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Abstract: Retailers depend on accurate forecasts of product sales at the Store × SKU level to effi-
ciently manage their inventory. Consequently, there has been increasing interest in identifying more
advanced statistical techniques that lead to accuracy improvements. However, the inclusion of multi-
ple drivers affecting demand into commonly used ARIMA and ETS models is not straightforward,
particularly when many explanatory variables are available. Moreover, regularization regression
models that shrink the model’s parameters allow for the inclusion of a lot of relevant information but
do not intrinsically handle the dynamics of the demand. These problems have not been addressed by
previous studies. Nevertheless, multiple simultaneous effects interacting are common in retailing. To
be successful, any approach needs to be automatic, robust and efficiently scaleable. In this study, we
design novel approaches to forecast retailer product sales taking into account the main drivers which
affect SKU demand at store level. To address the variable selection challenge, the use of dimensional-
ity reduction via principal components analysis (PCA) and shrinkage estimators was investigated.
The empirical results, using a case study of supermarket sales in Portugal, show that both PCA and
shrinkage are useful and result in gains in forecast accuracy in the order of 10% over benchmarks
while offering insights on the impact of promotions. Focusing on the promotional periods, PCA-based
models perform strongly, while shrinkage estimators over-shrink. For the non-promotional periods,
shrinkage estimators significantly outperform the alternatives.

Keywords: retailing; forecasting; promotions; seasonality; shrinkage; principal components analysis

1. Introduction

Retailers depend strongly on accurate sales forecasts to manage their supply chains
and make decisions concerning purchasing, logistics, marketing, finance, human resources,
etc. [1–3]. Forecasts are principally needed at the Store × SKU (Stock-Keeping Unit)
level, i.e., all combinations of SKUs and store locations as argued, for example, by [4].
Inaccurate forecasts of product sales in-store can lead to stock-outs which negatively
impact the business [5]. If the product is not available on shelf, its potential sales are lost
and there is the chance of customers looking to competitors, making loyalty difficult to
maintain [6]. Ordering excess inventory, to reduce the risk of stock-outs and to improve
customer’s satisfaction, increases costs significantly (e.g., labor and storage) reducing the
profit margin [7]. Additionally, there is an increasing awareness that food waste should
be reduced [8,9] with the European Parliament calling for urgent measures to halve food
waste by 2025 [10]. Efficient inventory management relies on accurate forecasts of SKU
sales at the store level, which enable the retailer to replenish in time and meet the customers
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expectations. As a consequence, there has been increasing interest in identifying more
accurate forecasting methods, both by researchers but also by retailers and their software
suppliers [3].

The latest research on demand forecasting at Store × SKU level has considered two
major questions with immediate impact on retail stores: (i) the first considers the effects of
various factors including promotions e.g., [11–14] and weather effects e.g., [15]. The inclu-
sion of many demand drivers raises the challenging question of model specification, where
standard regression and model selection techniques have serious limitations; (ii) the second
question is whether more advanced techniques deliver improved value. Fildes et al. [3]
summarized the evidence as moot, despite Machine Learning (ML) methods having a long
history in retail starting with [16]. Recently, the M5 competition [17] and the latest two
Kaggle sales forecasting competitions [18] explored this issue in some depth and found
that ML methods, specifically LightGBM [19], can improve on standard benchmarks, lead-
ing to a more positive reappraisal in Fildes et al. [3] update of retail forecasting research.
However, the major improvements were mainly on the top and middle levels of the re-
tail data hierarchies, while at the more disaggregated levels, i.e., at the SKU, SKU-state
and SKU-store levels, where demand patterns are more difficult to capture due to high
volatility, easy to implement and computationally cheap methods such as exponential
smoothing (ES) were competitive. Ma and Fildes [20] showed that advanced ML methods
for meta-learning tasks, to select the best forecast, can be effective in a heavily promoted
environment. Nonetheless, the best forecasting method that was found to be most often
the most accurate was exponential smoothing, the workhorse of many forecasting systems
in practice, the performance of which can be augmented substantially when promotions
and other indicators are included [11]. The usage of ML methods by retailers remains an
open question, as it needs to ensure that any forecast value added is meaningful given
the extra costs [4,21–23]: skilled data scientists, significant amount of time for training
the models, sufficient computational and data infrastructures, among other issues [24–29].
Spiliotis et al. [30] used the M5 data to evaluate the forecasting and inventory performance
of both established statistical approaches and advanced ML methods and concluded that
simple methods may result in similar if not lower monetary costs than more sophisticated
approaches. Moreover, to facilitate the adoption and continued use of a forecasting method
in practice, the expertise within the organization [17] as well as model transparency and
intelligibility are important attributes to gain user trust [31].

Even though there are arguments in favour of the continued use of statistical methods
for retail forecasting, a major challenge that needs to be overcome is the efficient selection
and inclusion of the various potential demand drivers in forecasting models, not least
because of their impact on operational decisions. This is the focus of this work which leads
to the following contributions:

• we propose a feasible solution to include relevant drivers, including promotions, into
the statistical AutoRegressive Integrated Moving Average (ARIMA) and ExponenTial
Smoothing (ETS) models based on automatically selected principal components;

• we propose an automatic approach to model the demand using Ridge regression. We
investigate the encoding of seasonality using both stochastic terms, represented by
seasonal lags, and deterministic, included as trigonometric indicator variables [32,33];

• we comparatively evaluate dimensionality reduction and shrinkage approaches, iden-
tifying the benefits of each in the presence of promotion and prices changes in a
retail setting;

• our approaches are completely automated and computationally efficient running
without a need for human intervention and therefore scalable to address the retailers’
requirements, offering modelling guidelines to both retailers and software suppliers.

This paper is organized in five sections. We first briefly summarize the literature
on two aspects of the problem: promotional modelling of retail sales and the forecasting
models that have been developed. The third section considers the models we use in detail
whilst the fourth presents a case study of supermarket SKU sales in Portugal. The final
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section contains our conclusions and reflections on further work of both practical and
theoretical interest.

2. Retail Forecasting

For the medium to large retailer, forecasting at store level for product replenishment
poses major problems which are extensively discussed in [3,34]. For retailers the problem
falls naturally into a hierarchical structure mapped on three dimensions: time (e.g., day,
week), product (e.g., SKU, Category) and supply chain (e.g., Store, Distribution Centre),
although depending on the retailer more secondary levels may be relevant. Here we
concentrate on drivers which affect SKU demand at store level. In principle there are
many: calendar events such as public holidays, multiple seasonalities within year, month
and week, weather conditions [1,15], and in particular promotions, which come in many
formats [11,14,35,36]. Modelling promotional effects themselves may suggest many factors
including prices of competitive and complementary products [37]. To add to this list, online
and social media may also affect sales particularly for some classes of products such as
fashion goods e.g., [38]. All-in-all these drivers pose an almost insurmountable problem for
standard statistical methods, even when the retailer database is sufficiently rich and their
resources extensive enough to develop and implement the complex methods needed to
capture the interactions.

The practical forecasting requirements for retailers are driven not by the need to cap-
ture all of this complexity in a statistical approach but by the computational requirements
where the forecasts are needed for many products (see e.g., the Walmart database used in
M5 Competition on Makridakis et al. [17], and the IRI dataset used by Ma and Fildes [39])
and many stores (into the thousands), perhaps daily. Compromises are required: these
typically involve using a simple robust statistical approach, to be often supplemented
by managerial overrides [40–42], which may be estimated from the past or be based on
subjective judgment the base-lift approach, see the case vignettes in [3].

With so many products the forecasting process must be automated, reliable and
computationally efficient. Automation is essential due to the high number of forecasts
needed. Reliability is the ability of the forecasting process to generate forecasts that are
consistent across time, i.e., that exhibit the expected behaviour, robust to challenging events
not uncommon in the retail practices [31,43]. To ensure that, the methods must avoid
overfitting, misspecification, and ideally result in similar model specification across forecast
origins, while being computationally efficient [44,45].

With multiple drivers, which may well be collinear, simple regression models will fail
and the standard approach of including all variables in a model and simplifying through
stepwise regression has been shown to be inadequate e.g., [1,46]. Instead two approaches
have been proposed: the first combines the drivers into a smaller number of factors through
principal components, and the second uses shrinkage in various forms which simplifies
the model by constraining the parameter estimates. The use of principal components in
promotional models has been used successfully by [1,11], while the use of shrinkage was
shown to be beneficial [37,47].

The inclusion of multiple drivers affecting demand into the statistical ARIMA and
ETS models is not straightforward, particularly when many explanatory variables are
present [48,49]. On the other hand, shrinkage estimators, such as Lasso and Ridge re-
gression, can handle a large number of explanatory variables [50] with many successful
applications in retail and promotional modelling [12,13,46,51]. However, the inclusion of
both demand dynamics, such as autoregressions and seasonality, together with explanatory
variables introduces challenges in the tuning of the shrinkage parameters [52], which has
been beyond the focus of these studies.

This leads to the second methodological issue, which is concerned with seasonality.
Seasonality can be represented in various forms, the most simple being the use of groups
of binary dummy variables. However, with weekly data this approach is not economical
in terms of degrees of freedom. The use of dummy variables suggests a deterministic
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seasonality, i.e., that the seasonal pattern remains immutable, in contrast to stochastic
seasonality that is assumed to evolve over time. Nonetheless in higher frequency data dis-
tinguishing the two can be very challenging [32]. Therefore, although we expect stochastic
seasonality to be more appropriate intuitively, often the choice between the two remains
empirical [33,53]. Stochastic seasonality is also expensive in terms of degrees of freedom,
irrespective of whether it is expressed through seasonal lags, seasonal differences, or both.
Alternatively, to conserve degrees of freedom, one can make use of the trigonometric
representation of deterministic seasonality [32,54,55], where pairs of sines and cosines are
used instead of binary seasonal indicators. Although in their full specification the two
representations require the same number of inputs, the latter is easier to simplify through
elimination of pairs of sines and cosines, while retaining an accurate approximation of the
seasonal pattern exhibited in the data [33,55,56].

In summary, the nature of the data and application context introduces substantial
challenges in terms of reliable inclusion of demand drives and the modelling of seasonality.
Any solution has to ideally be automatic, scalable, and provide sufficient inference to
facilitate model validation and adoption.

3. Methods

This section presents the theoretical aspects of the proposed models to forecast retailer
product sales at store level focusing on the efficient inclusion and selection of the various
potential demand drivers.

3.1. Regression with AutoRegressive Integrated Moving Average Errors

A feasible solution to include relevant information, such as promotions and calen-
dar events, into the statistical AutoRegressive Integrated Moving Average model, based
on automatically selected principal components preventing overfitting, is addressed in
this section.

3.1.1. Univariate AutoRegressive Integrated Moving Average Models

The ARIMA model family represents one the most widely used approaches to uni-
variate forecasting, having demonstrated both flexibility in modelling a variety of data
generating processes, and accurate forecasting. With ARIMA models time series are consid-
ered as three components, an AutoRegressive (AR) process, the Integration, and a Moving
Average (MA) process, each responsible for capturing different aspects of the time series.
First, the integration is responsible for ensuring that the time series is stationary, that is
necessary for the AR and MA parts. This takes the form of differencing the time series as
needed. Once the time series has become stationary, the rest of the modelling proceeds.
The AR part models the target variable using lags of itself, and intuitively, in the context
of retailing, handles habitual consumption. The MA part introduces lags of the errors of
the model, which acts as self-correcting the predictions of the model. With ARIMA we can
include no or several lags of either the target series or the errors, and similarly multiple
differences, which are the orders of the model. Seasonal ARIMA models can be created
by introducing seasonal lags for the AR and MA terms, and seasonal differencing for the
integration. The reader can find details about the model at [57], Chapter 6, or [58].

There are many alternative approaches to identify the orders of ARIMA models. We
follow the procedure by [59], who have proposed an automatic procedure that has been
shown to perform well for a variety of forecasting tasks. In brief, the order of differencing
is identified using statistical testing, while the orders of AR and MA are identified using
the Akaike Information Criterion corrected (AICc) for small sample sizes in a stepwise
fashion. Although ARIMA models can become rather complex with several AR and MA
terms, the use of information criteria in their specification helps to reject superfluous terms.
Nonetheless, in modelling seasonality substantial data may be lost. For instance, if we
introduce a seasonal AR lag, then we need to use m observations to construct this lag. A
second lag doubles the amount of observations needed, and so on. The same applies for
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seasonal differences. Therefore, even though a well specified ARIMA may be economical
in terms of coefficients to be estimated, it still requires a substantial sample size when
seasonality is introduced. For weekly data, relevant to our case, m = 52, highlighting the
potentially substantial reduction in sample.

3.1.2. Inclusion of Explanatory Variables

ARIMA models are univariate and cannot readily incorporate explanatory variables.
However, as mentioned before these effects can be particularly relevant for retail sales
forecasting where factors such as promotions and other marketing activities substantially
affect demand. We may extend ARIMA models in order to include explanatory variables
by considering regression with ARMA errors as follows:

yt = δ0 +
K

∑
k=1

δkxk,t + ηt, (1)

where yt is the target time series, x1,t, . . . , xK,t are the K explanatory variables, δ0, δ1, . . . , δK
are their coefficients and ηt is the error series that follows an ARMA model. All ARMA and
regression parameters can be estimated simultaneously by maximun likelihood estimation.
Prior to estimating the model yt must be stationary, that is achieved via differencing. For
the explanatory variables we need to consider the phenomenon we are modelling and their
statistical properties prior to deciding whether to difference or not (for a detailed discussion
see [57]). In our case, differencing the explanatory variables when yt should be differenced
is meaningful, and therefore we simplify the process by differencing all variables when yt is
deemed to be non-stationary. For instance, the change in sales (differenced yt) is explained
by the change in prices and not the price at period t.

3.1.3. Trigonometric Seasonality

Seasonal ARIMA models can be cumbersome when the seasonal period is long, as in
the case of weekly data, leading to a substantial reduction in fitting sample. In retailing it is
typical that time series are relatively short, and therefore we often cannot afford to lose that
many data points.

Trigonometric encoding of seasonality can be helpful to overcome this. With trigono-
metric seasonality we express the seasonality as m/2 pairs of sines and cosines of increasing
frequency. More specifically:

sMt =
m/2

∑
l=1

[
ξl sin

(
2πlt

m

)
+ ξl+m/2 cos

(
2πlt

m

)]
, (2)

where the coefficients ξl are the amplitudes of the sines and cosines. Observe that for
l = m/2 the sin(2πlt)/m = sin(πt) that is constant for all t and can be ignored. This makes
the usual formulation of seasonality with binary indicators and trigonometric variables
equivalent, as the same information is modelled by the same number of variables [32].
The trigonometric encoding is advantageous when we want a sparse representation of
seasonality. Observe that (2) is the Fourier decomposition of the seasonal pattern. Therefore,
eliminating terms, typically of higher frequency, controls the quality of the approximation.
On the contrary, when we eliminate binary indicators then we set these seasonal periods to
zero, degrading the approximation of seasonal patterns substantially.

The elimination of terms in sMt can be done as with usual variable selection. Therefore
it is easy to augment models with trigonometric seasonality to overcome the substantial
reduction in fitting sample.
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3.2. Exponential Smoothing Models with Explanatory Variables

This section presents a feasible solution to include the main drivers that affect SKU
demand at store level on Exponential Smoothing models, following an approach similar to
the one proposed for ARIMA.

3.2.1. Univariate Exponential Smoothing Models

The exponential smoothing family of models is one of the most widely used forecasting
approaches in retailing, and in business forecasting in general [57]. With ES the time series
is modelled as a combination of three components, the local level, the local slope, and
the seasonal pattern, that together interact with the error term. The combination of these
components can be additive or multiplicative, permitting the capture of an extensive
variety of time series patterns. A useful interpretation of exponential smoothing is to see
each of the aforementioned components modelled as an appropriate weighted moving
average, the weights of which decay exponentially. This requires a single parameter
per component, making the models relatively easy to understand, parameterise, and
implement. Ref. [60] embedded ES in a state-space model formulation, providing the
statistical rationale for maximum likelihood estimation of model parameters, selection of
the appropriate model form using information criteria, and the generation of prediction
intervals, greatly simplifying and automating the modelling process. Here, we follow the
recommendations of [61] and select between the alternative models using the (AICc). In
our case, as we model retail sales, due to the presence of multiplicative promotional effects
we first logarithmically transform the data. Therefore, we can also restrict the ES models to
be strictly additive, substantially simplifying and speeding up the modelling process (from
30 alternative models to only 6, see Table 1). Given the prevalence of exponential smoothing
we refer the reader to Ord et al. [57] (Chapters 4 & 5) and [61] for the model details.

3.2.2. Incorporation of Explanatory Variables

We can extend these additive ES models to include explanatory variables [11,61]. These
can be incorporated as a regression formulation and the models take the form presented
in Table 1, where εt is the error term, lt is the level state, bt the slope state, st is the season
state, m is the period of the season, and α, β, γ are the smoothing parameters for each state.
Furthermore, although not apparent in Table 1, each state requires some initial values, one
for the level, one for the slope, and m for the season. This formulation has been show
to perform well against conventional regression based model for promotional modelling
tasks [11].

3.2.3. Trigonometric Box-Cox ARMA Trend Seasonal Model

With the ES models m initial values for the seasonality need to be estimated. This can
result in estimation issues when applied to high frequency data. The Trigonometric Box-
Cox ARMA Trend Seasonal (TBATS) model proposed by [56] can be seen as a generalisation
of trend-seasonal ES models to incorporate trigonometric seasonality. The conventional
seasonal indices are replaced by their trigonometric counterparts, and TBATS attempts to
make the seasonal encoding sparse by eliminating trigonometric terms as indicated by AICc.
As the formulation is additive, the data are pre-processed with a Box-Cox transformation
to account for multiplicative cases. The model is further augmented with ARMA error.
Therefore, for ES we rely on TBATS to incorporate trigonometric seasonality.

3.3. Dimensionality Reduction with Principal Components

The inclusion of explanatory variables in both ARIMA and ES introduces estimation
challenges when the number of variables is high. In retailing, the number of parameters can
even exceed the available sample size [37], making it infeasible to obtain model estimates.
The challenge can also be exacerbated by the presence of multicollinearity, since most of the
promotional variables change at the same time when a particular event occurs. Principal
Component Analysis (PCA) is a widely used method to overcome both problems [1,11].
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It creates linear combinations of the original variables, where the combination weights
result in new orthogonal variables [62]. By construction, these variables are ordered by
decreasing variance, which can enable us to eliminate low variance components, achieving
compression with typically only a few components being sufficient to capture most of the
information in the original set of variables. In the literature there are various alternatives
to select which principal components to eliminate. For example, ref. [1] use information
criteria, while [11] use a variance threshold to eliminate components with low information
content. Here we rely on the second approach, using 70% of the mean variance in the
components as the cut-off point. Note that this approach is fairly robust and does not
require fine tuning of the threshold.

Table 1. Additive exponential smoothing models with the explanatory variables.

Seasonal Component

N A

Sl
op

e
C

om
po

ne
nt

N

yt = lt−1 +
J

∑
j=1

δjxj,t + εt

lt = lt−1 + αεt

yt = lt−1 + st−m +
J

∑
j=1

δjxj,t + εt

lt = lt−1 + αεt

st = st−m + γεt

A

yt = lt−1 + bt−1 +
J

∑
j=1

δjxj,t + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

yt = lt−1 + bt−1 + st−m +
J

∑
j=1

δjxj,t + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt

Ad

yt = lt−1 + φbt−1 +
J

∑
j=1

δjxj,t + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

yt = lt−1 + φbt−1 + st−m +
J

∑
j=1

δjxj,t + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

st = st−m + γεt

3.4. Dynamic Regression with Shrinkage

A relatively simpler approach than ARIMA is to use a dynamic regression, where the
MA part is omitted, with level and seasonal autoregressive lags used to predict the target
variable. The challenge in dynamic regression is the identification of the appropriate lags.
The literature is rife with alternatives, many of which are discussed in [57], Chapter 9. In
specifying the appropriate number of lags there are two issues. First, a question of how
many lags to consider, and second out of these lags, which are relevant. We note that the
first question is identical for ARIMA models, where one has to decide the maximum order
for the AR and the seasonal AR terms. To resolve this the literature relies on heuristics, e.g.,
by consulting the partial autocorrelation function [33]. Given the sample implications of
increasing the autoregressive lags, the general recommendation is to use a relatively small
number of lags e.g., [59].

Irrespective of how this is resolved, chances are that we will have to resolve any
estimation with limited sample size, as seasonality is a prominent feature of retailing
time series. Accounting for this, and considering the eventual extension of the model
to include additional explanatory variables, we use Ridge regression, that shrinks all
model coefficients towards zero, mitigating overfitting due to both sampling uncertainty
and potentially superfluous input variables [50]. Ridge regression optimises the model
parameters bj for j = 1, . . . , p by minimising:

n

∑
i=1

(yi − ŷi)
2 + λ

p

∑
j=1

b2
j , (3)
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where n is the sample size, ŷi is the predicted value for period i, and λ is a non-negative
scalar that controls the strength of the shrinkage of the coefficients. When λ = 0 this
becomes the ordinary least squares regression. Otherwise, the model is no longer optimal
in the mean squared error sense, but rather retains smaller coefficients than Ordinary Least
Squares (OLS), achieving the benefits of shrinkage. The correct value of λ is data dependent
and is typically identified using cross-validation.

Another popular shrinkage estimator is the Lasso, which uses λ ∑
p
j=1 |bj| as the regu-

larisation penalty. In contrast to Ridge regression, due to its penalty, Lasso regression is
able to set model coefficients zero, performing both estimation and variable selection in
a single step. Ridge, on the other hand, can result in very small coefficients, but typically
non-zero. Lasso has been used successfully in retail forecasting e.g., [15,37,47]. However,
Ridge is preferable to Lasso when the inputs are likely to be highly correlated, as Lasso
will retain only the most highly correlated variable to the target and reject the rest. In
the applications in the literature, Lasso was used to decide between different indicator
variables, and as such this was not an acute problem. However, in our case as we use it to
estimate the coefficients of autoregressive lags that will very likely be correlated, the Ridge
penalty is preferable.

When incorporating seasonality with trigonometric encoding, the expectation is that
all terms of sMt will remain in the model, however with shrunk amplitudes, which has been
found to be beneficial in terms of forecast accuracy [63,64]. Similarly, as Ridge regression
uses shrinkage, there is no need to use dimensionality reduction, as is the case for ARIMA
and ES.

4. Empirical Study

This section presents an empirical case study of supermarket SKU sales in Portugal in
which we compare the forecast performance of our proposed models over several forecast
horizons using two different error measures.

4.1. Dataset

The empirical study is performed using a dataset of consumer goods from one of
the largest stores of the leader in the supermarket segment in Portugal, operating more
than 450 stores spread across 300 locations throughout the country. The store was chosen
because of its complete coverage of products. The dataset contains product information
at the SKU level, including unit sales, price and promotions for 173 weeks spanning
between 3 January 2012 and 27 April 2015. We conducted the evaluation study based on
988 products from the six main categories including grocery, non-specialized perishables,
specialized perishables, beverages, personal care and detergents & cleaning, covering a
wide range of sales and promotional conditions. Consistent with previous studies [1,47,65]
we focus on price promotional effects for each SKU, since other promotional data, such as
display and weather data, are not available.

Figure 1 plots the unit sales, price (in the second axis) and promotional periods
(marked with dashed lines) of four typical SKUs. Two show a clear annual seasonal
pattern that remains fairly constant during the sampled period. We observe that product
sales spikes are associated with price reductions and calendar events such as Easter and
Christmas. We also see that some products are heavily promoted, exhibiting high variations
on their price while others have few promotions. Therefore, our study considers a wide
variety of time series containing different features which are typical of this type of business.
Any model needs to take these characteristics into account to effectively forecast the unit
sales of each SKU. Figure 2 shows the impact of promotions on sales. It presents the
distribution by category of the average weekly sales on promotional and non-promotional
weeks for the selected SKUs, using violin plots, and shows the uplift of the sales on
promotional weeks. Table 2 presents statistics of the sales volume with and without
promotional activity for each product category during the 173-week period. The sales mean
represents the average of the mean weekly unit sales on promotional and non-promotional
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weeks across all the SKUs of each category. The median is defined similarly. The promotion
percentage indicates the percentage of promotional weeks within the 173-week time period
for each category. The total number of SKUs in each category is also indicated.
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Figure 1. Time series plot of four typical SKUs. Promotional periods are marked with dashed lines.
The test set corresponds to the shaded area.

Table 2. Statistical description of sales volume on promotional and non-promotional periods for each
product category.

Category
Promotion No Promotion

No. of SKUs
Mean Median Percentage Mean Median

Grocery 162.3 79.0 4.9% 63.0 27.1 309
Non-specialized perishables 238.6 80.2 5.5% 144.6 45.3 287
Specialized perishables 492.6 124.1 11.1% 342.0 81.9 193
Beverages 179.7 84.9 8.8% 99.4 43.3 103
Personal care 107.3 53.5 4.9% 61.6 29.8 59
Detergents & cleaning 87.9 60.5 2.7% 40.9 27.8 37

The dataset incorporates 43 covariates and calendar events, some with lead or lagged effects.

• Price and a lag of order 1 (2 inputs).
• Days promoted per week and a lag of order 1 (2 inputs); this variable indicates how

many days in the week the SKU is under promotion.
• Last week of the month and a lag of order 1 (24 inputs); this dummy variable captures

the end of the month payday effect.
• Binary indicators representing the following calendar events (15 inputs): New Year’s

Day, Carnival and the week before, Good Friday and Easter and the week before,
Freedom’s Day, Labor’s Day, Corpus Christi week, Portugal’s day, Assumption Day,
Republic’s day, All Saints’ Day, Restoration of the Independence, Christmas and the
week before.

A logarithmic transformation of the sales time series is used, which helps model
multiplicative effects of the aforementioned variables (proportional uplift of sales). At the
end the logged target is transformed back to its original units. This transformation is not
applied in the case of TBATS, since it already incorporates a Box-Cox transformation.
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Figure 2. Distribution of the average weekly sales on promotional and non-promotional weeks
by category.

4.2. Evaluation Design

We evaluate the performance of our models using a rolling forecasting origin scheme.
By increasing the number of forecast errors available, we increase the confidence in our
findings and facilitate statistical testing. The use of a rolling origin design ensures robust-
ness in the results. We start with a training set containing the first 139 weeks and generate
1- to 13-weeks ahead forecasts for each of the 988 SKUs. The training set is then expanded
by one week and the process is repeated until week 160 giving a total of 22 forecast ori-
gins. At each forecast origin the models are re-specified automatically using the updated
training data. The price and promotional plans are assumed known in the test set, as
they are part of the retailer’s marketing strategy. We consider different forecast horizons
H = {1, 1− 4, 5− 8, 9− 13, 1− 13} in the comparison to take into account the different
ordering and planning periods the retailer faces in practice.

We use two error measures, the Mean Absolute Scaled Error (MASE) [66] and the Root
Mean Squared Scaled Error (RMSSE) [17]:

MAEH,s,k =
1

H2 − H1 + 1

H2

∑
h=H1

∣∣yh,s,k − ŷh,s,k
∣∣, (4)

MASEH,s =
1
K

K

∑
k=1

MAEH,s,k
1

M−1 ∑M
t=2
∣∣ys,k,t − ys,k,t−1

∣∣ , (5)

MASEH =
1
S

S

∑
s=1

MASEH,s, (6)

MSEH,s,k =
1

H2 − H1 + 1

H2

∑
h=H1

(yh,s,k − ŷh,s,k)
2 (7)

RMSSEH,s =

√√√√ 1
K

K

∑
k=1

MSEH,s,k
1

M−1 ∑M
t=2(ys,k,t − ys,k,t−1)

2 , (8)

RMSSEH =
1
S

S

∑
s=1

RMSSEH,s, (9)
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where yh,s,k is the hth observed value in the forecast horizon H of the SKU s = 1, . . . , S at
the k = 1, . . . , K forecast origin, and ŷh,s,k is the corresponding forecast. Once the Mean
Absolute Error (MAE) and Mean Squared Error (MSE) are calculated, they are summarised
across forecast origins and then across SKUs. Both MASE and RMSSE are scale-independent
and hence suitable for comparing the forecasts across multiple products of different scales
and units. This is achieved by scaling the forecasts errors by the MAE or MSE of the
1-step ahead in-sample naïve forecast errors, to match the absolute or quadratic loss of the
numerator [67]. Squared errors favour forecasts that track the mean of the target series,
which is influenced by the various special events and promotions, while absolute errors
favour forecasts that track the median of the target series and hence focus on the structure
of the data.

We can also use the MAE and MSE errors to perform tests on the statistical significance
of any reported differences. To this end we use the Multiple Comparison with the Best
(MCB) test, advocated by [68]. This is a restricted version of the non-parametric Nemenyi
test [69], focusing only on testing the best performing model against the rest. The test is
implemented using the nemenyi() function of the R package tsutils [70]. Finally, as part
of the testing, we also report mean ranks of the various forecasts.

4.3. Evaluated Methods

We implement the models described in Section 3 with the proposed modifications.
Table 3 summarises the model settings, listing the names that will be used in the evaluation.
In the table some combinations are omitted. We do not model ES with trigonometric
seasonality, as TBATS is used. The latter cannot be readily modified to include explanatory
variables. We also do not provide ES and ARIMA with raw explanatory variables, as the
number of variables is far too great to reliably estimate the models.

Table 3. Models used in the analysis.

Model Name
Seasonality Covariates

Usual Trigonometric Raw PCA
Univariate

ES X
TBATS X
ARIMA X
RegARIMAF X
Ridge X
RidgeF X

With explanatories
ESXPC X X
PCRegARIMA X X
PCRegARIMAF X X
RidgeX X X
RidgeFX X X

For autoregressions in Ridge we include a combination of up to 5 non-seasonal and
1 seasonal lags, following the recommendation by [59] of using a relatively small number
of lags, similarly to ARIMA. For the ES we use the es() function from the R package
smooth [71]. The tbats() function from the R package forecast [72] is used to obtain the
forecasts for the TBATS model. For the ARIMA we use the auto.arima() function from
the same package. For Ridge we use the cv.glmnet() function from the R package glmnet.
Finally, all the analysis was done in R [73].

4.4. Results

Table 4 summarises the forecasting performance of the various models across all SKUs
with respect to the different forecast horizons and error metrics. The best performing model
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in each column (horizon) is highlighted in boldface. The results are grouped by models
with and without covariates, and the rows within each group are sorted by the MASE
overall performance.

Table 4. Forecasting performance of the models for all forecast horizons (22 forecast origins).

Model H = 1 1–4 5–8 9–13 1–13
MASE

RidgeX 0.793 0.822 0.881 0.932 0.883
PCRegARIMAF 0.795 0.833 0.883 0.929 0.886
PCRegARIMA 0.804 0.834 0.894 0.942 0.894
RidgeFX 0.792 0.827 0.898 0.960 0.900
ESXPC 0.797 0.834 0.904 0.966 0.906
Ridge 0.894 0.924 0.982 1.035 0.985
ARIMA 0.908 0.936 0.992 1.040 0.993
RegARIMAF 0.900 0.933 0.993 1.044 0.994
TBATS 0.906 0.940 0.998 1.048 0.999
RidgeF 0.896 0.933 1.009 1.079 1.012
ES 0.904 0.944 1.018 1.081 1.019

RMSSE
RidgeX 0.767 0.792 0.825 0.852 0.839
PCRegARIMAF 0.767 0.820 0.830 0.850 0.854
PCRegARIMA 0.770 0.799 0.836 0.856 0.847
RidgeFX 0.762 0.788 0.822 0.854 0.837
ESXPC 0.764 0.804 0.844 0.872 0.858
Ridge 0.883 0.910 0.941 0.966 0.955
ARIMA 0.895 0.922 0.957 0.980 0.970
RegARIMAF 0.886 0.915 0.947 0.969 0.960
TBATS 0.888 0.918 0.950 0.976 0.964
RidgeF 0.876 0.905 0.945 0.981 0.961
ES 0.894 0.929 0.975 1.006 0.988

We highlight some key observations in the table. First, irrespective of the error
measure and the horizon, models with covariates perform substantially better. Both PCA
and shrinkage are useful and result in gains in forecast accuracy in the order of 10% over
the univariate benchmarks. This is expected given the importance of special events, price
information, and promotions in retail forecasting. Second, Ridge regression models perform
very well overall, and particularly when explanatory variables are available to them. Third,
the usefulness of the trigonometric representation depends on the model and error metric.
Fourth, the results between MASE and RMSSE differ, which is unsurprising since the error
measures focus on different parts of the distribution of the target variable.

To better compare the models we provide in Figure 3 the models’ mean rank and the
results of the MCB test at a 5% significance level, for the horizon 1–13. The forecasts are
ranked by their mean rank, which is reported next to their name. The best performing
forecasts are at the lowest of the plot and surrounded by a greyed area. For any other
forecasts overlapping this area there is no evidence of statistically significant differences.
The lines surrounding the forecasts are the critical distances of the Nemenyi test, which
function in the same way. The horizontal axis plots the mean rank of the forecasts. For
both error measures, RidgeX ranks first. The difference in the top ranking between Table 4
and Figure 3 is attributed to the distribution of the forecast errors, as the mean rank is
non-parametric and therefore resilient against outlying errors. Again, we find that models
that include the covariates perform best. There is evidence that including these with
a shrinkage estimator performs better than using PCA to compress them, although the
PCRegARIMAF remains a strong contender. ESXPC trails other models with covariates,
yet is substantially better than any of the univariate benchmarks. Last but not least, for
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almost all of the reported differences there is evidence that they are statistically significant.
The results for the other forecast horizons differ slightly, but the key conclusions remain
the same, with evidence of significant differences between most cases. We return to the
relative performance of PCA and shrinkage estimators when we analyse the results for
promotional and non-promotional periods separately.
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Figure 3. MCB test results at a 5% significance level based on MASE (top) and on RMSSE (bottom).

Figure 4 provides the ranking of the models for the various forecast horizons separately.
This provides some interesting insights in terms of the progression of the forecasting
performance. We observe that in all cases the models with the covariates rank better
than the univariate benchmarks. Notably, PCRegARIMAF performs better for longer-
term forecasts, for both MASE and RMSSE. So far we have observed a difference in the
performance of RidgeX and RidgeFX. This difference becomes clearer when we track the
ranking across horizons. In both cases, RidgeFX performs better for short horizons. This is
in agreement with the summary statistics in Table 4. The same behaviour is observed for
the univariate counterparts, Ridge and RidgeF. This is in contrast to the results for ARIMA
in terms of using trigonometric seasonality or not, and arguably the same can be said for the
performance between ES and TBATS, with the latter performing better for longer horizons.
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Figure 4. Models’ rank for each forecast horizon from 1-to 13 weeks ahead and average rank across
all horizons based on MASE (top) and RMSSE (bottom).

Next, we examine the forecast accuracy for promotional and non-promotional periods
separately. Table 5 presents the MASE and RMSSE for the horizon 1–13, with the first two
columns referring to the promotional case, and the latter two to the non-promotional. At
each column the best performing forecast is highlighted in boldface. The table is supple-
mented by Figure 5 that provides the Nemenyi test results. The striking difference is that
when we focus on the promotional periods the PCRegARIMA and PCRegARIMAF perform
very well, and in the case of MASE the former significantly outperforms all RidgeFX and
RidgeX. Notably, the performance of ESXPC that relies on PCA to encode the coviariates
becomes more competitive as well. The opposite is true for the non-promotional periods,
which align better with the discussion so far, with RidgeX significantly outperforming
all alternatives.

Building on this, we argue that shrinkage estimators deal best with capturing the
overall structure of the time series, but on the other hand can over-shrink the effect of pro-
motions. On the other hand, PCA does not impose this shrinkage and therefore performs
better during promotional periods, matching the conclusions by [1,11]. Note that the Ridge
regression remains competitive, and for RMSSE there is no evidence of significant differ-
ences between RidgeFX and the two ARIMA specifications with PCA encoded covariates.
Therefore, we argue that as long as the promotional intensity is not very high (as is the case
here, see Table 2) the shrinkage estimators provide a simple solution across all promotional
and non-promotional periods. If the promotional intensity becomes very high then PCA
should be considered.
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Table 5. Model’s forecasting performance on promotional and non-promotional periods, for the
horizon 1–13.

Model
Promotion No Promotion

MASE RMSSE MASE RMSSE
RidgeX 3.148 2.096 0.742 0.632
PCRegARIMAF 2.947 2.031 0.754 0.652
PCRegARIMA 2.865 1.937 0.762 0.658
RidgeFX 3.011 2.006 0.763 0.638
ESXPC 2.924 1.982 0.772 0.666
Ridge 4.181 2.667 0.762 0.640
ARIMA 4.191 2.683 0.774 0.661
RegARIMAF 4.173 2.665 0.776 0.651
TBATS 4.174 2.667 0.782 0.659
RidgeF 4.091 2.606 0.797 0.657
ES 4.257 2.726 0.798 0.677
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Figure 5. MCB test results at a 5% significance level based on MASE (left) and on RMSSE (right) for
promotional (top) and non-promotional (bottom) periods (forecast horizon 1–13).

4.5. Discussion

Overall, we see that the models with covariates outperform their counterparts without
covariates across all the forecast horizons, according to both accuracy measures used, in
line with the findings of [17]. These findings confirm our initial claim that the inclusion of
the main drivers which affect demand at the store level always improves accuracy.

In terms of how to best include covariates we find that in agreement with the lit-
erature [1,11,37] both work well to incorporate the rich information available. When
promotions are dominant then PCA encoding is beneficial. However, to make the PCA-
based models transparent to the users, the principal components need to be remapped to
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the raw explanatory variances so that the respective coefficients can be inferred. This is
not necessary with shrinkage estimators, that perform well overall, and can be a desirable
solution when the promotional intensity is not very high.

In terms of the use of trigonometric seasonality, the results are mixed, but again in
some agreement with past literature [33,63,64]. Shrinkage estimators are able to introduce
sparsity as needed, through the specification of the λ hyper-parameter. Therefore, the
trigonometric representation is not beneficial. In fact, we find that the trigonometric
representation performs relatively poorly for longer-term forecasts. Considering that all
models are optimised on one-step-ahead errors, then we can argue that this indicates that
RidgeF and RidgeFX in fact have overfitted to the data more than their counterparts Ridge
and RidgeX, with better performance around for short-term forecasts, and vice versa for the
longer term. On the other hand, for ARIMA that contains no shrinkage, the trigonometric
seasonality is beneficial, with increasing relative performance in the long term. Therefore,
we conclude that the performance of the trigonometric encoding is estimator dependent.

Furthermore, it is interesting to note that all models used here are fairly transparent, in
that one can infer the effect of specific covariates on the sales of each SKU, and potentially
use that to optimise the pricing and promotional strategy [39]. As our models were
estimated after a logarithmic transformation of the data, any coefficients can be interpreted
as elasticities and inform marketing activities, beyond the benefit of having accurate
forecasts for operations, such as for inventory planning.

In this study, we have not considered ML and Artificial Intelligence (AI) methods,
as this was not compatible with the objectives of our evaluation. Similarly, we excluded
using more complex combination schemes of models, for example as in [11]. Although
one can infer the impact of specific covariates, the calculations involved are substantially
more cumbersome, detracting from the intelligibility of the models and would limit the
ability of sales forecasters to inject expert information [31,42] and add substantially to the
computational cost, a limitation that remains for forecast combination approaches in the
retailing context due to the number of time series involved.

At the onset of this work, we argued that computational simplicity is paramount for
retail forecasting, due to the scale of the problem. Some of the models evaluated here are
arguably complex when it comes to the formulation, yet with the exception of TBATS and
the benchmark ES that need to estimate a substantial number of seasonal parameters, the
rest of the models are relatively small and quick to estimate, if the appropriate form is
already known. For some of the more successful models, the latter is not necessary. Both
RidgeX and PCRegARIMAF are fast to specify. For Ridge regression we have efficient
algorithms to optimise it [74]. For PCRegARIMAF we provide a methodology to efficiently
compress covariates, model seasonality, and identify the ARMA orders. Therefore, our
study helps identify a number of forecasting models that can handle covariates, forecast
accurately, are computationally efficient, and allow users to extract the impact of the
promotional effects.

5. Conclusions

Demand forecasting at Store × SKU level is a complex problem mainly due to the re-
quirements imposed by large retailers. A forecasting system should include a great variety
of drivers that affect SKU demand at store level, such as calendar events and promotional in-
formation. Additionally, the forecasts are needed for a large number of products and conse-
quently, the forecasting process must be automated, reliable and computationally efficient.

In this study, we design novel approaches to forecast retailer product sales taking into
account the main drivers that affect SKU demand at store level. We propose a feasible
solution to include all relevant effects, including promotions, into the statistical ARIMA
and ES models based on principal components selected automatically, which prevents
overfitting. We also propose an automatic approach to model the short-term dynamics
and the seasonality of the demand with Ridge regression. Both, stochastic seasonality
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represented by seasonal lags, and deterministic seasonality included as Fourier terms, are
implemented for comparison.

Using a diverse retail dataset, we compare the forecast performance of our proposed
models over several forecast horizons based on two error measures. The forecasting
performance results enable us to conclude that the models with covariates outperform their
counterparts without covariates across all the forecast horizons, according to both metrics
used. These findings confirm that the inclusion of the main drivers which affect demand at
store level can significantly impact the performance of forecasting methods, but also that
the proposed modelling approach can take advantage of them.

RidgeX is generally the most accurate out of all competing models. This suggests that
shrinkage is relatively more accurate in estimating effects from covariates. Nonetheless,
when we focus on the forecast performance solely for promotional periods the PCA based
models perform best. This finding helps to synthesise different results from the literature
that advocates for both approaches. Furthermore, the shrinkage based models enable
inference directly, if this is needed. We found a distinct difference in the behaviour of
trigonometric seasonality compared to more standard approaches such as stochastic season-
ality. It was not beneficial when a shrinkage estimator was used but provided significant
accuracy gains otherwise. This research helps to clarify some of the modelling preferences
for retail forecasting, as most of the past contributions in the literature have focused on
demonstrating the performance of a single, often novel, algorithm. Our work consolidates
some of this research. However, as we were motivated by computational efficiency we did
not consider ML and AI approaches. The investigated forecasting approaches have the
advantage of being relatively transparent against ML and AI methods. The latter do not
inform the users on estimated promotional effects that can be useful inputs for promotional
and pricing plans. Moreover, for these approaches to become useful in such a setting, they
have substantial computational and data requirements.

This study has several implications for practice. Retailers, and in particular supermar-
kets like the one in our case study, have to face the challenge of incorporating extensive
promotional information into their models, along with other covariates. This is often
done inefficiently resulting in miscalibrated models, the forecasts of which often require
substantial manual adjustments by demand planners [42]. Our recommended models can
be automatically calibrated for each item, including relevant effects. On the one hand,
this provides gains in forecast accuracy. On the other hand, the models are sufficiently
transparent to support promotional planning activities and can increase the trust of users
towards the models [31]. For these benefits to be realisable the recommended models
need to be relatively easy to implement. Depending on the existing forecasting support
system, adopting the dimensionality reduction or shrinkage route may be more attrac-
tive. The generation of the additional features for the proposed seasonality encoding does
not need any specialised statistical software. If the existing forecasting support system
incorporates shrinkage estimators, then the use of the proposed ridge regression becomes
straightforward once the additional features have been generated. When this capability
is not available, the PCA preprocessing of the input variables can be done prior to incor-
poration in standard statistical models, which are widely available. If an in-house data
science team is available, then either models can be implemented fairly easily relying on a
stack of commonly available modelling steps. We argue that this ease of implementation is
one of the biggest benefits of our models. Nonetheless, considering the implementation
dimension, it points to the relevant question of software interface design. This is beyond the
scope of this study, but we recognise its importance for users to get the maximum benefit
of the proposed models, both in terms of increasing their trust in them, but also in terms of
gaining market insights with benefits beyond forecasting. The design of an appropriate
interface for forecasting support systems for retailing remains an interesting direction for
future research. In addition, there remains the need to investigate yet more diverse types of
promotional information, in particular when we consider how users interact with model
forecasts and adjust them to enrich the included information [42].
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