugging and data verification is the difficult problem.

Appl. Syst. Innov. 2023, 6, 51. https://doi.org/10.3390/asi6020051 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi6020051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://doi.org/10.3390/asi6020051
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi6020051?type=check_update&version=2

Appl. Syst. Innov. 2023, 6, 51 2 of 33

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 2 of 35

and hardware complexity [27]. As a result, hardware platform for autonomous agents can

be very complicated [27,28], and model debugging and data verification is the difficult

problem.

Figure 1. Communication network includes usual stationary nodes and autonomous mobile robotic

agents 0, 1,…, which are the participants of a multi-agent system (MAS) and can follow some given

route like agent 1. Nodes called checkpoints are to approve identity of the mobile agent and to give

access to a requested service. Such nodes optionally may be participants of the trusted local network.

For the position–based cryptography task [17] and agents following the given route,

verification procedures [29] should combine authentication, identification and secret cod-

ing. It is necessary to check identity and access rights of the mobile agent by verification

of parols, pin-codes, licenses, digital images, and prehistory of carried out agent’s tasks,

what involves either the design of trusted check-points [29] or needs the estimation of

trust models [30,31]. Besides this, schemes based on BC principles [32–34] were already

designed for the collective verification of data in energy power networks, as static network

agents of dishonest users can declare false data.

1.1. Modern Platforms for Robotics Positioning and Communications

Localization or positioning was considered in reviews [35,36] as a process to obtain

tracked objects information concerning multiple reference points within a predetermined

area, i.e., it is a procedure to identify the position of mobile/fixed devices, including

smartphones, drones, watch, beacons, and vehicles using some fixed nodes and mobile

computing devices. Global navigation satellite system (GNSS) in such tasks can use sig-

nals produced by global positioning system (GPS), global navigation satellite system

(GLONASS), Galileo and Beidou. As the GPS device loses substantial power in an indoor

setting due to signal attenuation, such systems cannot be used for indoor localization of

devices. Alternative possibilities refer to ZigBee, Bluetooth, Radio Frequency Identifica-

tion (RFID), cellular networks (including LTE and 5G), ultrawideband (UWB), frequency

modulation (FM), inertial sensors and Wi-Fi. Some hybrid approaches are also possible.

Most common techniques for localization include time-of-flight (TOF) measurements and

received signal strength indicator (RSSI) signal measurements, utilizing the distance be-

tween known fixed stations and the target device, or fingerprint-based location estima-

tion.

Vehicular ad-hoc network (VANET) [37] was based on the link-layer communication

(IEEE 802.11p) and has included the data exchange between the high-speed vehicles in the

licensed band of 5.9 GHz (5.850–5.925 GHz). VANET differs from other ad-hoc networks

by high mobility, dynamic topology, frequent data exchange, unbounded network size,

Figure 1. Communication network includes usual stationary nodes and autonomous mobile robotic
agents 0, 1, . . . , which are the participants of a multi-agent system (MAS) and can follow some given
route like agent 1. Nodes called checkpoints are to approve identity of the mobile agent and to give
access to a requested service. Such nodes optionally may be participants of the trusted local network.

For the position–based cryptography task [17] and agents following the given route,
verification procedures [29] should combine authentication, identification and secret coding.
It is necessary to check identity and access rights of the mobile agent by verification of
parols, pin-codes, licenses, digital images, and prehistory of carried out agent’s tasks,
what involves either the design of trusted check-points [29] or needs the estimation of
trust models [30,31]. Besides this, schemes based on BC principles [32–34] were already
designed for the collective verification of data in energy power networks, as static network
agents of dishonest users can declare false data.

1.1. Modern Platforms for Robotics Positioning and Communications

Localization or positioning was considered in reviews [35,36] as a process to obtain
tracked objects information concerning multiple reference points within a predetermined
area, i.e., it is a procedure to identify the position of mobile/fixed devices, including
smartphones, drones, watch, beacons, and vehicles using some fixed nodes and mobile
computing devices. Global navigation satellite system (GNSS) in such tasks can use
signals produced by global positioning system (GPS), global navigation satellite system
(GLONASS), Galileo and Beidou. As the GPS device loses substantial power in an indoor
setting due to signal attenuation, such systems cannot be used for indoor localization of
devices. Alternative possibilities refer to ZigBee, Bluetooth, Radio Frequency Identification
(RFID), cellular networks (including LTE and 5G), ultrawideband (UWB), frequency modu-
lation (FM), inertial sensors and Wi-Fi. Some hybrid approaches are also possible. Most
common techniques for localization include time-of-flight (TOF) measurements and re-
ceived signal strength indicator (RSSI) signal measurements, utilizing the distance between
known fixed stations and the target device, or fingerprint-based location estimation.

Vehicular ad-hoc network (VANET) [37] was based on the link-layer communication
(IEEE 802.11p) and has included the data exchange between the high-speed vehicles in the
licensed band of 5.9 GHz (5.850–5.925 GHz). VANET differs from other ad-hoc networks
by high mobility, dynamic topology, frequent data exchange, unbounded network size,
unlimited battery power, and predictable movement (which happens only on the road). It
may use two types of nodes: (1) mobile nodes attached to onboard units, and (2) static nodes
like traffic lamp posts, signboards, and roadside units. This network of mobile agents has
provided connections vehicle-to-vehicle, vehicle-to-infrastructure, and infrastructure-to-

Appl. Syst. Innov. 2023, 6, 51 3 of 33

infrastructure. Used performance metrics were hop length, minimum energy, link lifetime,
route breakage, and bandwidth.

Very actively investigated field of autonomous robotics refers to flying unmanned
aerial systems (UAVs). The authors of the review [38] have analyzed flying ad-hoc net-
works (FANETs), which can be deployed either individually or may be incorporated into
traditional wireless local area networks (WLANs). Its main application fields include search
and rescue, mailing and delivery, traffic monitoring, precision agriculture, and surveillance
applications. Unmanned service of FANETs is actual in case of natural disasters, hazardous
gas intrusions, wildfires, avalanches, and search of missing persons. As routing is the most
challenging job in FANETs due to such attributes of UAVs, as high mobility, 3D movement,
and rapid topology changes, then a predictive method should be used for path planning
and navigation in order to prevent possible collisions and to ensure the safety of the FANET.
However, the data aggregated by a small UAV can be too large to be processed and stored
onboard [39]. Small UAVs in FANETs also suffer from security vulnerabilities, as their lim-
ited storage and computing capabilities do not allow to perform computational-intensive
tasks locally [40,41]. An intruder intending to attack the network UAV [38] can transmit
massive reservation requests, eavesdrop instructions, and modify the information. UAVs
connected to Wi-Fi are considered as less secured in comparison with cellular networks,
due to unreliable links and poor security methods. False transmitter can be attached to a
UAV and may send fake instructions, in addition to this UAVs can become a luring target
for physical attacks [39,41]. In such instances, an attacker can dissemble the captured UAV
to get access to internal data via interfaces and USB ports.

GPS spoofing, see e.g., [38] is another major security threat for small UAVs. An
adversary can transmit fake GPS signals to an intended UAV with enlarged power than the
actual GPS signals. Thus, localization system must verify actual positions of neighboring
UAVs and associated distances in order to avoid the GPS spoofing attacks.

The detection and identification of vulnerabilities for UAVs refers to popular short-
range wireless networking technologies like Wi-Fi (IEEE 802.11), ZigBee (IEEE 802.15.4),
Bluetooth (IEEE 802.15.1), LoRaWAN, and Sigfox [38,42], differing by the range and the
throughput for licensed or unlicensed spectrum types. Wi-Fi provides a set of specifications
for radio bands of 2.4, 3.6, 5, and 60 GHz. IEEE 802.11a/b/g/n/ac is the first choice to
provide the transmission of medium size video and images for distances of approximately
100 m, but unlicensed versions can provide up to few hundred meters. A multi-hop
networking scheme may expand the transmission range to kilometers. An alternative to
Wi-Fi is the use of low-cost and low-power methods like Bluetooth and ZigBee. Bluetooth
(IEE 802.15.1) is a low cost and low power variant, which operates in an unlicensed band
of 2.4 GHz with a contact range of 10 to 100 m and uses a distributed frequency-hopping
transmission spectrum.

Licensed 5G and 6G generation technologies are expected [38] to offer improved data
rates and coverages in linking of FANETs, to provide high device mobility and integration
of a massive number of UAVs in an ultra-reliable way, to serve multi-access edge computing,
and to incorporate cloud computing. Low-power wide area networks (LPWAN) can be
another good option for UAVs which consumes less energy and offers a wide range of
connectivity. LPWAN allows transmitting data for a longer duration of time and without
much loss of energy resources. For IoT users, LoRaWAN [43] has been designed as a
technology for the management of low energy consumption transmissions, using a novel
network paradigm for bidirectional connectivity, localization, and mobility management. It
provides a new framework for LPWAN execution, providing long-range communications
in the band 868/900 MHz with data rates ranging from 0.3 kbps to 50 kbps and network
coverage from 5 to 15 km. Sigfox, similar to LoRaWAN, is a low-speed, but low-power
and long-range solution for UAVs, it supports open-sight up to 30 km of range in the same
band as LoRaWAN.

Another modern trend for enhancement of data privacy and integrity in UAV com-
munication networks is the aerial blockchain, especially supported by 5G and 6G [38,44].

Appl. Syst. Innov. 2023, 6, 51 4 of 33

Blockchain-based software for UAV is expected to provide flexibility, dynamics, and on-
the-fly decision capabilities. UAVs can be integrated potentially into the Internet network,
providing access to cloud computing and web technologies for the realization of smart
IoT systems.

1.2. Blockchain-Based Verification Schemes for Network Agents

Principally, methods of data verification for agents and MAS can include various
traditional technologies [12], including parity bits checking, cryptography algorithms and
biometrics, as well as exhausted methods of model checking [45], temporal logic and
Kripke diagrams [46,47]. Unfortunately, known BC schemes [14,16,32] designed for crypto
currencies mining scarcely can be directly used for data protection of robotic agents and
their internal subsystems, mainly due to energy expenses, high cost, limited throughput
of microprocessors, and incompatibility of specialized technical tasks of robots with basic
Proof-of-Work and less expensive Proof-of-Sake schemes [48,49]. Respectively, the design
of secured and reliable agent’s devices for mass robotics, IoT, and IoV stimulates the
search of more simple and flexible verification schemes for distant monitoring of static
and mobile agent’s behavior. It is substantial, that BC-based schemes for trust parameters
estimation of stationary agents in power grid networks [32–34] has already demonstrated
the effectiveness of collective detection of dishonest user’s nodes by means of polling of
neighboring nodes and evaluation of the trust parameters by collaborating network nodes.

1.3. Multiple-Valued Logic for Data Verification Based on Blockchain Scheme

Multiple-valued logic (MVL) version of the linked list [19] has used partially the
BC scheme [14–16,32–34,48,49] and was aimed at data verification in case of faults. Such
method bases on original property of k-valued Allen-Givone algebra (AGA) [50] to aggre-
gate correctly arbitrary variables into logic functions, to form logic linked lists of entries,
and to obtain protective logic expressions, preventing from illegal modification of logic
product terms. It is substantial, that MVL-based linked list (MVLL) [19] can also model
quantum verification protocol of position-based cryptography [51], thus demonstrating
the possibility to combine quantum and classic verification procedures. Further research
of AGA model [19,29] was also motivated by some earlier papers like [52,53] and e.g., by
MVL scheme [54] based on lattice models and the theory of sets.

MVLL [19] is the model for distributed or collective data storage of entries e =
{

e1, . . . , ep
}

,
containing sets of p critical parameters of the mobile or the stationary agent, verified by
collaborating agents and network nodes, participating in the collective protocol. Here
the difference between collaborating agents and nodes mainly refers to levels of trust
assigned to interacting devices. e.g., for route verification task trusted check points always
should be assigned the highest trust and priority level, as other collaborating network
nodes are motivated to take part in the joint protocol by mutual service or fee, and should
be appreciated by lower trust values. But before the detailed design of trust estimation
schemes for mobile robots one should work out adequate verification procedures involving
all possible resources of agents and network nodes.

1.4. Internal and External Data Verification Procedures of the Network Agent

Distant control of autonomous robotic agents involves at least two types of tasks
greatly differing by the time response. Such basic AI tasks as e.g., logistics, building work,
following the route, interaction with check-points, takes long time intervals (days, weeks,
months etc.) and the time moment for the end of task can’t always be predicted precisely.
Also verification procedures for digital licenses and documents may be requested optionally
by other participants of the network. In contrast to this, the second type of control processes
refers to internal systems of the agent, which typically use rigid short time work cycles (µs,
ms, s) [55] for control of numerous sensors and actuators. Thus, complex data verification
procedure of the autonomous agent should include both types of time processes. In order
to make verification data unpredictable for possible eavesdroppers, verified parameters

Appl. Syst. Innov. 2023, 6, 51 5 of 33

should be masked or even secretly coded by one-time quasi-random keys, traditionally
used in the most reliable one-time cipher pad method of secret coding [56], which is the
final aim of any QKD line realization [12]. For internal systems such quasi-random codes
also can be done one-time and actual only for short time intervals, i.e., they should be
renewed for a selected or every new work cycle. Then quasi-random keys are preferably
to be generated by either a QKD line [20], or by a quantum random number generator
(QRNG) [21] and random oracle [57] for simplified and less protected variants. Used for
verification hash values from external and internal components of the agent are to be mixed
with technical parameters written in the distributed linked list. But in contrast to blockchain
schemes in cryptocurrency mining [25,26,48,49] and software bots for stock trading [58],
autonomous hardware robots can provide very limited resources for additional verification
as they are initially intended to carry out highly specialized work. Thus, the possibility of
data verification inside the agent strongly depends on its internal structure of subsystems,
whose most typical examples are listed in Figure 1 to the left. Here the simple way to unite
various internal and external verification schemes in one agent seems to be based on the
earlier proposed MVLL model of the distributed ledger or the linked list [19], which is
to be additionally approved by some internal and external technical parameters besides
externally assigned hash values.

1.5. Possible Sources of Quasi-Random Keys for Hashing Procedures

As any computerized device the distant autonomous agent can be damaged by a
physical impact on its embedded computer, or can be infected by a computer virus [12];
possible attacks [59,60] can be also aimed at internal data buses, memory and service devices.
These hardships makes actual involvement of QKD lines, as the interest to quantum keys
for wireless network robotics bases on the principles of modern cryptography, according to
which the well-known Vernam code or close to it one-time cipher pad method [56] with
random one-time keys is the most reliable cryptography scheme. Due to the non-cloning
theorem [61] QKD lines are in fact the way to exclude long-range distant storage of secret
keys by means of their quick enough generation for every new communication session.
But as the throughput of quantum lines is not enough for massive stream secret coding,
and its length is limited by ~100 km [12], this method has now mainly nice applications, its
drawbacks are the high cost and the possibility of suppression by intensive noise, what
is especially actual for wireless robotics communications. Also QKD line itself can be
vulnerable to some specific types of quantum and classical attacks [12], and the access of
non-loyal personnel to agent’s equipment can cause data leakages. Besides this, attempts
to design purely quantum verification schemes for position-based cryptography in mobile
systems [17,62] has given only partial improvement and unconditional security was not still
obtained, as well as quantum bit commitment schemes still were not realized. Also it is the
too expensive and complicated tool to be used in internal data buses in the agent. However,
the research of QKD lines [20] has drawn conjugated investigations of quantum random
number generators (QRNG) [21] and the position-based cryptography (PBC) scheme [57],
involving random oracle model [17] based on memory device and MVL function learned
by a QRNG. Such method was adapted for the verification of visits of mobile agents to
check-points, conjugated with the quantum protocol by D. Unruh [51] using entangled
photon pairs. The principal possibility to apply random oracle as a more simple alternative
source of quasi-random keys for MVLL is a way to design new verification procedures
and to avoid partially the use of trusted checkpoints. However, before the design of future
schemes to estimate the trust level of mobile agents and static check-points, one should
work out effective non-quantum methods to keep reliably critical data in distant agents
and consequently to verify data written in them, as well as to check prehistory of agent’s
work activity and passed routes.

Appl. Syst. Innov. 2023, 6, 51 6 of 33

1.6. Heterogeneous Logic Models in Modern Controllers

The motive to apply heterogeneous logic models in the agent [18,19] and to combine
Boolean and MVL logic in it is determined by the fact, that verification procedures in a
robotic agent refers not only to PC’s microprocessors, but also to controller devices based on
the closed loop control and equipped with own microprocessors [55] with lower through-
put. Traditional types of such devices are mostly represented by proportional-integral-
differential (PID) [63] and fuzzy logic controllers [64–66]. However, modern investigations
reveal the stable trend to further integration of PID and fuzzy logic in controllers, see
e.g., [64]; respectively, this paper has demonstrated the actuality of heterogeneous logic
models not only for agents level [18], but also for the level of internal controllers. The so-
called fuzzy-fractional order-proportional-integral-differential controller (FFOPID) in [64]
has provided improved non-linear characteristics modelled by non-linear polynomials.
Fuzzy logic in this FFOPID scheme has provided fast approximate computing and sim-
ple learning of the system, but has needed correct emulation of specific operators of the
fuzzy logic.

1.7. The Goal of the Paper

The final goal of the proposed further extended version of the MVLL [19] is to combine
more complicated and intellectual robotic data procession procedures with BC-based
schemes, secured from illegal modifications and capable for self-checks and self-restoration
in case of fails and faults. The scheme disclosed in this paper is the step to approve critical
task parameters and control signals of internal subsystems of the agent by external network
nodes. Such distributed storage of verification data is necessary in cases, when data taken
from different sources contradict each other and need detailed verification. Then the
sequential matching of data copies extracted from external and internal backups can help
to restore reliable work and avoid blocking of the robot.

The aim of the proposed paper is to design the new data verification scheme for mobile
agents, complementing earlier proposed version of the MVLL by the documented data
exchange between external nodes and internal data storages. The expected advantage here
is the diversity of verification methods in case of faults and errors.

2. Methods: MVL Linked List as the Data Protection Model

MVLL method [19] bases on discrete -valued logic and partially uses the idea of mixing
data blocks in BC schemes by combining quasi-random hash values with real values of
variables in the last and in one of previously formed entries.

2.1. Logic Functions of the Multiple-Valued Allen-Givone Algebra

Detailed description of basic calculations within discrete k-valued Allen-Givone alge-
bra (AGA) [50] was given in, e.g., [18,19]. The choice of this version of logic calculus was
determined by the simplicity of its basic operators and the flexibility of design of multi-
parametrical functions. In contrast to binary Boolean logic, AGA function y = f (x1, . . . , xn)
can be given by n input variables x1, . . . , xn and one output variable y, which may be
assigned k discrete truth levels, i.e., x1, x2 , . . . , xn , y L = {0, 1, . . . , k− 1}. The complete
set of its logic operators [50]

< 0, 1, . . . , k− 1, X(a, b), ?,+ > (1)

guarantees the possibility to represent arbitrary function y = f (x1, . . . , xn) as some combi-
nation of logic constants 0, 1, . . . , k− 1, binary operators Min(xi, xj) marked by (?) and
Max(xi, xj) marked by (+); also unary operator X(a, b) is being used, which is called Literal.
Operators Min and Max, respectively, choose either the minimal value in the pair xi and xj,
or the maximal one. Literal is defined as Exp. (2)

X(a, b) =
{

0, i f b < x < a
k− 1, i f a ≤ x ≤ b

(2)

Appl. Syst. Innov. 2023, 6, 51 7 of 33

where for any X(a, b) always b ≥ a, and a, b ∈ L = {0, 1, . . . , k− 1}.
For verification procedures the advantage of AGA [18,19] is namely the guaranteed

possibility to obtain correct logic expression for arbitrarily given data, where the only
possible algorithm for calculation of MVL functions excludes alternative illegal procedures
for eavesdroppers. The drawback of such functions is some unpredictability of calculation
time for unknown sets of data, as the minimization for MVL is very wasteful [50].

MVL truth table [50], see Table 1, partially resembles the Boolean ones, but contains
much more rows whose number attains kn−1, where k—is the number of discrete logic
levels, and n is the number of input variables. If one has composed MVL truth table, then
every its row has equivalent logic expression written to the right of Table 1. The column for
output variable F(x1, . . . , xn) should be arbitrarily filled in by logic constants from the set
C = {0, 1, . . . , k− 1}. Respectively, if constant F is 0, then the product term of this row is
also equal to 0. Note that Literal operators to the right to Table 1 includes equal values a
and b.

Table 1. Truth table of a AGA function. Equivalent product term for every row with nonzero output
value) is given to the right.

Nrow
Input Variables Output Variable

x1 x2 . . . xn−1 xn F(x1 . . . xn) Equivalent Product Terms:

0 0 0 . . . 0 0 F(0, 0, . . . , 0) F(0, 0, . . . , 0) ? X1(0, 0) ? X2(0, 0) ? . . . ? Xn(0, 0)
1 1 0 . . . 0 0 F(1, 0, . . . , 0) → F(1, 0, . . . , 0) ? X1(1, 1) ? X2(0, 0) ? . . . ? Xn(0, 0)

. .

kn − 1 k− 1 k− 1 . . . k− 1 k− 1 F(k− 1, . . . , k− 1)
F(k− 1, k− 1, . . . , k− 1) ? X1(k− 1, k− 1) ?

X2(k− 1, k− 1) ? . . . ? Xn(k− 1, k− 1)

Resulting Exp. (3) can be written as:

F(x1, . . . , xn) = F(0, 0, . . . , 0) ? X1(0, 0) ? . . . ? Xn(0, 0)+
+F(0, 0, . . . , 1) ? X1(1, 1) ? . . . ? Xn(0, 0)+

+F(k− 1, k− 1, . . . , k− 1) ? X1(k− 1, k− 1) ? . . . ? Xjn(k− 1, k− 1).
(3)

MVL minimization procedure by means of consensus method [40] involves transfor-
mation of parameters (a, b) in Literals and can shorten the number of product terms, but it
is a wasteful enough procedure, which bases on the subsuming of product terms and the
method of “don’t care states” [50]. One can find its detailes in [18].

If one use equivalent matrix representation of MVL function [29], which was formed
by data taken from the truth table (Table 1), then matrix C in exp. (4) will have only
one-column, and exp. (3) can be written as arrays

A =

 a11 . . . a1n
.

akn−1,1 . . . akn−1,n

,B =

 b11 . . . b1n
.

bkn−1,1 . . . bkn−1,n

, C =

 F(0, . . . , 0)
. . .

F(k− 1, . . . , k− 1)

, (4)

where bij ≥ aij, n—the number of input variables, k—the number of truth levels. Matrixes
Au and Bu in Exp. (4) define parameters a and b in Literals Xj(a, b). Due to very large
possible number of rows in the MVL truth table [50], the real system scarcely can use all
possible kn rows.

As MVL minimization by consensus method [50] for composed MVL function can
shorten the number of product terms and change parameters in matrixes A,B,C, it can hide
illegal modifications done in memory. In any way, all possible transformations of AGA
expressions are based on the subsuming property of MVL product terms [50].

Definition 1, cited from [50]. Product term r1 ? X1(a1, b1) ? . . . ? Xn(an, bn) subsumes another
product term r2 ? X1(c1, d1) ? . . . ? Xn(cn, dn), if and only if conditions (1) and (2) are true:

Appl. Syst. Innov. 2023, 6, 51 8 of 33

(1) r1 ≤ r2,
(2) ci ≤ ai ≤ bi ≤ di for allXi,i = 1, . . . , n.

For examplelogic expression taken for k = 256 truth levels
57 ∗ X1(24, 24) ∗ X2(127, 1275) ∗ X3(317, 331)+
+80 ∗ X1(24, 24) ∗ X2(1275, 1275) ∗ X3(317, 331) =
= 80 ∗ X1(2, 24) ∗ X2(1275, 1290) ∗ X3(317, 331) contains three product terms with

constants 57, 80. As according to condition (1) in Definition 1 relation 57 ≤ 80 is true, and
according to condition (2) ci = ai ≤ bi = di for all Xi, i = 1, 2, 3, respectively the first
product term (shown above) will subsume the second one and can be crossed out. That is
why data protection for AGA model need monitoring of the number of product terms and
values of parameters in matrixes A, B, C.

2.2. Possible Attacks Aimed at MVL Product Terms and the Role of Subsuming

As cheaters potentially can modify AGA formalisms written in the memory of the
agent, then all possible illegal modifications of MVL function are grouped in Table 2.

Table 2. Possible attacks aimed at MVL functions. (Abbrev. PT—tags product term).

N Attack Type Consequences, Scheme of Protection

1.

Adding of one new PT with
fake logic constant C∗ and
previously used real
parameters a, b.

(1) If C∗ ≥ C (e.g., 38 > 12), then

PTreal + PTf ake = 12 ∗ X1(2, 4) ∗ X2(75, 175) ∗ X3(31, 34) +
+38 ∗ X1(2, 4) ∗ X2(75, 175) ∗ X3(31, 34).

Result: Subsuming of the real PT by the fake one and incorrect logic values for real data
of variables x1, x2, x3.
Protection: Monitoring of the set of logic constants C for all PTs.

(2) If C∗ < C (e.g., 11 < 12), then

PTreal + PTf ake = 12 ∗ X1(2, 4) ∗ X2(75, 175) ∗ X3(31, 34)+

+11 ∗ X1(2, 4) ∗ X2(75, 175) ∗ X3(31, 34).
Result: Guaranteed subsuming of the fake PT by the real one. No danger!

2.

Adding of one new product
term (PT) with real constant
C and fake parameters
a∗, b∗.

PTreal + PTf ake = 12 ∗ X1(2, 4) ∗ X2(75, 175) ∗ X3(31, 34)+
+12 ∗ X1(2, 6) ∗ X2(75, 177) ∗ X3(31, 36).

Result: Subsuming of the real PT by the fake one, logic value 12 will be incorrectly
assigned to the widened set of values for variables x1, x2, x3, but not only to real ones.
Protection:

1. Method of blocking logic terms [19] for a∗, b∗ beyond the real band.
2. Monitoring of a set of of real parameters a, b.

3.

Adding of one new product
term with fake logic
constant C and fake values
a∗, b∗.

Result: Simultaneous impact of NNs 1 and 2 given above.
Protection:

1. Method of blocking logic terms for a∗, b∗ beyond the real band.
2. Monitoring of sets of real logic constants C and parameters a,b.

4.
Deleting of the PT, i.e.,
replacement of the logic
constant C by C∗ = 0 in PT.

Result: Deleting of the whole PT will cause the change in the overall number Npt of PTs
in the MVL function.
Protection: Monitoring of numbers: m of product terms, real logic constants C, and
parameters a, b.

Appl. Syst. Innov. 2023, 6, 51 9 of 33

Table 2. Cont.

N Attack Type Consequences, Scheme of Protection

5.

Replacement of the logic
constant C by fake C∗ 6= 0 in
some PT, parameters a, b are
real.

Result: Values of fake C* are assigned to correct values of a,b:
PTf ake = C∗ ∗ X1(2, 4) ∗ X2(75, 77) ∗ X3(31, 34).

Protection: Monitoring of sets of real constants C and parameters a, b.

6.
Replacement of real a, b by
fake ones a∗, b∗ in Literals
Xi(a, b) of one PT.

Result: Incorrect values of C are assigned to fake values.
Possible protection: Method of blocking logic terms for a∗, b∗ beyond the real band.

Product terms, subsumed after possible attacks are shown crossed out in Table 2.
The analysis of given schemes of attacks aimed at MVL formal expressions shows the
necessity to combine at least two basic schemes for data protection. Three types of attacks
(NNs 2,3,6 in the Table 2) can be protected by the earlier proposed method of blocking
product terms [19], describing all possible intermediate rows of the truth table located
between two given rows. However, other types of attacks 1,4,5 need methods to monitor
integrity of parameters of MVL functions. But here MVL version of BC-based schemes
gives the method to form the protected from modifications linked list with confirmation by
distributed external and internal parameters. Advantage of AGA functions calculations is
that they are based on logic primitives and always use the only possible algorithm, thus
they has no specific vulnerabilities for traditional attacks [12,18,19].

2.3. MVL Scheme of the Linked List

Principally, initial MVLL scheme [19] includes two protective tools:
(1) duplicating notation of the same message in the last and in the previous entries like

in BC schemes [25,26], and (2) the approval of data by quasi–random values of the hash
function, assigned by the set of external distant nodes. Any attempt to modify data in the
MVLL will need to modify at least two rows in the truth table of the linked list, approved
before by two sets of externally assigned hash values. That is why the first way to use
MVLL is to detect attacks 1,4,5 in Table 2 by comparison of entries, written in internal and
different external parts of the linked list. The second way is to use blocking terms [19]
preventing from 2,3,6, types of attacks.

In order to write the new entry e to MVLL [19], the mobile agent (called the prover in
route verification tasks [41]) declares the new entry to Q collaborating nodes (or verifiers)
by sequential mailing according to the list of participants of the protocol. First of them
assigns the time stamp t, and each of verifiers should assign its quasi-random hash value
h to the received entry e. These hash values are to be preliminary generated by QKD
lines and accumulated in nodes in order to provide maximal unpredictability of data.
One of assigned hash values should be used as the output value of the MVLL function,
confirming every entry in the MVLL. After the acquisition of external hash values, mobile
agent sends the complete set of data m, t, em = {e1,m, . . . , en,m}, and h =

{
h1 , . . . , hQ

}
to

external participants (i.e., “witnesses”) for their backup storage copies, formed individually
according to known common rules. The absence of the verifier’s reply due to faults and
switched–off mode is to be fixed by zero.

In general case one can form the linked list function Fll [19] by product terms, contain-
ing pairs of entries obtained at different time moments tm and tm−s, where m is the number
of the last entry; s is the shift of the number for the previous entry. Function Fll responds to
Definition 1 and Exp. (5).

Appl. Syst. Innov. 2023, 6, 51 10 of 33

Definition 2. cited from [19]. Logic ledger function or a linked list of logic entries is given within
AGA as a hash function

h(out) =
Fll
(
m, s, t, e1,m , . . . , ep,m, e1,m−s , . . . , ep,m−s, h1,m, . . . , hQ, m, h1,m−s, . . . , hQ, m−s

)
,

(5)

or in the compact notation h(m,s) = Fll(m, s, t, em, em−s, hm, hm−s).

In Exp. (5) m is the number of the last entry; s is the shift of the number for the
previous entry; t is the time stamp corresponding to the last entry; e1,m , . . . , ep,m are the
parameters of the last entry em; e1,m−s , . . . , ep,m−s refer to parameters of the earlier received
entry em−s; h1,m, . . . , hQ, m are the hash values assigned by network verifiers to the last entry
em; h1,m−s, . . . , hQ, m−s are the hash values of the earlier received entry em−s; and q is the
number of a verifier, q = 1, . . . , Q. All these parameters are natural numbers. For simplicity,
in [19] MVLL has used only the shift s = 1. Respectively, the truth table for MVLL can be
given by Table 3.

Table 3. Truth table of the MVLL hash function h(out) = Fll(m, t, em, em−1, hm, hm−1) contains the
newcomer entry em =

(
e1,m, . . . , ep,m

)
, previous entry is em−1 =

(
e1,m−1, . . . , ep,m−1

)
, and their sets

of hash values hm =
(
h1,m, . . . , hQ,m

)
and hm−1 =

(
h1,m−1, . . . , hQ,m−1

)
, attributed to time moments

tm and tm−1.

Input Variables Output

n t e1,t . . . ep,t h1,t . . . hq,t e1,t−1 . . . ep,t−1 h1,t−1 . . . hq,t−1 h(out)

1 t1 e1,1 . . . ep,1 h1,1 . . . hQ,1 e1,0 ep,0 h1,0 . . . hQ,0 h(1,1)

. .
m-1 tm−1 e1,m−1 . . . ep,m−1 h1,m−1 . . . hQ,m−1 e1,m−2 . . . ep,m−2 h1,m−2 . . . hQ,m−2 h(m−1,1)

m tm e1,m . . . ep,m h1,m . . . hQ,m e1,m−1 . . . ep,m−1 h1,m−1 . . . hQ,m−1 h(m,1)

Equivalent representation of Table 3 by product terms is given by Exp. (6) based on
definitions given in [50]:

h(out) =

h(1,1) ? Xm(1, 1) ? Xt(t1, t1) ? Xe,1,1(e11, e11) ? . . . ? Xe,p,1
(
ep,1, ep,1

)
? Xh,1,1(h1,1, h1,1) ? . . . ?

Xh,Q,1
(
hQ,1, hQ,1

)
? Xe,1,0(e1,0, e1,0) ? . . . ? Xe,p,0

(
ep,0, ep,0

)
? Xh,1,0(h1,0, h1,0) ? . . . ?

Xh,Q,0
(
hQ,m−1, hQ,m−1

)
+ . . . + h(m−1,1) ? Xm(m− 1, m− 1) ? Xt(tm−1, tm−1)?

Xe,1,m−1(e1,m−1, e1,m−1) ? . . . ? Xe,p,m−1
(
ep,m−1, ep,m−1

)
? Xh,1,m−1(h1,m−1, h1,m−1) ? . . . ?

Xh,Q,m−1
(
hQ,m−1, hQ,m−1

)
? Xe,1,m−2(e1,m−2, e1,m−2) ? . . . ? Xe,p,m−2

(
ep,m−2, ep,m−2

)
?

Xh,1,m−2(e1,m−2, e1,m−2) ? . . . ? Xh,Q,m−2
(
hQ,m−2, hQ,m−2

)
+ h(m,1) ? Xm(m, m) ? Xt(tm, tm)?

Xe,1,m(e1,m, e1,m) ? . . . ? Xe,p,m
(
ep,m, ep,m

)
? Xh,1,m(h1,m, h1,m) ? . . . ? Xh,Q,m

(
hQ,m, hQ,m

)
?

Xe,1,m−1(e1,m−1, e1,m−1) ? . . . ? Xe,p,m−1
(
ep,m−1, ep,m−1

)
? Xh,1,m−1(h1,m−1, h1,m−1) ? . . . ?

Xh,Q,m−1
(
hQ,m−1, hQ,m−1

)
.

(6)

2.4. Method of Additional Blocking Product Terms in the Linked List

This method [19] can prevent from attacks 2,3,6, based on adding of fake constants
and excessive Literal parameters, given in Table 2. It uses the scheme to generate blocking
product terms PT−, providing subsuming of all illegally added product terms located in
the truth table between any two given rows e.g., between entries em and em−1. In order to
apply it, the participants of the protocol should by default use constant k− 1 only as the
selected parameter for minimization procedures [18], which will always subsume all added
product terms with any lower constants. For practice it is more comfort to represent steps

Appl. Syst. Innov. 2023, 6, 51 11 of 33

4 and 6, which were used in Algorithm 2 in the paper [19], as an Exp. (7) for i-th Literal,
where indexed parameters a, b are written as xi,

=
x i for both entries:

X̃i

(
xi,

=
x
)
=Xi

(
MIN

(
xi,

=
x i

)
+ 1, Max

(
xi,

=
x i

)
− 1
)

, i f Max
(

xi,
=
x i

)
−MIN

(
xi,

=
x i

)
≥ 2

Xi

(
MIN

(
xi,

=
x i

)
, Max

(
xi,

=
x i

))
, i f Max

(
xi,

=
x i

)
−MIN

(
xi,

=
x i

)
< 2

(7)

As it is not correct to mix operators of AGA and Boolean logic [18], here operations
MIN and MAX are considered as Boolean emulations of exp. (2) combined with adding
or subtraction of 1. Then basing on definitions and Algorithm 2 [19] one can write logic
expression, which combines two real product terms PT+

m−1 and PT+
m , responding to entries

with logic constants equal to numbers m and m− 1, and the blocking term PT−m−1,m with
the logic constant k − 1. Final exp. (8) obtained e.g., for 3 variables will be

PT+
m−1 + PT−m−1,m + PT+

m =

= hm−1 ? X1(x1, x1) ? X2(x2, x2) ? X3(x3, x3)+

(k− 1) ? X̃1

(
x1,

=
x2

)
? X̃2

(
x1,

=
x2

)
? X̃e,1

(
x1,

=
x2

)
+

hm ? X1

(
=
x1,

=
x1

)
? X2

(
=
x2,

=
x2

)
? X3

(
=
x3,

=
x3

)
,

(8)

where any X̃i

(
xi,

=
x
)

is given by Exp. (7).

As additional blocking segment PT−m−1,m will enlarge the overall number of product
terms and the computing time for ~50%, it may be reasonable to use it as a separate page
(or a part) of the MVLL.

3. Results: Combined Hashing Scheme for MVL Linked List

In contrast to the paper [19], the modified MVLL scheme additionally uses:
(1) data, calculated by internal susbsystems of the agent, (2) binary XOR hashing of

data of internal subsystems, and (3) selected parameters of external nodes.

3.1. Modified MVLL with Mixing Data from Internal Subsystems and External Nodes

The proposed scheme of data transfer for the network mobile agent is given in
Figures 2 and 3, it involves partner agents A0 and A1 and Q collaborating network nodes
Vq, considered as verifiers V like in [29,51]. It suppose three basic procedures I, II, and III
marked by red, blue and green arrows. Steps I and II are shown in Figure 2, and step III is
given in Figure 3.

The main task of step I in Figure 2 is to provide agent A1 by the set of quasi-random
keys by means QKD line, and to transform the finally processed quantum key into the
subset of fragmented quasi-random keys written in subsystems S2, . . . , SN . Thus, data
flow I (red) supposes periodic loading of the mobile agent by quasi-random keys, received
via the wireless QKD line [67,68], connecting agent A0 with mobile agent A1 in the trusted
service zone providing appropriate level of security. The generated key is to be further
fragmented to the set of 8-bit one-time quasi-random keys in order to adapt the system for
8-bit microcontrollers. These keys are to be accumulated and used for internal verification
procedures, the needed throughput of quasi-random numbers source may be even less than
∼ 1 Kbit/s. In the considered verification scheme the source of so-called entangled photons
from route verification scheme [29] is not obligatory, and can be changed for any low-
throughput QKD line, providing generation of quasi random one-time keys. For simplicity
internal subsystem S1 is shown as one supervisor module to control data exchange between
external and internal devices.

Appl. Syst. Innov. 2023, 6, 51 12 of 33Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 12 of 35

Figure 2. Steps I and II of the procedure to obtain the set of verification data for the joint linked list

in the agent 𝐴1, combining data of internal subsystems 𝑝1
(𝑛)

, . . . , 𝑝𝑑𝑁

(𝑛) and quasi-random keys 𝑟𝑖
(𝑛)

𝑏y

means of hashing functions 𝐻(2), … , 𝐻(𝑁).

When the set of shortened fragmentary quasi-random keys is formed, then the su-

pervisor module 𝑆1 chooses the time moment to generate the new entry for MVLL ac-

cording to the agent’s task. This moment may e.g., respond to the visit to the next check-

point. Then module 𝑆1 activates the step II (tagged by blue arrows) to form the new entry,

which includes the sequential polling of internal subsystems 𝑆2, … , 𝑆𝑁 to receive prelimi-

nary selected parameters for the external backup. Further internal hashing procedure

should approve these data. Here for simplicity we do not consider any routine communi-

cations between the agent and external nodes which may interrupt the process.

Step III of the procedure is shown in Figure 3 and refers to the external distributed

storage formation [19], which partially use blockchain scheme [25,26] with network pro-

tocols like e.g., [69,70]. In contrast to MVLL version proposed in [19], the new one may

use more verification data from external nodes. E.g., space coordinates (𝑥, 𝑦, 𝑧) of the mo-

bile checkpoint node can be useful to approve the passed route of the mobile agent. Poll-

ing of 𝑄 free collaborating nodes (first green arrow) is to be done according to the initially

given list of participants, and the reply transfer (backward oriented green arrow in mid-

dle) returns assigned quasi-random hash values and possible additional technical param-

eters. After the polling procedure the agent 𝐴1 should resend the completed new entry

to all involved participants (third green arrow). Data extraction from distributed external

storages is supposed to be especially requested.

Figure 2. Steps I and II of the procedure to obtain the set of verification data for the joint linked list in

the agent A1, combining data of internal subsystems p(n)1 , . . . , p(n)dN
and quasi-random keys r(n)i b. y

means of hashing functions H(2), . . . , H(N).

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 13 of 35

Figure 3. Step III of the procedure to obtain the set of verification data for the joint linked list. It

discloses the interaction of agent 𝐴1 with external verifiers 𝑉1, 𝑉2, … , 𝑉𝑄, combining data of internal

subsystems and external verifiers.

3.2. Possible Sources of Short Fragmented Keys

As QKD line can be blocked by intensive optical noize of any nature, alternative

sources of quasi-random keys principally can be included into the scheme. These variants

with lower level of privacy principally can be realized by the MVL–based scheme of the

random oracle [57] or by a quantum random number generator [21]. Such alternatives

does not disturb MVLL procedures.

Step I (red arrows) in Figure 2 basically suppose the periodical work of the wireless

QKD line, providing quantum keys distribution for agents 𝐴0 and 𝐴1. The most secured

level of QKD line is due to quantum mechanics and non-cloning theorem [61], which guar-

antees that if all basic protocols were carried out exactly, the generated key is known only

to a pair of interacting abonents Alice and Bob with small enough probability of errors

(see, e.g., review [12]). Modules Alice and Bob, see Figure 4a, use the conjugated pair of

quantum and classical data lines and exploit specialized procedures, reglamented by

cryptography standards by NIST [71], what limits the possibility to get inside and to add

any additional verification procedures. Alice’s and Bob’s modules are to be integrated into

internal subsystems of interacting agents, but MVLL procedures scarcely can be added

into Bob module, and the separate verification subsystem S1 is needed. As all certificated

QKD lines provide at least NIST tests for randomness [71,72], the “block” test passing is

guaranteed including 8- bit variant. Then the procedure for fragmenting of quantum data

array into 8-bit fragmented keys can be choosen arbitrarily. Less protected versions,

shown in Figure 4b, refer to alternative sources of quasi-random numbers like AGA-based

random oracle [57] and QRNG [21].

Figure 3. Step III of the procedure to obtain the set of verification data for the joint linked list. It
discloses the interaction of agent A1 with external verifiers V1, V2, . . . , VQ, combining data of internal
subsystems and external verifiers.

When the set of shortened fragmentary quasi-random keys is formed, then the super-
visor module S1 chooses the time moment to generate the new entry for MVLL according

Appl. Syst. Innov. 2023, 6, 51 13 of 33

to the agent’s task. This moment may e.g., respond to the visit to the next check-point.
Then module S1 activates the step II (tagged by blue arrows) to form the new entry, which
includes the sequential polling of internal subsystems S2, . . . , SN to receive preliminary
selected parameters for the external backup. Further internal hashing procedure should
approve these data. Here for simplicity we do not consider any routine communications
between the agent and external nodes which may interrupt the process.

Step III of the procedure is shown in Figure 3 and refers to the external distributed
storage formation [19], which partially use blockchain scheme [25,26] with network proto-
cols like e.g., [69,70]. In contrast to MVLL version proposed in [19], the new one may use
more verification data from external nodes. E.g., space coordinates (x, y, z) of the mobile
checkpoint node can be useful to approve the passed route of the mobile agent. Polling of Q
free collaborating nodes (first green arrow) is to be done according to the initially given list
of participants, and the reply transfer (backward oriented green arrow in middle) returns
assigned quasi-random hash values and possible additional technical parameters. After
the polling procedure the agent A1 should resend the completed new entry to all involved
participants (third green arrow). Data extraction from distributed external storages is
supposed to be especially requested.

3.2. Possible Sources of Short Fragmented Keys

As QKD line can be blocked by intensive optical noize of any nature, alternative
sources of quasi-random keys principally can be included into the scheme. These variants
with lower level of privacy principally can be realized by the MVL–based scheme of the
random oracle [57] or by a quantum random number generator [21]. Such alternatives does
not disturb MVLL procedures.

Step I (red arrows) in Figure 2 basically suppose the periodical work of the wireless
QKD line, providing quantum keys distribution for agents A0 and A1. The most secured
level of QKD line is due to quantum mechanics and non-cloning theorem [61], which
guarantees that if all basic protocols were carried out exactly, the generated key is known
only to a pair of interacting abonents Alice and Bob with small enough probability of errors
(see, e.g., review [12]). Modules Alice and Bob, see Figure 4a, use the conjugated pair
of quantum and classical data lines and exploit specialized procedures, reglamented by
cryptography standards by NIST [71], what limits the possibility to get inside and to add
any additional verification procedures. Alice’s and Bob’s modules are to be integrated into
internal subsystems of interacting agents, but MVLL procedures scarcely can be added
into Bob module, and the separate verification subsystem S1 is needed. As all certificated
QKD lines provide at least NIST tests for randomness [71,72], the “block” test passing is
guaranteed including 8- bit variant. Then the procedure for fragmenting of quantum data
array into 8-bit fragmented keys can be choosen arbitrarily. Less protected versions, shown
in Figure 4b, refer to alternative sources of quasi-random numbers like AGA-based random
oracle [57] and QRNG [21].

3.3. Acquisition of Internal Parameters of the Agent and Their Hashing

Algorithm for acquisition of internal verification data is proposed in Algorithm 1.
Every of subsystems modules S2, . . . , SN shown earlier in Figure 2 receives randomly
given fragmented keys and uses them in calculation of hashing function H(n)(r,p), where
p includes current values of output variables of the subsystem n, and r is a fragmented
key. Components of p are preferably to be written in internal SRAM of a subsystem during
the verification procedure, in order to be extracted in case of the detailed check. Coded
by hashing procedure output variables are to be returned back from S2, . . . , SN to the
verification module S1, this process is shown by the blue arrows in Figure 2. Such mapping
is to prevent direct illegal data reading from digital buses and is to check the operability of
the subsystem in the coded form.

Appl. Syst. Innov. 2023, 6, 51 14 of 33
Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 14 of 35

Figure 4. (a) Wireless QKD line can be regarded as the most secured source of quasi-random num-

bers for the pair of autonomous agents 0 and 1 of the MAS. (b) Less protected schemes may include

QRNG and AGA-based random oracle.

3.3. Acquisition of Internal Parameters of the Agent and Their Hashing

Algorithm for acquisition of internal verification data is proposed in Algorithm 1.

Every of subsystems modules 𝑆2, … , 𝑆𝑁 shown earlier in Figure 2 receives randomly given

fragmented keys and uses them in calculation of hashing function 𝐻(𝑛)(r,p), where 𝒑 in-

cludes current values of output variables of the subsystem 𝑛, and 𝑟 is a fragmented key.

Components of 𝒑 are preferably to be written in internal SRAM of a subsystem during

the verification procedure, in order to be extracted in case of the detailed check. Coded by

hashing procedure output variables are to be returned back from 𝑆2, … , 𝑆𝑁 to the verifica-

tion module 𝑆1, this process is shown by the blue arrows in Figure 2. Such mapping is to

prevent direct illegal data reading from digital buses and is to check the operability of the

subsystem in the coded form.

Algorithm 1: Acquisition of internal hashing parameters𝐻(𝑛) for 𝑆2, … , 𝑆𝑁.

𝐈𝐧𝐩𝐮𝐭: 𝑘 ←
𝑁 ←
𝑀 ←
𝑑𝑛 ←

𝑤2, … , 𝑤𝑁 ←

𝑟1
(2)

, … , 𝑟𝑑2

(2)

…

𝑟1
(𝑁)

, . . . , 𝑟𝑑𝑁

(𝑁)
←

Number of truth levels (not obligatory equal to 256);

Number of internal subsystems 𝑆1, … , 𝑆𝑁 of the agent 𝐴1;

Maximal possible number of entries in MVLL;

Number of documented parameters of the subsystem ,

𝑑𝑛=1,…,D;

Numbers of output parameters in subsystems 𝑆2, … , 𝑆𝑁;

Sets of fragmented keys, preliminary prepared in subsystem 𝑆1

for the new session of documentation in MVLL;

1. Subsystem 𝑆1 assigns counter 𝑛 = 2; As 𝑆1 is the service subsystem!

2. Subsystem 𝑆1
sets clocking signal (“write”) to 𝑆𝑛 ;

transfer 𝑟𝑑𝑛

(𝑛)
 to subsystem 𝑆𝑛 ;

3. Subsystem 𝑆𝑛 writes transferred 𝑟𝑑𝑛

(𝑛)
;

4. Subsystem 𝑆1

assigns 𝑛 = 𝑛 + 1;

checks if 𝑛 = 𝑁 , if yes goes to step 5,

otherwise goes to step 2;

5. Subsystem 𝑆𝑛
calculates the set of all its output variables {𝑝1

(𝑛)
, . . . , 𝑝𝑤𝑛

(𝑛)
};

writes {𝑝1
(𝑛)

, . . . , 𝑝𝑤𝑛

(𝑛)
} in its internal memory;

Figure 4. (a) Wireless QKD line can be regarded as the most secured source of quasi-random numbers
for the pair of autonomous agents 0 and 1 of the MAS. (b) Less protected schemes may include QRNG
and AGA-based random oracle.

According to Figure 2 MVLL is to include some variables of internal subsystems
S2, . . . , SN and hash values assigned by S1, optionally accompanied by some technical
parameters of external nodes e.g., their coordinates. One can avoid here the direct use of
internal time variable, as subsystems sequentially output values of variables p(2)1 , . . . , p(2)d2

,

. . . , p(N)
1 , . . . , p(N)

dN
with much greater rate than external messages are received. Here for

simplicity we suppose that all variables are calculated sequentially, where the sequence of
operation responds to values n = 1, 2 . . . , N, although the real time grid of their outputs
can be more complex.

3.4. Two-Steps XOR Hashing in Agent’s Subsystems

It seems more appropriate to use in internal subsystems (where possible!) simple
and well-known binary logic hash functions in order to apply commercial modules and
to shorten calculations. Principally, for hashing procedures one can design some MVL
functions, but this seems to give advantages only in combination with specially planned
AI procedures for subsystems, which are not discussed here. As it is being widely used in
classic and quantum cryptography procedures [51], the well-known binary operator XOR
(⊕) [73,74] can be the first recommended variant for internal hashing, combining one-time
quasi-random fragmented key r(n)d and the set of wn output parameters p(n)wn of the subsys-
tem Sn. Operator XOR is typically included into specifications of microcontrollers [74] and
needs only 1 work cycle; it is oftenly tagged as XRL in microassembler specifications. Such
two-stage hashing procedure is shown in the Table 4. The first step is to be calculated in
internal subsystems S2, . . . , SN . of the agent A1. The second step of hashing is to be done
in the supervisor module S1 in order to minimize additional calculations in S2, . . . , SN .

Appl. Syst. Innov. 2023, 6, 51 15 of 33

Algorithm 1: Acquisition of internal hashing parameters H(n) for S2, . . . , SN .

Input: k ← Number of truth levels (not obligatory equal to 256);
N ← Number of internal subsystems S1, . . . , SN of the agent A1;
M← Maximal possible number of entries in MVLL;
dn ← Number of documented parameters of the subsystem,

w2, . . . , wN ← dn = 1, . . . , D;

r(2)1 , . . . , r(2)d2

. . .

r(N)
1 , . . . , r(N)

dN

←
Numbers of output parameters in subsystems S2, . . . , SN ;
Sets of fragmented keys, preliminary prepared in subsystem S1
for the new session of documentation in MVLL;

1. Subsystem S1 assigns counter n = 2; As S1 is the service subsystem!

2. Subsystem S1
sets clocking signal (“write”) to Sn ;

transfer r(n)dn
to subsystem Sn;

3. Subsystem Sn writes transferred r(n)dn
;

4. Subsystem S1

assigns n = n + 1;
checks if n = N, if yes goes to step 5,
otherwise goes to step 2;

5. Subsystem Sn

calculates the set of all its output variables
{

p(n)1 , . . . , p(n)wn

}
;

writes
{

p(n)1 , . . . , p(n)wn

}
in its internal memory;

calculates hash function H(n)(r(n)dn
, p(n)1 , . . . , p(n)dn

);
sets clocking signal (“write”) to S1 ;

transfer hash value H(r(n)dn
, p(n)1 , . . . , p(n)dn

) to S1;
(*) Hash function is discussed in Section 3.4
(**) Enlargement of n from 2 up to n responds to the basic sequence of
operation for subsystems in the agent A1

6. Subsystem S1

writes transferred H(n)(r(n)dn
, p(n)1 , . . . , p(n)dn

);
assigns n = n + 1;
checks if n = N, if yes goes to Exit—step 7,
otherwise goes to step 5;

7. Exit.

Output: H(n)→ The set of data for the second step of hashing

As it was shown in Section 2.2, several types of attacks aimed at MVL model can
be based on modification of parameters of logic functions, written in the general format
exp. (2) as arrays A, B,C describing subsystems of the agent. That is why XOR hashing
can be directly used for data protection of such arrays. This procedure is more visually
shown in Figure 5, where quasi-random key s r(n)dn

may be either given as additional matrix
elements in rows, or processed as additional separate column. Calculation of XOR hash
values is firstly to be done for rows and then for column, it is the most simple and universal
procedure to verify illegal modifications of the MVL function.

Table 4. Two steps of the internal hashing procedure of the agent A1.

Involved Subsystem Expression

I Step H(n)(r, p) = r(n)d ⊕ p(n)1 ⊕ p(n)2 ⊕ . . .⊕ p(n)wn ,

Hash value for S2
n = 2 . . . , N
H(2)(r, p), calculated in S2

.
Hash value for SN H(N)(r, p), calculated in SN

II step Integral hash value for all
subsystems of the agent

H(int)(r, p) ==

H(2)(r, p)H(3)(r, p) . . . H(N)(r, p)
calculated in S1

Appl. Syst. Innov. 2023, 6, 51 16 of 33

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 16 of 35

(2) as arrays 𝐴, 𝐵,𝐶 describing subsystems of the agent. That is why 𝑋𝑂𝑅 hashing can be

directly used for data protection of such arrays. This procedure is more visually shown in

Figure 5, where quasi-random key𝑠 𝑟𝑑𝑛

(𝑛)
 may be either given as additional matrix ele-

ments in rows, or processed as additional separate column. Calculation of 𝑋𝑂𝑅 hash val-

ues is firstly to be done for rows and then for column, it is the most simple and universal

procedure to verify illegal modifications of the MVL function.

Figure 5. The general scheme to apply two step hashing to verification of MVL.

3.5. Formation of Modified MVLL with Internal and External Parameters

According to Figure 2 the entry for the modified version of MVLL should contain

number 𝑚, time tag 𝑡, parameters 𝒆𝑚 = {𝑒1,𝑚 , … , 𝑒𝑝,𝑚}, and externally assigned hash val-

ues ℎ = ℎ1 , … , ℎ𝑄} . It also should include external and internal parameters 𝒆𝑚 =

{ 𝒆𝑚
(𝑖𝑛𝑡), 𝒆𝑚

(𝑒𝑥𝑡)} instead of the set 𝒆𝑚 = {𝑒1,𝑚 , … , 𝑒𝑝,𝑚}, i.e., subsets

𝒆𝑚
𝑒𝑥𝑡 = 𝑒1,𝑚

𝑒𝑥𝑡 , … , 𝑒𝑣,𝑚
𝑒𝑥𝑡}and 𝒆𝑚

𝑖𝑛𝑡 = 𝑒1,𝑚
𝑖𝑛𝑡 , … , 𝑒𝑝,𝑚

𝑖𝑛𝑡 }. For comfort we will use shortened notation

𝒆𝑚
𝑒𝑥𝑡 = 𝒆𝑚

(𝑒)
 and 𝒆𝑚

𝑖𝑛𝑡 = 𝒆𝑚 . Besides this, entry should contain internal hash func-

tions𝐻(𝑖𝑛𝑡)(𝑟, 𝒑) of the last and of the previous entry 𝒆𝑚−1. The identifier of the agent and

its license number are also actual parameters. Thus, modified MVLL function containing

entries with numbers from 1 up to 𝑚 has the structure ℎ(𝑜𝑢𝑡) =

 𝐹𝑙𝑙(𝑚,𝑡, 𝒆𝑚, 𝒆𝑚
(𝑒)

, 𝐻𝑚
(𝑖𝑛𝑡)

ℎ1,𝑚, … , ℎ𝑄,𝑚, 𝒆𝑚−1, 𝒆𝑚−1
(𝑒)

, 𝐻𝑚−1
(𝑖𝑛𝑡)

ℎ1,𝑚−1, … , ℎ𝑄,𝑚−1). Then final logic expres-

sion will respond to exp. (9):

ℎ(𝑜𝑢𝑡) =

ℎ(1,1) ⋆ 𝑋𝑚(1,1) ⋆ 𝑋𝑡(𝑡1, 𝑡1) ⋆ 𝑋𝑒,1,1(𝑒11, 𝑒11) ⋆ … ⋆ 𝑋𝑒,𝑝,1(𝑒𝑝,1, 𝑒𝑝,1)

⋆ 𝑋𝑒(𝑒),1,1 (𝑒11
(𝑒)

, 𝑒11
(𝑒)

) ⋆ … ⋆ 𝑋𝑒(𝑒),𝑣,1 (𝑒𝑣,1
(𝑒)

, 𝑒𝑣,1
(𝑒)

) ⋆ 𝑋ℎ,1,1(ℎ1,1, ℎ1,1) ⋆ …

⋆ 𝑋ℎ,𝑄,1(ℎ𝑄,1, ℎ𝑄,1) ⋆ 𝑋𝑒,1,0(𝑒1,0, 𝑒1,0) ⋆ … ⋆ 𝑋𝑒,𝑝,0(𝑒𝑝,0, 𝑒𝑝,0)

⋆ 𝑋𝑒(𝑒),1,0 (𝑒10
(𝑒)

, 𝑒10
(𝑒)

) ⋆ … ⋆ 𝑋𝑒(𝑒),𝑣,0 (𝑒𝑣,0
(𝑒)

, 𝑒𝑣,0
(𝑒)

) ⋆ 𝑋ℎ,1,0(ℎ1,0, ℎ1,0) ⋆ …

⋆ 𝑋ℎ,𝑄,0(ℎ𝑄,𝑚−1, ℎ𝑄,𝑚−1) + ⋯ + ℎ(𝑚−1,1)

⋆ 𝑋𝑚(𝑚 − 1, 𝑚 − 1) ⋆ 𝑋𝑡(𝑡𝑚−1, 𝑡𝑚−1)

⋆ 𝑋𝑒,1,𝑚−1(𝑒1,𝑚−1, 𝑒1,𝑚−1) ⋆ … ⋆ 𝑋𝑒,𝑝,𝑚−1(𝑒𝑝,𝑚−1, 𝑒𝑝,𝑚−1)

⋆ 𝑋𝑒(𝑒),1,𝑚−1 (𝑒1,𝑚−1
(𝑒)

, 𝑒1,𝑚−1
(𝑒)

) ⋆ …

⋆ 𝑋𝑒(𝑒),𝑣,𝑚−1 (𝑒𝑣,𝑚−1
(𝑒)

, 𝑒𝑣,𝑚−1
(𝑒)

) ⋆ 𝑋ℎ,1,𝑚(ℎ1,𝑚−1, ℎ1,𝑚−1) ⋆ …

⋆ 𝑋ℎ,𝑄,𝑚−1(ℎ𝑄,𝑚−1, ℎ𝑄,𝑚−1) ⋆ 𝑋𝑒,1,𝑚−2(𝑒1,𝑚−2, 𝑒1,𝑚−2) ⋆ …

⋆ 𝑋𝑒,𝑝,𝑚−2(𝑒𝑝,𝑚−2, 𝑒𝑝,𝑚−2) ⋆ 𝑋𝑒(𝑒),1,𝑚−2 (𝑒1,𝑚−2
(𝑒)

, 𝑒1,𝑚−2
(𝑒)

) ⋆ …

⋆ 𝑋𝑒(𝑒),𝑣,𝑚−2 (𝑒𝑣,𝑚−2
(𝑒)

, 𝑒𝑣,𝑚−2
(𝑒)

) ⋆ 𝑋ℎ,1,𝑚−2(𝑒1,𝑚−2, 𝑒1,𝑚−2) ⋆ …

⋆ 𝑋ℎ,𝑄,𝑚−2(ℎ𝑄,𝑚−2, ℎ𝑄,𝑚−2)+ℎ(𝑚,1)

⋆ 𝑋𝑚(𝑚, 𝑚) ⋆ 𝑋𝑡(𝑡𝑚, 𝑡𝑚)

⋆ 𝑋𝑒,1,𝑚(𝑒1,𝑚, 𝑒1,𝑚) ⋆ … ⋆ 𝑋𝑒,𝑝,𝑚(𝑒𝑝,𝑚, 𝑒𝑝,𝑚) ⋆ 𝑋𝑒(𝑒),1,𝑚 (𝑒1,𝑚
(𝑒)

, 𝑒1,𝑚
(𝑒)

) ⋆ …

⋆ 𝑋𝑒(𝑒),𝑣,𝑚 (𝑒𝑣,𝑚
(𝑒)

, 𝑒𝑣,𝑚
(𝑒)

) ⋆ 𝑋ℎ,1,𝑚(ℎ1,𝑚, ℎ1,𝑚) ⋆ … ⋆ 𝑋ℎ,𝑄,𝑚(ℎ𝑄,𝑚, ℎ𝑄,𝑚)

⋆ 𝑋𝑒,1,𝑚−1(𝑒1,𝑚−1, 𝑒1,𝑚−1) ⋆ … ⋆ 𝑋𝑒,𝑝,𝑚−1(𝑒𝑝,𝑚−1, 𝑒𝑝,𝑚−1)

⋆ 𝑋𝑒(𝑒),1,𝑚−1 (𝑒1,𝑚−1
(𝑒)

, 𝑒1,𝑚−1
(𝑒)

) ⋆ … ⋆ 𝑋𝑒(𝑒),𝑣,𝑚−1 (𝑒𝑣,𝑚−1
(𝑒)

, 𝑒𝑣,𝑚−1
(𝑒)

)

⋆ 𝑋ℎ,1,𝑚−1(ℎ1,𝑚−1, ℎ1,𝑚−1) ⋆ … ⋆ 𝑋ℎ,𝑄,𝑚−1(ℎ𝑄,𝑚−1, ℎ𝑄,𝑚−1)

(9)

Note that data for external ledger should respond to 32–64 bit format of data, as in-

ternal microcontrollers or FPGA for IoT devices can mainly use 8-bit or sometimes 16-bit

Figure 5. The general scheme to apply two step hashing to verification of MVL.

3.5. Formation of Modified MVLL with Internal and External Parameters

According to Figure 2 the entry for the modified version of MVLL should con-
tain number m, time tag t, parameters em =

{
e1,m , . . . , ep,m

}
, and externally assigned

hash values h={ h1 , . . . , hQ
}

. It also should include external and internal parameters

em =
{

em
(int), em

(ext)
}

instead of the set em =
{

e1,m , . . . , ep,m
}

, i.e., subsets eext
m ={

eext
1,m, . . . , eext

v,m

}
and eint

m =
{

eint
1,m, . . . , eint

p,m

}
. For comfort we will use shortened notation eext

m

= e(e)m and eint
m = em. Besides this, entry should contain internal hash functions H(int)(r, p)

of the last and of the previous entry em−1. The identifier of the agent and its license num-
ber are also actual parameters. Thus, modified MVLL function containing entries with
numbers from 1 up to m has the structure h(out) = Fll(m, t, em, e(e)m , H(int)

m h1,m, . . . , hQ,m,

em−1, e(e)m−1, H(int)
m−1h1,m−1, . . . , hQ,m−1). Then final logic expression will respond to Exp. (9):

Note that data for external ledger should respond to 32–64 bit format of data, as
internal microcontrollers or FPGA for IoT devices can mainly use 8-bit or sometimes 16-bit
formats [75]. In any way, proposed formal procedures leave enough freedom of choice
either to complement data by 0s for the necessary number of elder bits, or to sequentially
unite bytes of several variables into one variable, or to combine both variants.

h(out) =

h(1,1) ? Xm(1, 1) ? Xt(t1, t1) ? Xe,1,1(e11, e11) ? . . . ? Xe,p,1
(
ep,1, ep,1

)
?Xe(e) ,1,1

(
e(e)11 , e(e)11

)
? . . . ? Xe(e) ,v,1

(
e(e)v,1, e(e)v,1

)
? Xh,1,1(h1,1, h1,1) ? . . .

?Xh,Q,1
(
hQ,1, hQ,1

)
? Xe,1,0(e1,0, e1,0) ? . . . ? Xe,p,0

(
ep,0, ep,0

)
?Xe(e) ,1,0

(
e(e)10 , e(e)10

)
? . . . ? Xe(e) ,v,0

(
e(e)v,0, e(e)v,0

)
? Xh,1,0(h1,0, h1,0) ? . . .

?Xh,Q,0
(
hQ,m−1, hQ,m−1

)
+ . . . + h(m−1,1) ? Xm(m− 1, m− 1) ? Xt(tm−1, tm−1)

?Xe,1,m−1(e1,m−1, e1,m−1) ? . . . ? Xe,p,m−1
(
ep,m−1, ep,m−1

)
?Xe(e) ,1,m−1

(
e(e)1,m−1, e(e)1,m−1

)
? . . .

?Xe(e) ,v,m−1

(
e(e)1,m−1, e(e)1,m−1

)
? Xh,1,m(h1,m−1, h1,m−1) ? . . .

?Xh,Q,m−1
(
hQ,m−1, hQ,m−1

)
? Xe,1,m−2(e1,m−2, e1,m−2) ? . . .

?Xe,p,m−2
(
ep,m−2, ep,m−2

)
? Xe(e) ,1,m−2

(
e(e)1,m−2, e(e)1,m−2

)
? . . .

?Xe(e) ,v,m−2

(
e(e)v,m−2, e(e)v,m−2

)
? Xh,1,m−2(e1,m−2, e1,m−2) ? . . .

?Xh,Q,m−2
(
hQ,m−2, hQ,m−2

)
+ h(m,1) ? Xm(m, m) ? Xt(tm, tm)

?Xe,1,m(e1,m, e1,m) ? . . . ? Xe,p,m
(
ep,m, ep,m

)
? Xe(e) ,1,m

(
e(e)1,m, e(e)1,m

)
? . . .

?Xe(e) ,v,m

(
e(e)v,m, e(e)v,m

)
? Xh,1,m(h1,m, h1,m) ? . . . ? Xh,Q,m

(
hQ,m, hQ,m

)
?Xe,1,m−1(e1,m−1, e1,m−1) ? . . . ? Xe,p,m−1

(
ep,m−1, ep,m−1

)
?Xe(e) ,1,m−1

(
e(e)1,m−1, e(e)1,m−1

)
? . . . ? Xe(e) ,v,m−1

(
e(e)v,m−1, e(e)v,m−1

)
?Xh,1,m−1(h1,m−1, h1,m−1) ? . . . ? Xh,Q,m−1

(
hQ,m−1, hQ,m−1

)

(9)

Appl. Syst. Innov. 2023, 6, 51 17 of 33

4. Results: MVLL Scheme for Route Verification Task

As position verification methods may combine GPS, lidar, and computer vision sys-
tems, the route planning and the tracking estimation for mobile agents involves the problem
of precision of data [76], influenced by the speed of mobile agents and satellites disposition.
The controlled range for space coordinates can vary from centimeters up to thousands of
km, and it is necessary to provide enough accuracy for all possible distances. First variant
here is to apply correlated variables in the discrete k-valued logic model of AGA [18,19],
where one can represent space coordinate x e.g., as 1560 m = 1 km + 500 m + 60 m+.... by
the summation

x = x(1) × 1 + x(2) × 10 + . . . x(p) × 10p. (10)

However, for the MVLL in route verification task there is the second possible scheme
to apply purely formal representation excluding summation as in Exp. (13). It is based on
the fact, that the distributed backup storage of MVLL should only measure and approve the
correctness of data, as the value of coordinates discrepancy is required further at the stage
of decision-making. Thus, verification or comparison of data from different storages mainly
includes formal checks equal/non-equal, and further procedures are the another task. So
that if unique GPS coordinates are represented [77] by a popular format, say, 57”45,4682,
one can write it e.g., as the set of numbers {57}, {45}, {4682} = #{00111001}b, #{00101101}b,
#{00010010; 01001010}b, fixing by default the position of separating tags. Advantage of
formal AGA model is that for any bit format of space coordinates they can be quickly
represented by several bytes in logic expressions with known by default rules for reverse
reconstruction of geographical degrees, minutes, and seconds.

For the route vefification task the difference between the given and the real route
should be finally described by the deviation function Feval , which should estimate the
difference between space coordinates x, y for the planned route and measured coordinates
x(e), y(e) : Feval = F(Nagent, Nlicense , x, y, x(e), y(e)). Close case here is the comparison of
coordinates obtained by different GPS receivers, installed in navigation systems of the
check-point and the mobile agent. Then the simplest way is to use MVLL with formal
representation of coordinates. Realistic version of 8-bit MVLL seems to be represented by
the entry described by Exp. (11)

em = {m, t, IDagent, Nlic, x(1), x(2), x(3), x(4), H(int), x(e1), x(e2), x(e3), x(e4), h1, . . . , hQ
}

, (11)

where m is the entry number in the ledger, t—time of registration by the first of external
verifying nodes, IDagent—digital identifier of the agent (for simplicity we suppose it to
be 1 byte), Nlic—license number (also 1 byte), x(1), x(2), x(3), x(4) describe 4 bytes of space
coordinates, and data marked by (e) refer to another source of data, e.g., to the check-point.
Here every set x(1), x(2), x(3), x(4) includes both the latitude and the longitude (N and E) in
NMEA-0183 [78]). Variable H(int) in Exp. (11) describes values of internal hash function.
Thus, entry em in AGA can be written as the logic product term Exp. (12):

em =

h(m,1) ? Xm(m, m) ? Xt(tm, tm) ? XID agent(ID, ID) ? Xlic(Nlic, Nlic) ? XH(int)

(
H(int), H(int)

)
?

?Xx(1)

(
xm

(1), xm
(1)
)
? Xx(2)

(
xm

(2), xm
(2)
)
? Xx(3)

(
xm

(3), xm
(3)
)
? Xx(4)

(
xm

(4), xm
(4)
)
?

?Xx(e1)

(
xm

(e1), xm
(e1)
)
? Xx(e2)

(
xm

(e2), xm
(e2)
)
? Xx(e3)

(
xm

(e3), xm
(e3)
)
? Xx(e4)

(
xm

(e4), xm
(e4)
)
?

?Xh,1,m(h1,m, h1,m) ? . . . ? Xh,Q,m
(
hQ,m, hQ,m

)
?

?Xm−1(m− 1, m− 1) ? Xt(tm−1, tm−1) ? XID agent(ID, ID) ? Xlic(Nlic, Nlic) ? XH(int)

(
H(int), H(int)

)
?

?Xx(1)

(
xm−1

(1), xm−1
(1)
)
? Xx(2)

(
xm−1

(2), xm−1
(2)
)
? Xx(3)

(
xm−1

(3), xm−1
(3)
)
? Xx(4)

(
xm−1

(4), xm−1
(4)
)
?

?Xx(e1)

(
x(e1)

m−1, x(e1)
m−1

)
? Xx(e2)

(
x(e2)

m−1, x(e2)
m−1

)
? Xx(e3)

(
x(e3)

m−1, x(e3)
m−1

)
? Xx(e4)

(
x(e4)

m−1, x(e4)
m−1

)
?

?Xh,1,m−1(h1,m−1, h1,m−1) ? . . . ? Xh,Q,m−1
(
hQ,m−1, hQ,m−1

)
.

(12)

Appl. Syst. Innov. 2023, 6, 51 18 of 33

Respectively, the resulting MVLL will be the set of m. product terms using pairs
m/m-1 of entries given by Exp. (12) and combined by operators MAX from exp. (1).
Principally, if a real system uses too many variables, it is possible to form one large scale
MVLL as a common table of parameters, where several linked volumes or linked pages can
be formed by some samplings of its variables in order to shorten the computing time for
different procedures. Respectively, we has already mentioned above the possibility to use
the set of blocking terms as a separate page of MVLL. Then such MVLL is to use several
basic parameters m, t, IDagent, Nlicense for linking of pages. Another potential application
for multi-page versions of MVLL is the detailed description of the history of routes by
means of hash functions h(m,m−s) [19], where s > 1. But such versions of MVLL are out of
the discussion here.

5. Results: MVLL in Microcontroller Module

As data verification in the hardware agent involves the local set of embedded micro-
controllers [27], microassembler software is the priority tool for the design and debugging
of such procedures. However, many popular platforms e.g., Arduino [79] are aimed at sep-
arate tasks with limited complexity and have too few parallel&serial ports for distributed
schemes with AI procedures and flexible interaction of agent’s subsystems. In contrast
to them classical 8-bit microcontroller MCS-51 [74] is slow enough (up to 24–33 MHz),
but provides greater fan-out due to its 4 independent parallel 8-bit banks including two
serial ports. That is why MVLL software illustrations are shown further for the special
dual-chip circuit board used in [19], which was proposed earlier for modelling of agent’s
AI functions and fuzzy logic, but which is also appropriate for modelling of MVLL. Such
scheme is the way to design more complicated algorithms, as internal memory of MCS-51
can include only 500–600 microassembler instructions. As the set of embedded inctructions
in MCS-51 typically provides very limited (64 kB) capacity of external SRAM, external
trigger registers were used for the adressing of 1 MB external SRAM, what reduces time
response but provides more flexibility.

Test programs for microcontrollers MCI and MCII were emulated by microassembler
for MCS-51, simulator AVSIM and chip programmers KROT-MK and MASTER.

If the dual-chip module shown in Figure 6 is used as the model supervisor subsystem
S1, then signals coming from S2, . . . , SN can be loaded via input 8-bit bus connected to
banks (or ports) P0 in both microcontrollers MCI and MCII. Respectively, output 8-bit bus
can be involved for the transfer of data to subsystems S2, . . . , SN via MCIII and trigger
registers Rg 4–7. In the dual-chip scheme microcontroller MCI is specialized for clocking
of input signals, their procession, and read/write procedures; the second microcontroller
MCII is mainly used for output signals control. Such dual-chip modules can be cascaded
via digital buses.

Basic parameters were chosen as follows:

- k = 256 logic levels for AGA model of MVLL,
- 8-bit format of data for internal microcontrollers,
- D = 256 is the maximal number of documented entries in the MVLL,
- N = 4 is the number of internal subsystems S2, . . . , SN,
- Q = 8 is the maximal number of external network verifiers.

Values of last two parameters were chosen to shorten the principal scheme.
The dual-chip scheme in Figure 6 contains a pair of 24 MHz ATMEL microcontrollers

MCS-51 and has 512 KB ROM and 1 MB SRAM chips commutated to common 8 bit buses.
ROM is principally necessary here to keep the backup data structure for data restoration in
SRAM, ID identificator of the agent, license number, and the initial list of loyal network
nodes. Trigger registers Rg1, 2, and 3 are used for addressing of SRAM, and CE, OE, WE
are to control read/write procedures. Data from SRAM and ROM are to be loaded via
banks P0 of MCI and MCII. Microcontroller MC1 has free pins in the port P3 for interaction
with external decision-making module, which is out of discussion here. Port P3 in MCII
is involved in clocking, e.g., pins P3.0-P3.4 control read/write procedures for S2, . . . , S4.

Appl. Syst. Innov. 2023, 6, 51 19 of 33

Inverse signal P3.0 initiates S2, . . . , S4 to read the next fragmented 8-bit key, and P3.1 sends
them instruction to write the next hash value H(int). For larger N one can use MCIII and
additional registers.

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 19 of 35

Figure 6. Version of two-chip circuit board [19] used for modelling of MVLL and interaction between

subsystems 𝑆1 and 𝑆2, … , 𝑆𝑛 in the agent.

Basic parameters were chosen as follows:

- 𝑘 = 256 logic levels for AGA model of MVLL,

- 8-bit format of data for internal microcontrollers,

- 𝐷 = 256 is the maximal number of documented entries in the MVLL,

- 𝑁 = 4 is the number of internal subsystems S2,…,SN,

- 𝑄 = 8 is the maximal number of external network verifiers.

Values of last two parameters were chosen to shorten the principal scheme.

The dual-chip scheme in Figure 6 contains a pair of 24 MHz ATMEL microcontrollers

MCS-51 and has 512 KB ROM and 1 MB SRAM chips commutated to common 8 bit buses.

ROM is principally necessary here to keep the backup data structure for data restoration

in SRAM, ID identificator of the agent, license number, and the initial list of loyal network

nodes. Trigger registers Rg1, 2, and 3 are used for addressing of SRAM, and 𝐶𝐸,̅̅ ̅̅̅ 𝑂𝐸̅̅ ̅̅ , 𝑊𝐸̅̅ ̅̅ ̅

are to control read/write procedures. Data from SRAM and ROM are to be loaded via

banks P0 of MCI and MCII. Microcontroller MC1 has free pins in the port P3 for interac-

tion with external decision-making module, which is out of discussion here. Port P3 in

MCII is involved in clocking, e.g., pins P3.0-P3.4 control read/write procedures for S2,…,S4.

Inverse signal 𝑃3.0̅̅ ̅̅ ̅̅ initiates S2,…,S4 to read the next fragmented 8-bit key, and 𝑃3.1̅̅ ̅̅ ̅̅

sends them instruction to write the next hash value 𝐻(𝑖𝑛𝑡). For larger 𝑁 one can use MCIII

and additional registers.

As an agent should process sensor data and transfer messages to external computers,

chip MCIII in Figure 6 is to control peripheral modules, sensors, buffer SRAM, ADCs,

DACs, step motors, and actuators. The circuit board shown in Figure 7 was used as the

test subsystem with the serial link to PC.

Figure 6. Version of two-chip circuit board [19] used for modelling of MVLL and interaction between
subsystems S1 and S2, . . . , Sn in the agent.

As an agent should process sensor data and transfer messages to external computers,
chip MCIII in Figure 6 is to control peripheral modules, sensors, buffer SRAM, ADCs,
DACs, step motors, and actuators. The circuit board shown in Figure 7 was used as the test
subsystem with the serial link to PC.

Microcontroller MCS-51 can form and transfer data arrays with the length of 256 bytes
accumulated in the buffer SRAM. Dual-chip scheme in Figure 6 is to be connected to the
port P0 in MCS-51 in Figure 7 via MCIII, free ports P1-P2 commutated by the 8-bit data bus,
and free pins. The model MVLL function was chosen as Exp. (13)

h(out) =

Fll(m, t, IDag, Nlic, x(1)m , x(2)m , x(3)m , x(4)m , H(int)
m , x(e1)

m , x(e2)
m , x(e3)

m , x(e4)
m ,

h1,m, . . . , hQ,m, x(1)m−1 , x(2)m−1, x(3)m−1 , x(4)m−1, H(int)
m−1 , x(e1)

m−1, x(e2)
m−1, x(e3)

m−1, x(e4)
m−1, h1,m−1, . . . , hQ,m−1)

(13)

where space coordinates were considered as formal non-correlated logic variables. In order
to adapt the circuit boards to such MVLL, special SRAM structure should be used, which is
briefly shown in Table 5 and is disclosed in details by Table 6.

Appl. Syst. Innov. 2023, 6, 51 20 of 33Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 20 of 35

Figure 7. Circuit board with ADC AD7813, microcontroller MCS-51 and interface RS232C was used

for imitation of subsystems S2,…,S4. This module provides sensors data acquisition and their trans-

fer to network PC via the serial port and ADM202E chip.

Microcontroller MCS-51 can form and transfer data arrays with the length of 256

bytes accumulated in the buffer SRAM. Dual-chip scheme in Figure 6 is to be connected

to the port P0 in MCS-51 in Figure 7 via MCIII, free ports P1-P2 commutated by the 8-bit

data bus, and free pins. The model MVLL function was chosen as exp. (13)

ℎ(𝑜𝑢𝑡) =

𝐹ll(𝑚, 𝑡, 𝐼𝐷𝑎𝑔, 𝑁𝑙𝑖𝑐 , 𝑥𝑚
(1)

, 𝑥𝑚
(2)

, 𝑥𝑚
(3)

, 𝑥𝑚
(4)

, 𝐻𝑚
(𝑖𝑛𝑡)

, 𝑥𝑚
(𝑒1)

, 𝑥𝑚
(𝑒2)

, 𝑥𝑚
(𝑒3)

, 𝑥𝑚
(𝑒4)

,

 ℎ1,𝑚, … , ℎ𝑄,𝑚, 𝑥𝑚−1
(1)

 , 𝑥𝑚−1
(2)

, 𝑥𝑚−1
(3)

 , 𝑥𝑚−1
(4)

, 𝐻𝑚−1
(𝑖𝑛𝑡)

, 𝑥𝑚−1
(𝑒1)

, 𝑥𝑚−1
(𝑒2)

, 𝑥𝑚−1
(𝑒3)

, 𝑥𝑚−1
(𝑒4)

, ℎ1,𝑚−1, … , ℎ𝑄,𝑚−1)

(13)

where space coordinates were considered as formal non-correlated logic variables. In or-

der to adapt the circuit boards to such MVLL, special SRAM structure should be used,

which is briefly shown in Table 5 and is disclosed in details by Table 6.

Table 5. Addresses in MVLL containing parameters 𝑎,𝑏 of Literals.

#A18-A16: #000b Internal version of entries Parameter 𝑎

#A18-A16: #001b Internal version of entries Parameter 𝑏

#A18-A16: #100b External version of entries Parameter 𝑎

#A18-A16: #101b External version of entries Parameter 𝑏

Table 6. SRAM structure for MVLL segments with #A18-A16=# 000b, 001b, 100b, 101b}.

Variable 𝑟𝑑
(1)

 𝑟𝑑
(2)

 𝑟𝑑
(3)

 𝑟𝑑
(4)

 𝑟𝑑
(5)

 𝑟𝑑
(6)

 𝑟𝑑
(7)

 𝑟𝑑
(8)

Bytes/entry 1 1 1 1 1 1 1 1

Total, bytes 2560 2560 2560 2560 2560 2560 2560 2560

#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #0-9 #10-19 #20-29 #30-39 #40-49 #50-59 #60-69 #70-79

#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ(𝑚,𝑠)

Figure 7. Circuit board with ADC AD7813, microcontroller MCS-51 and interface RS232C was used
for imitation of subsystems S2, . . . , S4. This module provides sensors data acquisition and their
transfer to network PC via the serial port and ADM202E chip.

Table 5. Addresses in MVLL containing parameters a, b of Literals.

#A18-A16: #000b Internal version of entries Parameter a
#A18-A16: #001b Internal version of entries Parameter b
#A18-A16: #100b External version of entries Parameter a
#A18-A16: #101b External version of entries Parameter b

Table 5 contains four equal parts. The first one refers to the internal version of entry em
and contains Literal’s parameter. During initial formation of the MVLL from the given truth
table (Table 1) namely equal values a = b for Literals X(a, b) are to be written in the MVLL.
However, for practical applications the minimization may be used in order to shorten the
calculation time. The efficiency of this procedure will depend on the specificity of data, and
in the general case the number of entries m may differ from the real number of product
terms in MVLL. That is why one should obligatory reserve the second identical part of
SRAM for Literal’s parameters b, which can be activated by the increment of addresses
#A18-A16 from 000 to 001. All other addresses will be the same. The third and the fourth
parts of the SRAM refer to parameters a and b taken from the external request or verification
task; they may be activated by #A18-A16=#100b and #101b. If one should approve only
the presence of an external entry in the MVLL, this external entry is to be written to
#A18-A16=#100b, but if one should approve the identity of external MVLL, both addresses
#100b and #101b will be needed for parameters a(e) and b(e). Other free addresses can be
involved for other external copies of MVLL.

Appl. Syst. Innov. 2023, 6, 51 21 of 33

Table 6. SRAM structure for MVLL segments with #A18-A16=#{000b, 001b, 100b, 101b}.

Variable r(1)d r(2)d r(3)d r(4)d r(5)d r(6)d r(7)d r(8)d

Bytes/entry 1 1 1 1 1 1 1 1
Total, bytes 2560 2560 2560 2560 2560 2560 2560 2560
#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #0-9 #10-19 #20-29 #30-39 #40-49 #50-59 #60-69 #70-79
#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable h1 h2 h3 h4 h5 h6 h7 h(m,s)

Bytes/entry 1 1 1 1 1 1 1 1
Total, bytes 256 256 256 256 256 256 256 256
#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #96 #95 #94 #93 #92 #91 #90 #89
#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8)

Bytes/entry 1 1 1 1 1 1 1 1
Total, bytes 256 256 256 256 256 256 256 256
#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #88 #87 #86 #85 #84 #83 #82 #81
#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable x(1) x(2) x(3) x(4) x(e1) x(e2) x(e3) x(e4)

Bytes/entry 1 1 1 1 1 1 1 1
Total, bytes 256 256 256 256 256 256 256 256
#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #105 #104 #103 #102 #100 #99 #98 #97
#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable H(int)
1 H(int)

2
IDagent Nlic m t Counter wn

Bytes/entry 1 1 2 2 1 5 1 1
Total, bytes 256 256 2 2 256 25600 10 3
#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #101 #80 #107 #106 #109 #108 #110-150 #151
#LB #0-255 #0-255 #0-1 #0-1 #0-255 #0-255 #0-255 #0-255

Variable p(1)
D p(2)

D p(3)
D p(4)

D p(5)
D p(6)

D p(7)
D p(8)

D
Bytes/entry 1 1 1 1 1 1 1 1
Total, bytes 256 256 256 256 256 256 256 256
#A18-A16 #000b #000b #000b #000b #000b #000b #000b #000b

#SB #152-
161

#162-
171

#172-
181

#182-
191

#192-
201

#202-
211

#212-
221

#222-
231

#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Parts of MVLL (with #A18-A16=#{000b, 001b, 100b, 101b} has the structure, shown in
Table 6. For every of entries em besides its number m, m ≤ M = 256, and the time stamp
tm, its SRAM segment contains the store of fragmented quasi-random keys r(1)1 , . . . , r(8)D ,
internal hash values H(int) (the second of them is the unused reserve for further) and Q
external hash values h1, . . . , hQ. Also the entry em should contain fields for agent’s identifier

IDag, license number Nlic. Special fields should be reserved for parameters p(n)dn
received

from internal subsystems S2, . . . , S4. Besides this, auxiliary data fields in Counter can be
used. Previous entry em−1 can be chosen by the input of m− 1.

The proposed MVLL structure saves enough unused cells and can be further optimized.
One should especially note that as the register Rg1 in Figure 6 is used only partially, it
potentially can address SRAM with 32 MB capacity for further AI modelling.

For software debugging it is more comfort to use the shortened and the regrouped
fragment of SRAM shown as Table 7.

Appl. Syst. Innov. 2023, 6, 51 22 of 33

Table 7. Addresses #SB/LB of input variables and auxiliary counters in MVLL.

Variable m t IDag Nlic x(1) x(2), x(3) x(4)

#SB #109 #108 #107 #106 #105 #104 #103 #102
#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable H(int) x(e1) x(e2), x(e3) x(e4) h1 h2 h3

#SB #101 #100 #99 #98 #97 #96 #95 #94
#LB #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255 #0-255

Variable h4 h5 h6 h7 h(out) - - -

#SB #93 #92 #91 #90 #89 - - -
#LB #0-255 #0-255 #0-255 #0-255 #0-255 - - -

Counter pt PT h(out) h(∗out) Identity - - -

#SB #110 #111 #112 #113 #114 - - -
#LB #0-255 #0-255 #0-255 #0-255 #0-255 - - -

Verification of data with the help of MVLL includes first of all: (1) processing of the
data in the external node reply, sent to help the agent 1, and (2) reply of the subsystem S1
to the external agent, requesting approval data for a third party.

The first case needs the simplest procedure if all the agents and nodes use by default
the common format of MVLL. In fact it does not need any calculation of MVL functions
and is the formal comparison of entry parameters, evaluated by one or the majority of
data received from external nodes. The received data sequence refers to some entry em−k,
where k = 0, . . . , M − 1. As all addresses used in MVLL are fixed, the comparison of
suspicious data and the received copy can be easily done by the cycle taken for variables
from Table 7 and realized by the calculation of microassembler instruction CJNE A, P0, rel,
where accumulator A is to be loaded by numbers received from external node, value of port
P0 should be loaded from the internal copy of MVLL, and rel is the instruction to follow, if
values of A and P0 are not equal. Given further in Algorithm 2 software fragment CMPRE
demonstrates this procedure. Cuts “iv” and “ev” tag internal and external variables. The
number of external verifiers (loyal nodes) is 8 ones.

Application of this and given further subroutines suppose, that they are inserted after
the instruction START into the microassembler set of instructions:

ORG 0H
AJMP START
ORG 30H
START: . . .
.

END.
The second procedure mentioned above is to reply external request received from

some other agent to approve entry e∗i for a third party. This case implies that S1 in agent
A1 can process collective data within the ranks of collective collaboration of nodes. Then
it is necessary to calculate MVLL function for the received external data and to check,
if the external version is true. The task to calculate MVLL function h(out) = Fll(e

(∗)
i) is

disclosed in Algorithm 3, which is to use address data from Table 7. MVLL function is
written via operators.

Literals (X(a, b), MINs (*) and MAXs (+) given in Section 2, where any Literal X(a, b)
and product term pt can be equal either 0 or k− 1 only.

The first involved procedure is called SHPRTMS and is given by the subroutine in
Algorithm 4. It calculates the set of shortened product terms {pt1, . . . , ptm} according to
Algorithm 3 and procedures described in [50], using emulation of operators Literal and
MIN given in [19].

Appl. Syst. Innov. 2023, 6, 51 23 of 33

Algorithm 2. Subroutine CMPRE is to compare the received external version of entry with the “suspicious” internal one. Both
versions refer to the same agent.

INPUT: h(out) ← External parameter for approval,

m, t, IDag, Nlic, x(1)m , . . . , x(4)m , H(int)
m , x(e1)

m , . . . , x(e4)
m , h1,m, . . . , h8,m,

x(1)m−1, . . . , x(4)m−1, H(int)
m−1 , x(e1)

m−1, . . . , x(e4)
m−1, h1,m−1, . . . , hQ,m−1 ← Internal variables,

m(∗), t(∗),ID(∗)
ag , N(∗)

lic , x(∗1)m , . . . , x(∗4)m , H(∗int)
m , x(∗e1)

m , . . . , x(∗e4)
m , h(∗)1,m, . . . , h(∗)8,m

x(∗1)m−1, . . . , x(∗4)m−1, H(∗int)
m−1 , x(∗e1)

m−1 , . . . , x(∗e4)
m−1 , h(∗)1,m−1, . . . , h(∗)8,m−1 ← External variables.

1 CMPRE:MOV R7,#255; counter entries m/m-1 2 PRENT:MOV R3, R7; fix #LB of entry
3 MOV R6,#21; count. of vars 4 NEVAR:MOV P2, #0; #A18-A16 =#0 for iv
5 CLR P1.7; enable Rg1by CE 6 SETB P1.4; write #0 to Rg1
7 CLR P1.4 8 SETB P1.7; lock Rg1
9 RDIV:MOV P2,#109; #SB to read iv 10 CLR P1.6; enable Rg2 by CE
11 SETB P1.4; write #SB=#109 to Rg2 12 CLR P1.4
13 SETB P1.6; lock Rg2 14 MOV P2,#R3; #LB=#255 for iv
15 CLR P1.3; enable SRAM by CE 16 CLR P1.1; OE enables output of iv
17 MOV A,P0; read iv to A 18 SETB P1.1; disable output of SRAM
19 SETB P1.3; disable SRAM by CE 20 RDEV: MOV P2,#100b; #A18-A16 for ev
21 CLR P1.7; enable Rg1by CE 22 SETB P1.4; write #SB=#109 to Rg1
23 CLR P1.4 24 SETB P1.7; lock Rg1
25 MOV R1,P0; read ev 26 CJNE A,R1,ERROR; compare iv and ev
27 DJNZ R6,NEVAR; counter of vars 28 ERROR: INC R5; discrepancy counter
29 CJNE R7,#253,PRENT; process entry m-1 30 RETI

OUTPUT: R5→ Value of register R5 in MCS-51 indicates the number of discrepancies between internal and
external versions of entry ei(R5 = 0—equal, 6=0—number of errors).

Algorithm 3: The scheme to calculate h(out) = Fll(e
(∗)
i) and to verify external entry.

Given external parameters:
(1) vector of input variables ei combining entries i and i− 1;
(2) declared hash value h(out)

1. Calculation:
h(out) = Fll(ei) = h(1,1) ∗ pt1(ei) + . . . +h(m,1) ∗ ptm(ei), where
ptk(x) = X1 ∗ . . . ∗ XY tags the shortened product term
containing only Literals and MINs (*) without constants h(i,1).
Procedure includes 3 subroutines:

Non-zero pts: {pt1, . . . , ptm}; #SB=#110
Set of MINs: PT1 = MIN

(
h(1,1), pt1

)
, . . . , PTm = MIN(h(m,1), ptm); #SB=#111

MAX: h(ll) = MAX (PT1, . . . , PTm); #SB=#112

2. Comparison: of declared external h(∗out) with internal h(out); #SB=#113-114

Algorithm 4: Subroutine SHPRTMS is to calculate shortened product terms {pt1, . . . , ptm}.

INPUT: m, t, IDag,Nlic, x(1)m , x(2)m , x(3)m , x(4)m , H(int)
m , x(e1)

m , x(e2)
m , x(e3)

m , x(e4)
m ,

h1,m, . . . , hQ,m ← Input internal variables

1 SHPRMS: MOV R4,#255; counter of pts 2 MOV R3, #109; #SB-counter of vars
3 NPT: MOV R2,#255; counter of entries 4 NVAR1: MOV P2,#000b; #A18-A16=#000b for a
5 CLR P1.7; enable Rg1 by CE 6 SETB P1.4; Rg1 writes #A18-A16
7 CLR P1.4; 8 SETB P1.7; lock Rg1
9 MOV P2,R3; #SB=#109 10 CLR P1.6; enable Rg2 by CE
11 SETB P1.4; write #SB=#109 to Rg2 12 CLR P1.4
13 SETB P1.6; lock Rg2 14 MOV P2,R2; #LB counter of entries
15 CLR P1.3; enable SRAM by CE 16 CLR P1.1; OE enables output of SRAM
17 REAI:MOV R7,P0; read a 18 SETB P1.1; disable output of SRAM
19 SETB P1.3; disable SRAM 20 MOV P2,#001b; #A18-A16=#001b for b

Appl. Syst. Innov. 2023, 6, 51 24 of 33

21 CLR P1.7; enable Rg1 by CE 22 SETB P1.4; Rg1 writes #A18-A16
23 CLR P1.4; 24 SETB P1.7; lock Rg1
25 MOV P2,R3; #SB=#109 26 CLR P1.6; enable Rg2 by CE
27 SETB P1.4; write #SB to Rg2 28 CLR P1.4
29 SETB P1.6; lock Rg2 30 MOV P2,R2; #LB counter of entries
31 CLR P1.3; enable SRAM by CE 32 CLR P1.1; OE enables output of SRAM
33 REBI:MOV R6,P0; read b 34 SETB P1.1; disable output of SRAM
35 SETB P1.3; disable SRAM 36 MOV P2,#100b; ext var adress is #100b
37 CLR P1.7; enable Rg1 by CE 38 SETB P1.4; Rg1 writes #A18-A16
39 CLR P1.4; 40 SETB P1.7; lock Rg1
41 MOV P2,R3; #SB 42 CLR P1.6; enable Rg2 by CE
43 SETB P1.4; write #SB to Rg2 44 CLR P1.4
45 SETB P1.6; lock Rg2 46 MOV P2,R2; #LB counter of entries
47 CLR P1.3; enable SRAM by CE 48 CLR P1.1; OE enables output of SRAM
49 REVAR:MOV R5,P0; read input var 50 SETB P1.1; disable output of SRAM
51 SETB P1.3; disable SRAM 52 LITE: MOV A,R7; load a to calc Lit
53 CLR C; prepare carry bit 54 SUBB A, R5; a-var
55 JC CAB; jump if carry bit C=1 and varGRa 56 AJMP PT0; Lit=0 and the whole pt=0
57 CAB: CLR C 58 MOV A,R6; load b to calc Lit
59 CLR C; prepare carry bit 60 SUBB A,R5; b-var
61 JC PT0; go PT0 if bit C=1 as var GR b 62 NOP
63 DEC R3; 64 CJNE R3,#90,NVAR1;
65 MOV R3,#109; #SB in previous entry 66 DEC R2; for previous entry #LB=254
67 NVAR2:MOV P2,#000b; #000b for a 68 CLR P1.7; enable Rg1 by CE
69 SETB P1.4; Rg1 writes #A18-A16 70 CLR P1.4;
71 SETB P1.7; lock Rg1 72 MOV P2,R3; write #SB
73 CLR P1.6; enable Rg2 by CE 74 SETB P1.4; write #SB=#109 to Rg2
75 CLR P1.4 76 SETB P1.6; lock Rg2
77 MOV P2,R2; #LB counter of entries 78 CLR P1.3; enable SRAM by CE
79 CLR P1.1;OE enables output of SRAM 80 REAP:MOV R7,P0; read a
81 SETB P1.1; disable output of SRAM 82 SETB P1.3; disable SRAM
83 MOV P2,#001b; #A18-A16=#001b for b 84 CLR P1.7; enable Rg1 by CE
85 SETB P1.4; Rg1 writes #A18-A16 86 CLR P1.4;
87 SETB P1.7; lock Rg1 88 MOV P2,R3; #SB
89 CLR P1.6; enable Rg2 by CE 90 SETB P1.4; write #SB to Rg2
91 CLR P1.4 92 SETB P1.6; lock Rg2
93 MOV P2,R2; #LB counter of entries 94 CLR P1.3; enable SRAM by CE
95 CLR P1.1; OE enables output of SRAM 96 REBP:MOV R6,P0; read b
97 SETB P1.1; disable output of SRAM 98 SETB P1.3; disable SRAM
99 MOV P2,#100b; #A18-A16=#011b for b 100 CLR P1.7; enable Rg1 by CE
101 SETB P1.4; Rg1 writes #A18-A16 102 CLR P1.4;
103 SETB P1.7; lock Rg1 104 MOV P2,R3; write in #SB=#109
105 CLR P1.6; enable Rg2 by CE 106 SETB P1.4; write #SB to Rg2
107 CLR P1.4 108 SETB P1.6; lock Rg2
109 MOV P2,R2; #LB counter of entries 110 CLR P1.3; enable SRAM by CE
111 CLR P1.1; OE enables output of SRAM 112 REVAR2:MOV R5,P0; read inp var
113 SETB P1.1; disable output of SRAM 114 SETB P1.3; disable SRAM
115 LITPE: MOV A,R7; load a for Lit 116 CLR C; prepare carry bit
117 SUBB A, R5; a-var 118 JC CMB2; go CMB2 if C=1 as var GR a
119 AJMP PT0; Lit = 0 and whole pt = 0 120 CMB2: CLR C;
121 MOV A,R6; load b to compare with var 122 CLR C; prepare carry bit
123 SUBB A,R5; b-var 124 JC PT0; go PT0 if C = 1 as var GR b
125 DEC R3; 126 CJNE R3,#90, NVAR2;
127 PT0: MOV R0, #0; counter = #0 128 AJMP WRLITER;
129 PT1: MOV R0, #255; counter = #255 130 WRLITER:MOV P2,#000b; write results
131 CLR P1.7; enable Rg1 by CE 132 SETB P1.4; Rg1 writes #A18-A16
133 CLR P1.4; 134 SETB P1.7; lock Rg1

Appl. Syst. Innov. 2023, 6, 51 25 of 33

135 MOV P2,#110; to write in #SB=#110 136 CLR P1.6; enable Rg2 by CE
137 SETB P1.4; write #SB=#110 to Rg2 138 CLR P1.4
139 SETB P1.6; lock Rg2 140 MOV P2,R2; #LB is the counter of pt
141 CLR P1.3; enable SRAM by CE 142 CLR P1.1;OE enables output of SRAM
143 MOV P0,R0; write result from R0 144 SETB P1.1; disable output of SRAM
145 SETB P1.3; disable SRAM 146 DJNZ R4,NPT; test new pt
147 RETI 148

OUTPUT:{pt1, . . . , ptm} → “Shortened” product terms are written in SRAM

Second subroutine MINHMPT is given in Algorithm 5 and calculates the set of “full”
product terms including logic constants h(i,1), it exploits only operators MIN.

Algorithm 5: Subroutine MINHMPT to calculate the set of full product terms PT1 =

MIN
(

h(1,1), pt1

)
, . . . ,PTm = MIN(h(m,1), ptm).

INPUT: pt1, . . . , ptm ← “Shortened” product terms

1 MINHMPT:MOV R1, #89; #SB to h(i,1) 2 MOV R2, #255; counter of pts
3 MOV R3, #110; #SB=#110 to read pts 4 NEXTPT:MOV P2,#000b; #A18-A16
5 CLR P1.7; enable Rg1 by CE 6 SETB P1.4; Rg1 writes #A18-A16
7 CLR P1.4 8 SETB P1.7; lock Rg1
9 MOV P2,R1; addressing #SB 10 CLR P1.6; enable Rg2by CE
11 SETB P1.4; write #SB to Rg2 12 CLR P1.4
13 SETB P1.6; lock Rg2 14 MOV P2,R2; #LB is the counter of pts
15 CLR P1.3; enable SRAM by CE 16 CLR P1.1;OE enables output of SRAM
17 MOV A,P0; read h 18 SETB P1.1; disable output of SRAM
19 SETB P1.3; disable SRAM 20 MOV P2,R3; #SB to read pt
21 CLR P1.6; enable Rg2by CE 22 SETB P1.4; write #SB to Rg2
23 CLR P1.4 24 SETB P1.6; lock Rg2
25 CLR P1.3; enable SRAM by CE 26 CLR P1.1;OE enables output of SRAM
27 MOV R7,P0; read pt 28 SETB P1.1; disable output of SRAM
29 SETB P1.3; disable SRAM 30 MOV R3,A; save value of Acc
31 CLR C 32 SUBB A,R7
33 JNC MIN_H 34 MOV R0,R7
35 MIN_H:MOV R0,R3; MIN value is in R0 36 WRMINPT:MOV P2,#000b; #A18-16
37 CLR P1.7; enable Rg1 by CE 38 SETB P1.4; Rg1 writes#A18-A16
39 CLR P1.4; 40 SETB P1.7; lock Rg1
41 MOV P2,#111; write in #SB=#111 42 CLR P1.6; enable Rg2by CE
43 SETB P1.4; write #SB=#111 to Rg2 44 CLR P1.4
45 SETB P1.6; lock Rg2 46 MOV P2,R2; #LB is the counter of pts
47 CLR P1.3; enable SRAM by CE 48 CLR P1.1;OE enables output of SRAM
49 MOV P0,R0; write result of comparison 50 SETB P1.1; disable output of SRAM
51 SETB P1.3; disable SRAM 52 DJNZ R2, NEXTPT
53 RETI

OUTPUT: PT1, . . . , PTm → 256 “full” product terms are written in SRAM

The first of necessary subroutines is the third MVLL procedure MAXPT uses operator
MAX for the set of obtained above product terms PTs and is given in Algorithm 6.

The obtained value h(out) is to be compared with the declared external version h(∗out) ;
this should approve (or not) data of the third party.

Given above result has used internal hash values H(int), which can be calculated by
means of two simple hashing procedures for binary XOR given above in Section 3.4. This
method of hashing is represented by subroutines HASHN (I step) and HASHINT (II step).
They directly respond to procedures from Algorithm 3 and are shown in Algorithms 7 and 8.
The first of them estimates the hash value for quasi-random fragmented key and internal
parameters. The used for hashing binary XOR operator responds in the specification list of

Appl. Syst. Innov. 2023, 6, 51 26 of 33

MCS-51 to XRL. Name of instruction RDWN prompts the reading of corresponding wn, as
in general case the number of documented parameters of subsystems may differ.

Algorithm 6: Subroutine MAXPTS calculates final result PTm = MAX (PT1, . . . ,PTm).

INPUT: PT1, . . . , PTm ← “Full” product terms

1 MAXPTS:MOV R1,#111; #SB111 for PTs 2 MOV R2,#255; counter of PTs
3 MOV P2,#000b; output #A18-A16 for Rg1 4 CLR P1.7; enable Rg1 by CE
5 SETB P1.4; Rg1 writes #A18-A16 6 CLR P1.4
7 SETB P1.7; lock Rg1 8 MOV P2,R1; addressing #SB=#111
9 CLR P1.6; enable Rg2 by CE 10 SETB P1.4; write #SB=#111 to Rg2
11 CLR P1.4 12 SETB P1.6; lock Rg2
13 MOV P2,R2; #LB is the counter of PTs 14 CLR P1.3; enable SRAM by CE
15 CLR P1.1;OE enables output of SRAM 16 MOV A,P0; read PT
17 SETB P1.1; disable output of SRAM 18 SETB P1.3; disable SRAM
19 DEC R2 20 NEXTPT:MOV P2,R2
21 CLR P1.3; enable SRAM by CE 22 CLR P1.1;OE enables output of SRAM
23 MOV R7,P0; read next PT 24 SETB P1.1; disable output of SRAM
25 SETB P1.3; disable SRAM 26 MOV R3,A; save value of Acc
27 CLR C 28 SUBB A,R7
29 JNC MAX_N1 30 MOV R0,R7
31 MAX_N1:MOV R0,R3 32 DJNZ R2, NEXTPT
33 RETI

OUTPUT: R0→ h(out) , result is written in register R0

Algorithm 7: Subroutine HASHN (I step).

INPUT: N← number of subsystems (N = 3)
w1, . . . , wn← numbers of documented parameters in sybsystems

r(n)dn
← quasi-random fragmented keys

1 HASHN: MOV R3,#255; initial #LB 2 MOV R2,#3; N of subsystems
3 RDWN:MOV P2,#151; SB to read WN 4 CLR P1.6; enable Rg2by CE
5 SETB P1.4; write #SB=#151 to Rg2 6 CLR P1.4
7 SETB P1.6; lock Rg2 8 MOV P2,#R3; addressing #LB
9 CLR P1.3; enable SRAM by CE 10 CLR P1.1; OE enables output WN
11 MOV A,P0; read WN 12 SETB P1.1; disable SRAM output
13 SETB P1.3; disable SRAM 14 RDLB: MOV P2,#10; #SB of rd2
15 CLR P1.6; enable Rg2by CE 16 SETB P1.4; write #SB to Rg2
17 CLR P1.4 18 SETB P1.6; lock Rg2
19 NEXTKEY1: MOV P2,R3; #LB 20 CLR P1.3; enable SRAM by CE
21 CLR P1.1;OE enables output of LB 22 MOV R4,P0; read current LB
23 SETB P1.1; disable output of SRAM 24 SETB P1.3; disable SRAM
25 NEXTHN:MOV R4, #87; go to # of H(2) 26 RDRD2: MOV P2,R4; read H(2)
27 CLR P1.6; enable Rg2by CE 28 SETB P1.4; write #87 to Rg2
29 CLR P1.4 30 SETB P1.6; lock Rg2
31 NEXTKEY2: MOV P2,R3; addressing #LB 32 CLR P1.3; enable SRAM by CE
33 CLR P1.1;OE enables output rd 34 MOV A,P0; read current rd
35 RDPN: MOV P2,#162; #SB(Rg2) to read pn 36 CLR P1.6; enable Rg2by CE
37 SETB P1.4; write #162 to Rg2 38 CLR P1.4
39 SETB P1.6; lock Rg2 40 NEXTKEY: MOV P2,R3; #LB
41 CLR P1.3; enable SRAM by CE 42 CLR P1.1;OEenables output p2
43 MOV R1,P0; read current pn 44 XOR:XRL A,R1; rd XOR p2 write
45 DJNZ R3,RDPN 46 MOV R5,#89; go field of H(n)
47 WRHN: MOV P2,R5; SB to write H(n) 48 CLR P1.6; enable Rg2by CE

Appl. Syst. Innov. 2023, 6, 51 27 of 33

49 SETB P1.4; write #89 to Rg2 50 CLR P1.4
51 SETB P1.6; lock Rg2 52 MOV P2,R3; #LB to write H(n)
53 CLR P1.3; enable SRAM by CE 54 CLR P1.0; enable WR of H(n)
55 MOV P0,A; write H(n) from ACC 56 SETB P1.0; disable WR
57 SETB P1.3; disable SRAM 58 DJNZ R2,XOR; next n+1 for H(n)
59 INC R5; enlarge #SB for H(n+1) 60 DJNZ R4, WRHN;
61 RETI

OUTPUT: H(2), . . . , H(4)→ The set of hash values of subsystems

Further procedure HASHINT is given in Algorithm 8 and refers to the calculation of
integral hash value H(int) for all subsystems of the agent. Instruction RDHN in Algorithm
8 begins reading of the H(n), WRHINT writes the resulting value of H(int).

Algorithm 8: Subroutine HASHINT (II step).

INPUT:H(2), . . . , H(4)← The set of hash functions of subsystems S2, . . . , S4

1 HASHINT: MOV R3,#255; initial #LB 2 MOV R2,#3; number of SN
3 RDHN: MOV R5,#89; #field H(n) 4 CLR P1.6; enable Rg2by CE
5 SETB P1.4; write #SB=#89 to Rg2 6 CLR P1.4
7 SETB P1.6; lock Rg2 8 MOV P2,R3; #LB to read H(i)
9 CLR P1.3; enable SRAM by CE 10 CLR P1.1; OE enable output H(i)
11 MOV A,P0; read H(i) to ACC 12 SETB P1.1; disable output of SRAM
13 RDHN: INC R5; go to # of next H(i+1) 14 CLR P1.3; enable SRAM by CE
15 CLR P1.1; OE enable output H(n) 16 MOV R1,P0; read H(i) to R2
17 SETB P1.1; disable output of SRAM 18 XOR:XRL A,R1; Hi XOR Hi+1
19 DEC R3; go to next 20 DJNZ R2,RDHN
21 WRHINT: MOV R5,#104; #SB to write 22 MOV P0,#R5;
23 CLR P1.6; enable Rg2by CE 24 SETB P1.4; write #104 to Rg2
25 CLR P1.4 26 SETB P1.6; lock Rg2
27 MOV P0,A; output HINT from ACC 28 CLR P1.3; enable SRAM by CE
29 CLR P1.0; enable WR HINT into SRAM 30 SETB P1.0; disable WR
31 SETB P1.3; disable SRAM 32 RETI

OUTPUT: H(int) → Integral hash value of subsystems S2, . . . , S4

For brevity the procedure TRKEYS for distribution of fragmented keys by S1 to
subsystems S2, . . . , S4 is not shown as it does not contain MVL specificity.

Imitation of subsystems S2, . . . , S4 by the module given in Figure 6 was modelled
by earlier designed module for data acquisition by ADC and transfer of obtained data
array from buffer SRAM KR537RU8 to external PC. This procedure can be used for slow
enough MVLL transfer to external nodes by groups of bytes. Parts of MVLL or results of
ADC measurements with the length of 256 bytes can be transferred to external computer
via embedded MCS-51’s and interface RS232C for serial port with ADM202E chip [80].
Certainly, special conjugated C++ program was used in the receiving PC. The microassem-
bler program for control of data acquisition and RS232C transfer module (in Figure 7) is
shown in Supplement to demonstrate that given above MVLL procedures have the same
level of complexity as routine ADC and RS232C software. It includes two subroutines for
laboratory data acquisition from one of 4 possible sensors and forms data array in the small
capacity buffer SRAM. The transfer scheme uses standard transceiver SCON and buffer
register SBUF. This software illustrates quite flexible resources of MCS-51, capable e.g., to
adapt 10 bits ADC to 8 bit microcontroller by forming double sequence, composed sepa-
rately of senior bytes and lower bytes, containing only 2 bits. Essentially, modeling of MVL
functions and MVLL schemes does not create any specific hardships for microassembler
programming. The length of given above procedures is mainly determined by addressing
of external SRAM by trigger registers.

Appl. Syst. Innov. 2023, 6, 51 28 of 33

However, final commutation of schemes in Figures 6 and 7 needs not only to optimize
commutation of control pins, but demands modelling of decision–making module and is
out of discussion here.

Microassembler subroutines for calculation of AGA operators MINIMUM, MAXI-
MUM, and Literal were also given earlier in [19], and MVL function calculation in C
language was shown in Supplement in [18].

Brief comparative estimations of calculation time for MVL functions can be based
on data given in [19], were for k = 256 truth levels и n = 12 variables the calculation
needs ≈210,000 work cycles and 0.1 s at 24 MHz, where AGA operators minimally possible
parameters are t MIN-MAX ≈ 4 µs and t Literal ≈ 9 µs.

Results of microassembler modeling.

• Given above 8-bit circuit boards and microassembler fragments demonstrate the
principal possibility to adapt MVLL model with 21 variable and k = 256 logic levels to
the small-scale network structure of 8-bit microcontrollers in the agent.

• Dual-chips scheme with external SRAM can be used as a stackable test platform for
low-throughput agents for IoT and other tasks, using analog and digital sensors.

• SRAM with 1 MB capacity is quite enough to design the necessary structure of MVLL.
Not less than 8 external verifiers can be used for approval of at least 256 independent
entries in the MVLL. Detailed preparation of SRAM structure for MVLL provides the
possibility for more quick addressing of bytes and transfer between microcontrollers.
Principally, for used circuit boards SRAM can be enlarged up to 32 Mbytes.

• The distribution of fragmented keys, the acquisition of measurements data, and
hashing procedures can be realized by routine microassembler programming.

• Designed methods promise new applications of QKD lines, necessary only episodically
in the trusted service zone. Interaction with quantum line will strongly depend on
its specification.

• In the used platform and model of MVLL the overall number of visited checkpoints in
the route verification task may achieve at least 256 ones.

• Designed schemes and algorithms with 8-bit data structure can be easily commutated
with further AGA modelling of blocking terms and additional data protection methods.

• It is substantial, that the structure of traditional controllers can successfully com-
bine AGA and Boolean operators within the heterogeneous logic architecture of the
agent [18].

• Detailed analysis of modern commercial wireless radiofrequency modules is needed
further to choose reasonable data channels for communications with external nodes.

6. Discussion

The reason to propose modified version of MVLL is the desire to expand data exchange
between external and internal components of the agent in order to provide more reliable
data verification for prospective trust estimates and AI procedures. If the communication
line of robot is not reliable or if one suspects activity of an eavesdropper, then it is quite
natural to compare additionally data obtained from external storages with ones, extracted
from the internal memory of the agent.

Proposed version of MVLL is represented by the rigidly given structure in SRAM,
providing the design of software and the verification of correct interaction of supervisor S1
with subsystems S2, . . . , S4 in the agent. Given examples of microassembler subroutines
demonstrate the possibility to realize short enough procedures by means of the small-scale
hardware structure of well-known microcontrollers MCS-51. Certainly, such scheme is
to be somewhat adapted to more productive controllers and FPGAs, as well as to USB
controllers.

Such aspect, as interaction with modern modules for wireless communications in IoT
and IoV should be investigated separately.

Another actual problem is to appreciate, if more levels (or layers) of data mixing
in entries will be efficient, thus imitating more deep mixing of blocks in BC schemes.

Appl. Syst. Innov. 2023, 6, 51 29 of 33

Principally such procedure can be based just on used definition of MVLL, applied for
selected variables from different entries.

Integration of protective blocking logic terms (see Section 2.4) needs to exclude logic
constant k − 1 from active use and to reserve it for data protection service. First possible
way here needs to use the shortened number of 255 truth levels instead of 256 ones, and to
make necessary corrections in conjugated procedures and cycles. More original alternative
here is to use heterogeneous logic architecture [18] and to apply enlarged number of truth
levels in the supervisor subsystem. Here one can use e.g., 512 truth levels, described by the
emulation of 16-bit calculations just in the 8-bit platform. But such method needs to choose
some model of decision-making module and to design duplex mapping for subsystems
with different truth levels k.

Separate item is the interaction and adaptation to real QKD line, and the realization
of the random oracle scheme [18] with high enough capacity, adequate for practical use.
Principally, in protocol [41] the random oracle is not the secret device and can serve all
requests even coming from eavesdroppers!

Some discussion is necessary for the possibility to use secured link to PC during
service and verification sessions.

Much more dramatic and complex discussion refers to the design of decision-making
module, which is critical for the choice of SRAM structure and agents communication
language, which is not specific for narrow knowledge field. From one side, loyal network
nodes are to use standard network tools, but from the other side, agents in MAS should
imitate people and combine universal robotic language with additional secret coding.
Namely the specifics of decision making module dictates the SRAM structure and the
information capacity of communication module.

Interesting aspect for further research is the possible interaction of network robotics
with business management processes [81] and industrial ones [82]. Although the distant
admin or the user may be far away from the robotic system, his unmanned logistics or
manufacturing of goods is still in the field of view of business analytics [81], whose services
also can exploit automatic systems and agents. Such interaction is served by the large
number of legal norms and rules, which should be monitored and approved by network
devices. That is why the task is to propose new solutions, which are suitable not only for
hardware agents, but may be extended for software agents. Respectively, such methods
should be compatible with common network technologies like blockchain, but besides
this they should be adapted to controllers level. Further research is to show, how business
technologies with customer relationship management (CRM) [81] strategy can be combined
with the proposed above blockchain-induced scheme. Possible interaction with hardware
robotic platforms seems to be easier to begin with a agent’s customer model, taking into
account such basic parameters, as customer identification and attraction. Identification here
can use verification and trust estimation procedures, and attraction should be the scheme to
propose adequate services for approved routes and visited objects. Certainly, such business
procedures will also require secured communications, where quantum technologies can
propose unique solutions.

The proposed version of MVLL potentially may be used, when the agent following
the route should approve visited or prohibited for visits zones of maps, or should fix bands
of acceptable parameters for some time intervals or map zones. Such models may be actual
for unmanned parking systems, dumping of garbage and sludge only in specially prepared
places, for loading and handling devices, for cargo security, loading monitoring systems,
and for the speed control within a residential zone.

7. Conclusions

The extended version of MVL linked list is proposed for mobile network agents,
where BC-type distributed external data storage is adapted for joint work with internal
low-throughput microcontroller platforms. Modified scheme of MVLL can integrate both
internal parameters of agent’s subsystems and external nodes. Proposed new version

Appl. Syst. Innov. 2023, 6, 51 30 of 33

of MVLL is based on k-valued Allen-Givone algebra, comfort for high-dimensional data
coding and verification procedures in multiparametric systems [18,19].

Parameters of internal subsystems of the mobile agent are to be approved by assigning
the set of quasi-random hash values of fragmented keys, preliminary distributed by QKD
line; also binary hashing XOR is to be applied. Traditional binary XOR function is chosen
as the simplest hash function in microcontrollers for mixing of data of internal subsystems
in the MVLL. The second step of the procedure calculates final XOR hash value for brevity
of final data. Further obtained internal hash value is to be included into the MVLL, it may
be complemented by parameters of external nodes, and is to be approved by the set of
external quasi-random hash values according to earlier proposed MVLL scheme. These
“fingerprints” of internal subsystems and external nodes are also can be accumulated in
the memory of internal supervisor subsystem of the agent for verification in case of faults
and errors, also some documented physical parameters can be kept in memory of other
subsystems for check-up procedures. Such version of MVLL takes into account that free
resources in internal subsystems are too limited to save large volumes of verification data.

Microassembler software examples for microcontroller platforms MCS-51 are given
for basic MVLL adressing, hashing and conjugated measurements.

Specific features of route verification task are also analysed, what motivates to research
further the ways to enlarge the number of logic variables in MVLL and to subdivide it into
separate pages (or volumes).

The advantage of the proposed AGA based version of MVLL is that primitive logic
procedures does not give the possibility to bypass any steps of data procession and to use
traditional attacks; at the same time the structure of quasi-random hash values provides
the unpredictability of data, necessary for verification without the disclosing of real values.

As a whole, the combination of externally approved mixed internal and external
parameters is the next step to avoid trusted nodes for agents collective. Designed scheme
is intended for protection of agents working distantly, when it is difficult to provide
continious monitoring. MVLL storage for critical data of a robotic system is the way to
approve identity of distant robots and IoT.

Author Contributions: Conceptualization, A.Y.B.; Methodology, A.Y.B.; Resources, N.A.V.; Software,
A.Y.B.; Validation, N.A.V.; Writing—original draft, A.Y.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: Authors declare no conflict of interest.

References
1. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A Review on Autonomous Vehicles: Progress,

Methods and Challenges. Electronics 2022, 11, 2162. [CrossRef]
2. Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Jolfaei, A.; Das, R. Attacks on Self-Driving Cars and Their Countermeasures: A

Survey. IEEE Access 2020, 8, 207308–207342. [CrossRef]
3. Kassai, E.; Azmat, M.; Kummer, S. Scope of Using Autonomous Trucks and Lorries for Parcel Deliveries in Urban Settings.

Logistics 2020, 4, 17. [CrossRef]
4. Thomson, L.; Kamalaldin, A.; Sjödin, D.; Parida, V. A maturity framework for autonomous solutions in manufacturing firms: The

interplay of technology, ecosystem, and business model. Int. Entrep. Manag. J. 2021, 18, 125–152. [CrossRef]
5. Elgazzar, K.; Khalil, H.; Alghamdi, T.; Badr, A.; Abdelkader, G.; Elewah, A.; Buyya, R. Revisiting the internet of things: New

trends, opportunities and grand challenges. Front. Internet Things 2022, 1, 7. [CrossRef]
6. Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review.

J. Big Data 2019, 6, 111. [CrossRef]
7. Mishra, A. Embedded Development Platforms To Design Prototypes Of Internet Of Things (IoT) Applications: A Study. Int. J.

Res. Advent Technol. 2019, 7, 344–353. [CrossRef]
8. Bagga, P.; Hans, R. Mobile Agents System Security: A Systematic Survey. ACM Comput. Surv. 2017, 50, 1–45. [CrossRef]
9. Alluhaybi, B.; Shady, M.; Alzhrani, A.; Thayananthan, V. A Survey: Agent-based Software Technology Under the Eyes of Cyber

Security, Security Controls, Attacks and Challenges. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 8–211. [CrossRef]

https://doi.org/10.3390/electronics11142162
https://doi.org/10.1109/ACCESS.2020.3037705
https://doi.org/10.3390/logistics4030017
https://doi.org/10.1007/s11365-020-00717-3
https://doi.org/10.3389/friot.2022.1073780
https://doi.org/10.1186/s40537-019-0268-2
https://doi.org/10.32622/ijrat.742019133
https://doi.org/10.1145/3095797
https://doi.org/10.14569/IJACSA.2019.0100828

Appl. Syst. Innov. 2023, 6, 51 31 of 33

10. Abdullah, S.; Almagrabi, A.O.; Ullah, I. A New Approach to Artificial Intelligent Based Three-Way Decision Making and
Analyzing S-Box Image Encryption Using TOPSIS Method. Mathematics 2023, 11, 1559. [CrossRef]

11. Sudharson, K.; Arun, S. Security Protocol Function Using Quantum Elliptic Curve Cryptography Algorithm. Intell. Autom. Soft
Comput. 2022, 34, 1769–1784. [CrossRef]

12. Bykovsky, A.Y.; Kompanets, I.N. Quantum cryptography and combined schemes of quantum cryptography communication
networks. Quantum Electron. 2018, 48, 777–801. [CrossRef]

13. Poncinelli Filho, C.; Marques, E., Jr.; Chang, V.; Dos Santos, L.; Bernardini, F.; Pires, P.F.; Ochi, L.; Delicato, F.C. A Systematic
Literature Review on Distributed Machine Learning in Edge Computing. Sensors 2022, 22, 2665. [CrossRef] [PubMed]

14. Le, T.-V.L.T.-V.; Le, C.-L.H.T.-V. A Systematic Literature Review of Blockchain Technology: Security Properties, Applications and
Challenges. J. Internet Technol. 2021, 22, 789–801. [CrossRef]

15. Li, Z.; Zhong, R.Y.; Tian, Z.; Dai, H.-N.; Barenji, A.V.; Huang, G.Q. Industrial Blockchain: A state-of-the-art Survey. Robot. Comput.
Manuf. 2021, 70, 102124. [CrossRef]

16. Chowdhury, N. Inside Blockchain, Bitcoin, and Cryptocurrencies; ImprintAuerbach Publications: New York, NY, USA, 2019.
[CrossRef]

17. Broadbent, A.; Schaffner, C. Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 2015, 78, 351–382.
[CrossRef]

18. Bykovsky, A.Y. Heterogeneous Network Architecture for Integration of AI and Quantum Optics by Means of Multiple-Valued
Logic. Quantum Rep. 2020, 2, 126–165. [CrossRef]

19. Bykovsky, A.Y. Multiple-Valued Logic Modelling for Agents Controlled via Optical Networks. Appl. Sci. 2022, 12, 1263. [CrossRef]
20. Xu, F.; Ma, X.; Zhang, Q.; Lo, H.-K.; Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020,

92, 025002. [CrossRef]
21. Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. npj Quantum Inf. 2016, 2, 16021. [CrossRef]
22. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Hoboken, HJ, USA, 2021.
23. Kamdar, R.; Paliwal, P.; Kumar, Y. A State of Art Review on Various Aspects of Multi-Agent System. J. Circuits, Syst. Comput.

2018, 27, 1830006. [CrossRef]
24. Jesus, E.F.; Chicarino, V.R.L.; De Albuquerque, C.V.N.; Rocha, A.A.D.A. A Survey of How to Use Blockchain to Secure Internet of

Things and the Stalker Attack. Secur. Commun. Networks 2018, 2018, 9675050. [CrossRef]
25. Zhuang, P.; Zamir, T.; Liang, H. Blockchain for Cybersecurity in Smart Grid: A Comprehensive Survey. IEEE Trans. Ind. Informatics

2020, 17, 3–19. [CrossRef]
26. Prabadevi, B.; Deepa, N.; Pham, Q.V.; Nguyen, D.C.; Reddy, T.; Pathirana, P.N.; Dobre, O. Toward Blockchain for Edge-of-Things:

A New Paradigm, Opportunities, and Future Directions. IEEE Internet Things Mag. 2021, 4, 102–108. [CrossRef]
27. Bräunl, T. Embedded Robotics: From Mobile Robots to Autonomous Vehicles with Raspberry Pi and Arduino, 4th ed.; Springer:

Singapore, 2022. [CrossRef]
28. Buehler, M.; Iagnemma, K.; Singh, S. (Eds.) The 2005 DARPA Grand Challenge: The Great Robot Race; Springer: Berlin/Heidelberg,

Germany, 2007.
29. Bykovsky, A.Y. Multiple-Valued Logic and Neural Network in the Position-Based Cryptography Scheme. J. Russ. Laser Res. 2021,

42, 618–630. [CrossRef]
30. Brogan, C.; Smith, J. Trust Agents: Using the Web to Build Influence, Improve Reputation, and Earn Trust, 10th ed.; John Wiley:

Hoboken, NJ, USA, 2020.
31. Ali, H.; Papadopoulos, P.; Ahmad, J.; Pitropakis, N.; Jaroucheh, Z.; Buchanan, W.J. Privacy-preserving and Trusted Threat

Intelligence Sharing using Distributed Ledgers. In Proceedings of the 2021 14th International Conference on Security of
Information and Networks (SIN), Edinburgh, UK, 15–17 December 2021; pp. 1–6. [CrossRef]

32. Singh, J.; Sinha, A.; Goli, P.; Subramanian, V.; Shukla, S.K.; Vyas, O.P. Insider attack mitigation in a smart metering infrastructure
using reputation score and blockchain technology. Int. J. Inf. Secur. 2021, 21, 527–546. [CrossRef]

33. Ali, H.; Ahmad, J.; Jaroucheh, Z.; Papadopoulos, P.; Pitropakis, N.; Lo, O.; Abramson, W.; Buchanan, W.J. Trusted Threat
Intelligence Sharing in Practice and Performance Benchmarking through the Hyperledger Fabric Platform. Entropy 2022, 24, 1379.
[CrossRef]

34. Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Asaad, S.M.; Maghdid, H.S. Trusted Autonomous Vehicle: Measuring Trust
using On-Board Unit Data. 18th IEEE International Conference On Trust, Security And Privacy. In Proceedings of the Computing
And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE),
Rotorua, New Zealand, 5–8 August 2019; pp. 787–792.

35. Asaad, S.M.; Maghdid, H.S. A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges
and Future Perspectives. Comput. Netw. 2022, 212, 109041. [CrossRef]

36. Asaad, S.M.; Potrus, M.Y.; Ghafoor, K.Z.; Maghdid, H.S.; Mulahuwaish, A. Improving Positioning Accuracy Using Optimization
Approaches: A Survey, Research Challenges and Future Perspectives. Wirel. Pers. Commun. 2021, 122, 3393–3409. [CrossRef]

37. Babu, S.; Parthiban, A.R.K. DTMR: An adaptive Distributed Tree-based Multicast Routing protocol for vehicular networks.
Comput. Stand. Interfaces 2021, 79, 103551. [CrossRef]

38. Noor, F.; Khan, M.; Al-Zahrani, A.; Ullah, I.; Al-Dhlan, K. A Review on Communications Perspective of Flying Ad-Hoc Networks:
Key Enabling Wireless Technologies, Applications, Challenges and Open Research Topics. Drones 2020, 4, 65. [CrossRef]

https://doi.org/10.3390/math11061559
https://doi.org/10.32604/iasc.2022.026483
https://doi.org/10.1070/QEL16732
https://doi.org/10.3390/s22072665
https://www.ncbi.nlm.nih.gov/pubmed/35408281
https://doi.org/10.53106/160792642021072204007
https://doi.org/10.1016/j.rcim.2021.102124
https://doi.org/10.1201/9780429325533
https://doi.org/10.1007/s10623-015-0157-4
https://doi.org/10.3390/quantum2010010
https://doi.org/10.3390/app12031263
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1142/S0218126618300064
https://doi.org/10.1155/2018/9675050
https://doi.org/10.1109/TII.2020.2998479
https://doi.org/10.1109/iotm.0001.2000191
https://doi.org/10.1007/978-981-16-0804-9
https://doi.org/10.1007/s10946-021-10000-7
https://doi.org/10.1109/sin54109.2021.9699366
https://doi.org/10.1007/s10207-021-00561-8
https://doi.org/10.3390/e24101379
https://doi.org/10.1016/j.comnet.2022.109041
https://doi.org/10.1007/s11277-021-09090-y
https://doi.org/10.1016/j.csi.2021.103551
https://doi.org/10.3390/drones4040065

Appl. Syst. Innov. 2023, 6, 51 32 of 33

39. Khan, M.A.; Ullah, I.; Nisar, S.; Noor, F.; Qureshi, I.M.; Khanzada, F.U.; Amin, N.U. An Efficient and Provably Secure Certificateless
Key-Encapsulated Signcryption Scheme for Flying Ad-hoc Network. IEEE Access 2020, 8, 36807–36828. [CrossRef]

40. Zhi, Y.; Fu, Z.; Sun, X.; Yu, J. Security and Privacy Issues of UAV: A Survey. Mob. Netw. Appl. 2019, 25, 95–101. [CrossRef]
41. Khan, M.A.; Ullah, I.; Nisar, S.; Noor, F.; Qureshi, I.M.; Khanzada, F.; Khattak, H.; Aziz, M.A. Multi-access edge com-puting

(MEC) enabled flying ad-hoc networks with secure deployment using identity based generalized signcryption. Mob. Inf. Syst.
2020, 2020, 8861947.

42. Hayat, S.; Yanmaz, E.; Muzaffar, M. Survey on unmanned aerial vehicle networks for civil applications: A communica-tions
viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [CrossRef]

43. Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRaWAN Specification V1.0.2; Technical Report; LoRa Alliance: Beaverton,
OR, USA, 2016.

44. Mehta, P.; Gupta, R.; Tanwar, S. Blockchain envisioned UAV networks: Challenges, solutions, and comparisons. Comput. Commun.
2020, 151, 518–538. [CrossRef]

45. Adrian, T.; Talal, S.; Nicoleta, M.C. On Model Checking of a Robotic Mechanism. J. Robot. Autom. 2020, 4, 158–165. [CrossRef]
46. Pigozzi, F.; Medvet, E.; Nenzi, L. Mining Road Traffic Rules with Signal Temporal Logic and Grammar-Based Genetic Program-

ming. Appl. Sci. 2021, 11, 10573. [CrossRef]
47. Jeyaraman, S.; Tsourdos, A.; Żbikowski, R.; White, B. Kripke modelling approaches of a multiple robots system with minimalist

communication: A formal approach of choice. Int. J. Syst. Sci. 2006, 37, 339–349. [CrossRef]
48. Shen, C.; Pena-Mora, F. Blockchain for Cities—A Systematic Literature Review. IEEE Access 2018, 6, 76787–76819. [CrossRef]
49. Raja, G.; Manaswini, Y.; Vivekanandan, G.D.; Sampath, H.; Dev, K.; Bashir, A.K. AI-Powered Blockchain—A Decentralized

Secure Multiparty Computation Protocol for IoV. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), IEEE INFOCOM Virtual Conference, 6–9 July 2020; pp. 865–870. [CrossRef]

50. Allen, C.M.; Givone, D.D. The Allen-Givone Implementation Oriented Algebra. In Computer Science and Multiple-Valued Logic:
Theory and Applications; Rine, D.C., Ed.; North Holland: Amsterdam, The Netherlands, 1984; pp. 262–283.

51. Unruh, D. Quantum Position Verification in the Random Oracle Model. In Advances in Cryptology–CRYPTO 2014; Garay, J.A.,
Gennaro, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–18. [CrossRef]

52. Li, Y.; Lei, L.; Li, S. Computation tree logic model checking based on multi-valued possibility measures. Inf. Sci. 2019, 485, 87–113.
[CrossRef]

53. Chechik, M.; Devereux, B.; Easterbrook, S.; Gurfinkel, A. Multi-valued symbolic model-checking. ACM Trans. Softw. Eng.
Methodol. 2003, 12, 371–408. [CrossRef]

54. Kalimulina, E.Y. Lattice Structure of Some Closed Classes for Three-Valued Logic and Its Applications. Mathematics 2021, 10, 94.
[CrossRef]

55. Bai, Y.; Roth, Z.S. Classical and Modern Controls with Microcontrollers.Design, Implementation and Applications; Springer Nature
Switzerland AG: Basel, Switzerland, 2019. [CrossRef]

56. Rabah, K. Implementation of One-Time Pad Cryptography. Inf. Technol. J. 2004, 4, 87–95. [CrossRef]
57. Bykovsky, A.Y. A Multiple-Valued Logic for Implementing a Random Oracle and the Position-Based Cryptography. J. Russ. Laser

Res. 2019, 40, 173–183. [CrossRef]
58. Mathur, M.; Mhadalekar, S.; Mhatre, S.; Mane, V. Algorithmic Trading Bot. ITM Web Conf. 2021, 40, 03041. [CrossRef]
59. Li, Y.; He, J.; Chen, C.; Guan, X. Intelligent Physical Attack Against Mobile Robots With Obstacle-Avoidance. IEEE Trans. Robot.

2022, 39, 253–272. [CrossRef]
60. Gomez-Bravo, F.; Naharro, R.J.; García, J.M.; Galán, J.G.; Raya, M.S. Hardware Attacks on Mobile Robots: I2C Clock Attacking.

Robot 2015: Second Iberian Robotics Conference. In Advances in Intelligent Systems and Computing; Reis, L., Moreira, A., Lima, P.,
Montano, L., Muñoz-Martinez, V., Eds.; Springer: Cham, Switzerland, 2016; Volume 417, pp. 147–159. [CrossRef]

61. Wooters, W.K.; Zurek, W.H. A Single Quantum Cannot Be Cloned. Nature 1982, 299, 802–803. [CrossRef]
62. Galambos, M.; Bacsárdi, L. Tracking cryptographic keys and encrypted data using position verification. IET Quantum Commun.

2020, 1, 26–33. [CrossRef]
63. Wescott, T. Sec. 1.2 (Anatomy of a Control System). In Applied Control Theory for Embedded Systems; Elsevier/Newnes: Amsterdam,

The Netherlands, 2006.
64. Al-Dhaifallah, M. Construction and Evaluation of a Control Mechanism for Fuzzy Fractional-Order PID. Appl. Sci. 2022, 12, 6832.

[CrossRef]
65. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls Fundamentals and Applications;

Springer-Verlag London Limited: London, UK, 2010. [CrossRef]
66. Passino, K.M.; Yurkovich, S. Fuzzy-Control; Addision Wesley Longman: San Francisco, CA, USA, 1998.
67. Aboelala, O.; Lee, I.E.; Chung, G.C. A Survey of Hybrid Free Space Optics (FSO) Communication Networks to Achieve 5G

Connectivity for Backhauling. Entropy 2022, 24, 1573. [CrossRef] [PubMed]
68. Zavitsanos, D.; Ntanos, A.; Giannoulis, G.; Avramopoulos, H. On the QKD Integration in Converged Fiber/Wireless Topologies

for Secured, Low-Latency 5G/B5G Fronthaul. Appl. Sci. 2020, 10, 5193. [CrossRef]
69. Liu, Q.; Shi, L.; Sun, L.; Li, J.; Ding, M.; Shu, F. Path Planning for UAV-Mounted Mobile Edge Computing With Deep Reinforcement

Learning. IEEE Trans. Veh. Technol. 2020, 69, 5723–5728. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2974381
https://doi.org/10.1007/s11036-018-1193-x
https://doi.org/10.1109/COMST.2016.2560343
https://doi.org/10.1016/j.comcom.2020.01.023
https://doi.org/10.36959/673/366
https://doi.org/10.3390/app112210573
https://doi.org/10.1080/00207720500438472
https://doi.org/10.1109/ACCESS.2018.2880744
https://doi.org/10.1109/infocomwkshps50562.2020.9162866
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1016/j.ins.2019.02.003
https://doi.org/10.1145/990010.990011
https://doi.org/10.3390/math10010094
https://doi.org/10.1007/978-3-030-01382-0
https://doi.org/10.3923/itj.2005.87.95
https://doi.org/10.1007/s10946-019-09785-5
https://doi.org/10.1051/itmconf/20214003041
https://doi.org/10.1109/TRO.2022.3201394
https://doi.org/10.1007/978-3-319-27146-0_12
https://doi.org/10.1038/299802a0
https://doi.org/10.1049/iet-qtc.2020.0008
https://doi.org/10.3390/app12146832
https://doi.org/10.1007/978-1-84996-335-0
https://doi.org/10.3390/e24111573
https://www.ncbi.nlm.nih.gov/pubmed/36359661
https://doi.org/10.3390/app10155193
https://doi.org/10.1109/TVT.2020.2982508

Appl. Syst. Innov. 2023, 6, 51 33 of 33

70. Fan, J.S.; Chen, S.; Luo, X.; Zhang, Y.; Li, G.Y. A Machine Learning Approach for Hierarchical Localization Based on Multipath
MIMO Fingerprints. IEEE Comm. Lett. 2019, 23, 1765–1768. [CrossRef]

71. NIST SP 800-22 Revision 1a, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf (accessed on
12 February 2023).

72. Pugh, S.; Raunak, M.S.; Kuhn, D.R.; Kacker, R. Developing Effective Test Strategies for Cryptographic Algorithm Imple-Mentations.
In Proceedings of the LWC Workshop; Singapore, 6 November 2019. Available online: https://csrc.nist.gov/CSRC/media/
Presentations/systematic-testing-of-lightweight-cryptographic-im/images-media/sesssion11-raunak-systematic-testing.pdf (ac-
cessed on 12 February 2023).

73. Available online: https://www.bestprog.net/en/2017/10/09/c-logical-operations-bitwise-logical-operations-shift-operations-
the-xor-operation/ (accessed on 12 February 2023).

74. MCS 51 Microcontrollers Family User’s Manual. Available online: https://web.mit.edu/6.115/www/document/8051.pdf
(accessed on 12 February 2023).

75. Gregersen, C. A Complete Guide to Microcontrollers for IoT (23 July 2020). Available online: https://www.nabto.com/iot-
microcontroller-guide/ (accessed on 12 February 2023).

76. Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones
2023, 7, 211. [CrossRef]

77. Understanding GPS Principles and Applications. 2d Edition. Available online: https://d1.amobbs.com/bbs_upload782111/
files_33/ourdev_584835O21W59.pdf (accessed on 12 February 2023).

78. Available online: https://wiki.iarduino.ru/pages/NMEA-0183/ (accessed on 12 February 2023).
79. Arduino. Available online: https://www.arduino.cc/ (accessed on 7 May 2019).
80. Available online: https://www.alldatasheet.com/datasheet-pdf/pdf/48725/AD/ADM202E.html (accessed on 12 February 2023).
81. Guerola-Navarro, V.; Gil-Gomez, H.; Oltra-Badenes, R.; Soto-Acosta, P. Customer relationship management and its impact on

entrepreneurial marketing: A literature review. Int. Entrep. Manag. J. 2022, 13, 1–41. [CrossRef]
82. Barrera-Diaz, C.A.; Nourmohammadi, A.; Smedberg, H.; Aslam, T.; Ng, A.H.C. An Enhanced Simulation-Based Multi-Objective

Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems. Mathematics 2023, 11, 1527.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LCOMM.2019.2929148
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://csrc.nist.gov/CSRC/media/Presentations/systematic-testing-of-lightweight-cryptographic-im/images-media/sesssion11-raunak-systematic-testing.pdf
https://csrc.nist.gov/CSRC/media/Presentations/systematic-testing-of-lightweight-cryptographic-im/images-media/sesssion11-raunak-systematic-testing.pdf
https://www.bestprog.net/en/2017/10/09/c-logical-operations-bitwise-logical-operations-shift-operations-the-xor-operation/
https://www.bestprog.net/en/2017/10/09/c-logical-operations-bitwise-logical-operations-shift-operations-the-xor-operation/
https://web.mit.edu/6.115/www/document/8051.pdf
https://www.nabto.com/iot-microcontroller-guide/
https://www.nabto.com/iot-microcontroller-guide/
https://doi.org/10.3390/drones7030211
https://d1.amobbs.com/bbs_upload782111/files_33/ourdev_584835O21W59.pdf
https://d1.amobbs.com/bbs_upload782111/files_33/ourdev_584835O21W59.pdf
https://wiki.iarduino.ru/pages/NMEA-0183/
https://www.arduino.cc/
https://www.alldatasheet.com/datasheet-pdf/pdf/48725/AD/ADM202E.html
https://doi.org/10.1007/s11365-022-00800-x
https://doi.org/10.3390/math11061527

	Introduction
	Modern Platforms for Robotics Positioning and Communications
	Blockchain-Based Verification Schemes for Network Agents
	Multiple-Valued Logic for Data Verification Based on Blockchain Scheme
	Internal and External Data Verification Procedures of the Network Agent
	Possible Sources of Quasi-Random Keys for Hashing Procedures
	Heterogeneous Logic Models in Modern Controllers
	The Goal of the Paper

	Methods: MVL Linked List as the Data Protection Model
	Logic Functions of the Multiple-Valued Allen-Givone Algebra
	Possible Attacks Aimed at MVL Product Terms and the Role of Subsuming
	MVL Scheme of the Linked List
	Method of Additional Blocking Product Terms in the Linked List

	Results: Combined Hashing Scheme for MVL Linked List
	Modified MVLL with Mixing Data from Internal Subsystems and External Nodes
	Possible Sources of Short Fragmented Keys
	Acquisition of Internal Parameters of the Agent and Their Hashing
	Two-Steps XOR Hashing in Agent’s Subsystems
	Formation of Modified MVLL with Internal and External Parameters

	Results: MVLL Scheme for Route Verification Task
	Results: MVLL in Microcontroller Module
	Discussion
	Conclusions
	References

