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Abstract: The estimation of power curve is the central task for efficient operation and prediction
of wind power generation. It is often the case, however, that the actual data exhibit a great deal
of variations in power output with respect to wind speed, and thus the power curve estimation
necessitates the detection and proper treatment of outliers. This study proposes a novel procedure
for outlier detection and elimination for estimating power curves of wind farms by employing
clustering algorithms of vector quantization and density-based spatial clustering of applications with
noise. Testing different parametric models of power output curve, the proposed methodology is
demonstrated for obtaining power curves of individual wind turbines in a Korean wind farm. It is
asserted that the outlier elimination procedure for power curve modeling outlined in this study can
be highly efficient at the presence of noises.

Keywords: wind turbine; power curve; wind speed distribution; outlier elimination; clustering
algorithm

1. Introduction

It is inevitable to expand the implementation of renewable power plants in a transition
to low-carbon power generation, and wind power is recognized as one of the most promis-
ing renewable sources of power generation. For example, it is expected that the wind power
will account for approximately 30% of renewable power generation by 2034 in the Republic
of Korea [1]. Encountered with an increasing demand for precise performance analysis of
wind turbines (WTs), power curve modeling of individual WTs is crucial for an efficient
integration of wind generation into the power system [2]. Representing the power output
of WTs with respect to wind speed under ideal environment free from external noises,
the specification power curve is often provided by the manufacturer. It is not unusual,
however, that the actual power curve of installed WTs does not coincide with the power
curve specification mainly due to highly variable and hardly controllable operational and
environmental factors, such as component wear-out, breakdown maintenance, air density,
temperature, humidity, precipitation, etc. [3,4]. It is therefore pointed out in [5] that the pre-
diction error in generation output may be brought about by the improper use of theoretical
power curve as well as the variability in wind speed.

Power curve modeling has been extensively examined in the literature and the model-
ing approach can be categorized into parametric and nonparametric ones [3–6]. The former
postulates a mathematical model of which parameters are to be estimated from observed
data, whereas the latter may not be confined to specific models and a wide variety of candi-
date models may be scrutinized. The most recent development of modeling approaches
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often adopts different machine learning algorithms [7,8]. Interested readers are also referred
to [5,9] for the development of WT power curve modeling techniques. Since the adequacy
of modeling approach is highly dependent upon both the quantity and quality of available
data, no one model or method may not be said to be unequivocally or universally superior
to others. There exists a general consensus, however, that detecting and removing outliers
included in the data prior to modeling is essential for a more proper estimation of power
curves no matter which approach is employed [5,10]. Outliers may be caused by factors
directly related to the operation of WTs, such as output curtailment and outage due to
failure and maintenance of individual turbines, as well as simple measurement errors [10].
The behavior of outliers is also affected by the time resolution of data, and it is relatively
easy to detect outliers with higher time resolution, preferably with less than 10 min of time
resolution. It is often the case, however, that a sufficient amount of data with enough time
resolutions may not be readily available. For example, the measurement data for wind
speed and power output are taken hourly in most wind farms in the Republic of Korea.

This study is aimed at outlining the estimation of actual power curves which may
better account for operational and environmental variations than the specification power
curves. A more efficient and effective planning and operation of WTs may thus be enabled
by systematically detecting and eliminating outliers. Proposed is the outlier elimination
procedure under variable circumstances by adopting different clustering algorithms fre-
quently used in unsupervised machine learning. More specifically, the density-based
algorithm of DBSCAN (Density-Based Spatial Clustering of Applications with Noises) is
employed in combination with the partition-based K-means clustering algorithm. These
algorithms differ in their approach and assumptions, and it is asserted that the proposed
procedure may be efficient to detect and eliminate outliers from data with insufficient
time resolution as exemplified in the Korean wind farms. After taking outliers out of the
dataset, it is then necessary to fit the power curve with inlying data points for an effective
operation of individual wind turbines by better representing their actual power output.
Several parametric models widely employed in the literature, such as polynomial, Gom-
pertz, Weibull, and logistic functions [3,5], can be tested and compared for their fitness to
the refined data points to derive the corresponding power curve. The overall procedure
is demonstrated with the observations taken from WTs in a Korean wind farm site. The
remainder of this study is organized as follows: First, a brief description of power curve is
outlined and the behavior of outliers from actual observations is also discussed. Second, an
overall procedure for power curve modeling is proposed by employing clustering-based
machine learning algorithms and parametric curve fitting. The proposed procedure is then
demonstrated with the data from a Korean wind farm site having the time resolution of 1 h.
The concluding remarks follow in the last section.

2. Data and Method

Wind turbines covert the kinetic energy of wind into electric energy by using a wind
rotor and the aerodynamic forces are generated when wind passes over the blades of
the rotor. When the wind flows over the rotor blades, a lift force is generated due to the
difference in air pressure on the two sides of blade which causes the blade to rotate. As
the blades rotate, a shaft connected to a generator also rotates to spin the generator and
generate electric energy. The amount of energy produced depends upon the wind speed as
well as the technical characteristics of WTs. The power curve of wind turbines is a specific
type of power curve that describes the relationship between wind speed and the amount
of electrical power that can be generated by a wind turbine [11]. The power output of a
wind turbine is directly proportional to the wind speed, but the relationship is not linear.
Understanding the power curve of a wind turbine is crucial for wind farm operators to
maximize the energy output and economic efficiency of their wind turbines. By monitoring
and analyzing the power curve over time, operators can identify any issues or inefficiencies
with the turbines and take corrective action to improve their performance. Additionally,
the power curve can help predict the energy output of a wind farm, which can be used
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to estimate the economic viability of a project and inform energy planning and policy
decisions. A typical power curve for a wind turbine shows that the turbine produces little
or no power at wind speeds below a certain threshold, known as the cut-in speed. As
wind speed increases beyond the cut-in speed, the power output of the turbine increases,
reaching a maximum at the rated wind speed. The rated wind speed is the wind speed at
which the turbine is designed to produce its maximum power output. Beyond the rated
wind speed, the power output of the turbine begins to level off, and at some point, it reaches
its maximum output, known as the rated power output. This point is the maximum amount
of power that the turbine can produce, regardless of how strong the wind gets. Beyond
the rated wind speed, the power output of the WT may be kept constant via the stall or
brake mechanism to avoid the risk of rotor damage from over-speeding. This mechanism
explains why the power curve of WTs takes a different form from the usual power curve of
cubic function. At some point, the wind speed becomes too high and the turbine needs to
shut down to avoid breakdown from further operation. This wind speed is known as the
cut-out speed [11].

The shape of the power curve can vary depending on the specific design and charac-
teristics of the wind turbine, as well as the wind conditions at the site where the turbine is
installed. For example, some wind turbines may have a steeper increase in power output at
lower wind speeds than others, and some may have a lower cut-out wind speed. Figure 1
depicts the traditional specification power curve of WTs, which represents the amount of
specified power output with respect to varying wind speed. The turbine begins to generate
power at the cut-in speed, and the amount of power generation steadily increases up to the
rated output at the rated wind speed. No power can be generated when the wind speed is
greater than the cut-out speed. The typical values of cut-in, rated, and cut-out speeds are
3~4 m/s, 11~13 m/s, 23~25 m/s, respectively [12,13]. As stated earlier, however, the ob-
served data greatly deviate from the specification power curve presumably due to various
factors related to the operational characteristics of turbines, environmental conditions, and
measurement errors as shown in Figure 2, which plots 1095 data points of power output
against wind speed from 1.5 MW and 3.0 MW wind turbines from the Hankyung wind
farm site in the Republic of Korea over the period 2018~2020.

Figure 1. Traditional Power Curve of Wind Turbines.

It is widely acknowledged that how effectively remove outliers plays a decisive role in
the accuracy of power curve estimation since they prominently influence either the fit of the
model or the estimation of parameters [14]. The causes of outliers are multifaceted, which
may include the operational abnormality because of outage, curtailment, and maintenance,
the average-out effect from the lack of temporal resolution, and measurement errors. No
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matter what the causes of outliers are, the most important aspect of outlier issues is the
technique to identify them. It is suggested that outliers are divided into three different
types in this study as shown in Figure 2. Data points that little power is generated even at a
wind speed higher than the cut-in speed are labeled as Type I outliers. The main probable
causes of Type I outliers are the outage and curtailment due to failure and maintenance.
Type II outliers designate data points that unusually higher outputs are generated at a given
wind speed, and their most probable causes are measurement errors [10]. The so-called
average-out effects may cause Type III outliers that the generation output can be less than
the expected output when a turbine is stopped or the output is curtailed for a shorter period
of time than the data collection interval, i.e., 1-h in this case. The incorrect load of wind
rotor as well as measurement errors may also be the source of Type III outliers. It may
seem simple and intuitive to screen out these outliers, but it will be highly inefficient to
revise the power curves better representing the operational characteristics of individual
turbines as more data become available over time. This study postulates that a rigorous and
scientifically sound procedure for outlier detection may facilitate the periodic revision of
power curve modeling. Machine learning algorithms combined with traditional statistical
approaches can enhance the ability to cope with variations in wind power production while
ensuring the accuracy of power curves, especially when a larger amount of training and
testing data is being collected over the long-term time period.

Figure 2. Observations of Power Output against Wind Speed. (a) 1.5 MW Wind Turbine; (b) 3.0 MW
Wind Turbine.
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3. Proposed Procedure

Having long been under investigation in the community of data analysis, outlier
detection is a method to identify data points that are significantly different from the majority
in a dataset. Outliers may affect the accuracy of data analysis and models, and there
exists a variety of different methods for outlier detection. The choice of method depends
on the characteristics of the data and the research question at hand. Encountered with
excessive inherent variations in wind speed and potential difficulties with data collection of
enough time resolution, power curve modeling experiences the lack of detailed information
regarding the operation of wind turbines. Under such circumstances, clustering algorithms
can be effectively employed. Clustering algorithms are a type of unsupervised machine
learning technique used to group similar data points together into clusters. The main goal of
clustering algorithms is to find natural groupings in the data without any prior knowledge
of the labels or categories that the data points belong to. The most popular applications
of clustering include customer segmentation, image classification, and recommendation
systems. It can also be used for anomaly or outlier detection by identifying data points
that do not belong to any of the existing clusters. These data points can be considered as
outliers or anomalies and may indicate unusual behavior, errors, or other anomalies in
the data. There are many different types of clustering algorithms, but some of the most
commonly used ones include partition- and density-based clustering. The most popular
partition- and density-based methods are DBSCAN and K-means, respectively.

As a density-based clustering algorithm, DBSCAN can handle arbitrary-shaped clus-
ters and does not require a predefined number of clusters. It groups data points that are
close to each other and separates outliers that are far from any cluster by defining a neigh-
borhood around each data point and looking for areas of high density. It can be observed
from Figure 2 that data points far from the usual power curves are sparsely distributed and
they may most probably be seen as manifest outliers. Thus, the density-based DBSCAN
can be effective to rule out these points for power curve modeling. There are two key
parameters in DBSCAN: epsilon, which defines the radius of the neighborhood around each
data point, and minPts, which sets the minimum number of data points required to form
a dense region. Unless the shape of remaining data points after DBSCAN clustering may
closely coincide with the usual power curve, the power curve modeling can hardly be effec-
tive and it is not intuitive to apply the density-based clustering to remaining data points
that are already densely distributed. Instead, partition-based methods such as K-means
clustering can be effective to further group densely populated data points. K-means is a
centroid-based clustering algorithm that partitions data into a fixed number of K clusters
on their distances from a set of K centroids. It works by iteratively assigning each point
to the nearest centroid and then updating the centroid based on the mean of the points
assigned to it. This process continues until the centroids no longer move significantly or a
maximum number of iterations is reached. It is not unusual to use the Euclidian distance
for proximity measure [15], but it is pointed out in [16] that Mahalanobis distance is more
appropriate for correlated data and it is defined as

d(x, y) =
√
(x− y)TC(x− y) (1)

where the Mahalanobis distance between x and y is denoted by d(x, y), and C is the
covariance matrix of x and y. It is noted that the Mahalanobis distance is more appropriate
than the usual Euclidian one in clustering for power curve modeling. The effectiveness
of power curve modeling depends upon the detection and elimination of outliers, and
it is proposed to employ clustering algorithms of DBSCAN and K-means in a sequential
manner. Applying K-means clustering to remaining data points after DBSCAN clustering,
clusters located near the usual power curves can now be used for power curve modeling of
wind turbines.

After identifying and eliminating outliers from the dataset through clustering, the
behavior of power curves from the cut-in speed to rated speed is often fitted with different
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parametric models such as polynomial, Gompertz, Weibull, and logistic functions [3,5].
The polynomial regression has often been adopted for power curve modeling [5], which is
a generalization of linear regression for nonlinear datasets. The polynomial regression of
degree k can be written as

f (v, θ) = θ0 + θ1v + θ2v2 + . . . + θkvk + e (2)

where f (v, θ) denotes the polynomial function, θ = (θ0, θ1, . . . , θk) represents the set of coef-
ficients, and the random error term denoted by e follows the standard normal distribution,
i.e., e ∼ N(0, 1). Noting that the power curve is S-shaped, other parametric models may
also be employed for power curve modeling [3,4]. The most popular S-shaped models are
Gompertz, Weibull, and logistic functions, which are defined by Equations (3)–(5) in the
below, respectively.

f (v, θ) = θ2 + (θ3 − θ4) exp(− exp(θ1(v− θ4))) + e (3)

f (v, θ) = θ2 + (θ3 − θ2) exp(− exp(θ1(log v− log θ4))) + e (4)

f (v, θ) = θ4 +

[
(θ1 − θ4)

1 + (v/θ3)
θ2

]
+ e (5)

The goodness-of-fit of each model can now be compared to determine which fits best
the data refined through clustering, using usual performance metrics such as root mean
squared error (RMSE), mean absolute error (MAE), and coefficient of determination R2.
Denoting the actual and fitted values of power output by yi and ŷi, RMSE, MAE, and R2

can be written as

RMSE =

[
1
N ∑N

i=1(yi − ŷi)
2
]1/2

(6)

MAE =
1
N ∑N

i=1|yi − ŷi| (7)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (8)

where N and y represent the number of data points and the sample mean of power output,
respectively. Partitioning potential outliers into three different types, a 3-step power curve
modeling procedure can be summarized as shown in Figure 3.

Figure 3. Modeling Procedure of Wind Turbines Power Curve.
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4. Case Study

The proposed procedure outline in the previous section is now to be demonstrated
with the case study of Hankyung wind farm in the Republic of Korea, which is consisted
of three 1.5 MW and five 3.0 MW turbines. Data from one of the 1.5 MW turbines are
taken over the period of 2018~2020 as shown in Figure 2a. The turbine is manufactured
by VESTAS and its cut-in and cut-off speeds are to be 4 m/s and 25 m/s, respectively.
Unlike outliers of Type II and III, the cause of Type I outliers is relatively clear and it
is intuitively obvious to take these outliers out of the dataset. Removed in [Step 1] are
59 data points that no power is generated at the wind speed higher than the cut-in speed of
4.0 m/s in this study. Potentially influential outliers are now to be screened using clustering
algorithms. It is widely recognized that density-based clustering techniques are more
efficient than partition-based techniques when it comes to arbitrary shaped clusters or
anomaly detection [17]. As an unsupervised learning method, the DBSCAN algorithm
is first employed with epsilon = 0.15 and minPts = 5, which are chosen based on testing
different combinations of parameters, in (2-1) of [Step 2]. Based on these two parameters,
data points are categorized as core point, border point, or outlier, and those corresponding
to outlier may be removed [15,18]. Figure 4 depicts the results from DBSCAN, where black
dots represent data points classified as outlier. It can be observed that there are still a
multitude of points classified as border point which seems influential but irrelevant in
modeling the power curve.

Figure 4. Outliers from DBSCAN Clustering.

The centroid-based algorithm of K-means clustering is then applied to identify those
remaining influential outliers in (2-2) of [Step 2], and it is noted that the Mahalanobis
distance instead of the usual Euclidian distance is used to reflect the correlation between
wind speed and power output [10]. Figure 5 depicts the formation of clusters resulting
from K-means clustering. It can be observed that clusters 3, 6, and 8 are corresponding to
Type I and III outliers which may lead to a poor goodness-of-fit. The resultant data points
from [Step 2] depicted in Figure 6 are to be used for modeling power curve of the 1.5 MW
wind turbine. The procedure is also applied to data from the 3.0 MW wind turbine in the
site, of which result is depicted in Figure 7.
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Figure 5. Results from K-Means Clustering.

Figure 6. Refined Data for Power Curve Modeling of 1.5 MW Turbine.

Several parametric models are frequently adopted to fit the power curve, and the
goodness-of-fit of polynomial, Gompertz, logistics, and Weibull functions, are to be tested
in [Step 3] with the performance metrics of RMSE, MAE, and R2. The results of goodness-
of-fit analysis are summarized in Table 1 with 4 parameters for different parametric models
to ensure the same degrees of freedom. It is indicated that the data from the 1.5 MW turbine
are well fitted with the Weibull function by observing the absolute measure of R2 and the
relative measure of MAE while the polynomial function fits the data better with respect to
the measure of RMSE. On the other hand, the data for the 3.0 MW turbine are best fitted
with Gompertz function regardless of measures. Figure 8 depicts different parametric
functions fitted with the refined data shown in Figures 6 and 7.
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Figure 7. Refined Data for Power Curve Modeling of 3.0 MW Turbine.

Figure 8. Fitted Functions of Power Curve with Refined Data. (a) 1.5 MW Wind Turbine; (b) 3.0 MW
Wind Turbine.
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Table 1. Goodness-of-Fit Analysis of Different Parametric Models.

Turbine Models RMSE MAE R2

1.5 MW

Polynominal 0.0855 0.0618 0.9525
Gompertz 0.0889 0.0663 0.9487
Logistics 0.0871 0.0641 0.9507
Weibull 0.0878 0.0611 0.9530

3.0 MW

Polynominal 0.1644 0.0981 0.9567
Gompertz 0.1643 0.0976 0.9567
Logistics 0.1654 0.0995 0.9567
Weibull 0.1660 0.0998 0.9559

5. Concluding Remarks

The power curve of wind turbines is the central element for an efficient plant operation
and prediction of generation output. It is often the case that the specification power curve
provided by the manufacturer may not well account for variations incurred by operational
and environmental factors, which may not lead to an efficient operation of wind turbines
since the actual power curve hardly coincide with the specification power curve. An
accurate estimation of actual power curve may be hindered by manifest and influential
outliers and it is necessary that the observed data are preprocessed to detect and eliminate
those outliers for the effective estimation of power curves. This study proposes a novel
outlier elimination procedure, which can be applied in situations where a sufficient amount
of data with proper time resolution is not readily available. More specifically, the popular
algorithms of density-based DBSCAN and partition-based K-means are simultaneously
adopted. Different parametric models are then employed to fit the refined data and tested
for their goodness-of-fit to derive the actual power curve. The applicability of proposed
procedure is demonstrated with the hourly measurement data taken from the Hankyung
wind farm site in the Republic of Korea over the years 2018~2020. The data from 1.5 MW
turbine are well fitted with the Weibull function whereas those from 3.0 MW turbine
are best fitted with Gompertz function. It is implied that different parametric models
are more suitable for estimating power curves of different turbines. It is asserted that
the proposed method is effective in estimating the power curve with data having low
temporal resolution. As one of the reviewers pointed out, the measurement data used in
this study may exhibit the lack of temporal resolutions. The acquisition of data with high
enough resolutions is highly limited for individual wind turbines in many sites. To the
best of authors’ knowledge, this study is the first attempt for power curve modeling with
hourly measurement data available in the Republic of Korea. Nonetheless, a more precise
derivation of power curve need to be enabled by securing data with high enough temporal
resolutions. In addition, it will be meaningful to examine the nonparametric methods in
modeling power curves, which has hardly been investigated in the current literature.
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Abbreviations

WTs Wind Turbines
DBSCAN Density-Based Spatial Clustering of Applications with Noise
RMSE Root Mean Squared Error
MAE Mean Absolute Error
R2 Coefficient of Determination
GOF Goodness-of-Fit
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