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Featured Application: Parts of our research have been applied to decision making in the welding
manufacturing process of rail vehicles. We predict that this research will be of value to the design
of welding manufacturing process decisions in different industries.

Abstract: To address the challenges of incomplete knowledge representation, independent decision
ranges, and insufficient causal decisions in bogie welding decisions, this paper proposes a hybrid
decision-making method and develops a corresponding intelligent system. The collaborative case,
rule, and knowledge graph approach is used to support structured documents and domain causality
decisions. In addition, we created a knowledge model of bogie welding characteristics and proposed
a case-matching method based on empirical weights. Several entity categorizations and relationship
extraction models were trained under supervised conditions while building the knowledge graph.
CRF and CR-CNN obtained high combined F1 scores (0.710 for CRF and 0.802 for CR-CNN) in the
entity classification and relationship extraction tasks, respectively. We designed and developed an
intelligent decision system based on the proposed method to implement engineering applications.
This system was validated with some actual engineering data. The results show that the system
obtained a high score on the accuracy test (0.947 for Corrected Accuracy) and can effectively complete
structured document and causality decision-making tasks, having large research significance and
engineering value.
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1. Introduction

The bogie is one of the major components of the rail vehicle, which is mainly man-
ufactured via welding. The welding process is a multi-stage collaborative process that
generally includes structural design, process development, production, and quality control.
The accuracy and synergy of the decision making in all phases directly determine the
productivity, safety, and comfort of rail vehicles. The traditional operation of the welding
process primarily relies on the decisions of domain experts. This makes the workload
high, the standardization low, and the errors frequent because of the arbitrariness and
uncertainty of manual operation. Knowledge-based intelligent systems [1–6] have received
great attention for manual decision-making challenges. In these systems, expert knowledge
is translated into computer language to assist in designing the welding manufacturing
process, and welding process systems [7] and fault diagnosis systems [8] have been widely
applied in welding engineering. Digital-based engineering decisions have become an
essential direction for upgrading manufacturing models. However, due to the high-quality
requirements, standards, and engineering complexity of bogie welding, the manufacturing
process is still dominated by manual decisions, supplemented only by intelligent decisions
in single-stage manufacturing. Thus, introducing intelligent decisions into integrated
welding manufacturing would have significant engineering and social value.
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In recent years, decision reasoning methods have mainly focused on case-based [9,10],
rule-based [11,12], and hybrid decision methods [13–15]. Case-based decision making is
the process of obtaining the best matching case by calculating the similarity between old
and new cases. This technique can be used to make decisions about future events based
on a complete experience database, so it is widely employed in several domains, such
as assembly management [16], process engineering design [17], and fault diagnosis [18].
However, effective decision making may be challenging when there is a lack of a case
base. Rule-based methods [19] are also often used for decision making, where a priori
experience and knowledge are transformed into mathematical logic to carry out decision
tasks. Compared with the case-based approach, the rule-based system reduces the reliance
on a priori data, but complex logic construction still needs to be solved. In order to syn-
ergize the advantages of case-based and rule-based approaches, hybrid decision-making
methods have become a major research focus. Phyu et al. [20] proposed a hybrid approach
to rule- and case-based material failure analysis and demonstrated that the hybrid approach
obtains better analytical results than individual decisions. In weld manufacturing, Zhang
et al. [21] offered a hybrid case- and rule-based system for welding processes and imple-
mented system-level applications in weld manufacturing. In addition, algorithms such as
Bayesian [22], data envelopment analysis [23], multi-criteria [24–26], fuzzy theory [27–30],
and neural networks [31,32] have been introduced into decision making. These approaches
have shown positive performance in several domains. However, incomplete knowledge
representations are not addressed further due to data and logical form limitations. Sec-
ondly, most welding systems focus on a single stage of the production cycle and need to
be adapted to adequately meet the integrated manufacturing model. Thirdly, end-to-end
decision making alone does not satisfy the search for causality.

A hybrid decision method based on a knowledge graph is proposed for the challenges of
incomplete knowledge representation, independent decision scope, and insufficient causal de-
cisions in integrated bogie welding manufacturing. This approach is centered on a knowledge
graph and collaborates with rule-based and case-based decision methods to enable full-cycle
decision making for welding and to support causal decision making across production stages.
Compared with other methods, the hybrid decision method has the following characteristics:
(i) Wide range of decision making: this method can make decisions not only for structured
documents but also for unstructured causal relationships. (ii) Diverse knowledge expressions:
structured data and knowledge can be characterized based on cases or rules, and unstructured
semantic information is also characterized via the construction of domain knowledge graphs.
(iii) High engineering applicability: the decision process involves the entire lifecycle of welding
manufacturing, providing decision results with cause-and-effect relationships that apply to all
phases of the guiding decision-making process.

In this study, a hybrid decision system for bogie welding manufacturing was devel-
oped based on the proposed method. The decision system is divided into two subtasks:
structured document decision making and causal decision making. Among other things,
structured documents such as welding process specifications (WPS), weld joint lists, and
welding plans are used to make decisions based on rules and cases. A case database is
constructed through case representation, case retrieval, and case revision. We store the data
in a structured relational database to characterize the cases and propose a case-matching
method based on empirical weights. Rule-based decision making is used to modify cases
that have no matching prior cases or need to be corrected. To accomplish causal decision
making, we created a top-down domain knowledge model based on the production process
and created a corresponding knowledge graph. Knowledge graph creation consists of
two subtasks: entity recognition and relationship extraction, and several classical models
are trained based on supervised learning. The top-performing models are conditional ran-
dom field (CRF) and classifying relations by ranking with convolutional neural networks
(CR-CNN). They are used for entity recognition and relationship extraction to achieve
unstructured automatic extraction, respectively. System functionality through modular
design. Data design and storage are carried out using Mysql and Neo4j. The implementa-
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tion results and user interface are presented in the results section. The results show that
the intelligent decision system based on the proposed method can effectively complete the
decision-making tasks for the whole life cycle of bogie welding, which has high research
significance and engineering value. The main contributions of this paper are as follows:

(i). We innovatively joined knowledge graph decision making to case- and rule-based
methods and applied this hybrid model to integrated bogie welding manufacturing.

(ii). A production process-based knowledge model is developed to support knowledge
system design. An empirical weight-based approach is proposed to calculate the
case similarity.

(iii). We developed an intelligent decision system based on a hybrid decision model in
conjunction with welding manufacturing, which can complete structured documents
and cause-and-effect decisions.

The rest of this paper is organized as follows. In Section 2, the knowledge model
and hybrid decision scheme are constructed for the bogie welding manufacturing process.
Section 3 implements the hybrid decision scheme based on case matching, rule base, and
knowledge graph construction. Section 4 gives the resultant metrics of the comparative
models for entity identification and relationship extraction in the construction of domain
knowledge graphs. In addition, experimental results on the knowledge graph construction
process, structured data decision making, and causal decision making are provided and
analyzed. In Section 5, the corresponding conclusions are given.

2. Methods and Models
2.1. The Bogie Manufacturing Process

As a critical component of rail vehicles, the bogie improves load, vehicle guidance,
and cushioning damping. Its main components are a rocker, side beam, frame, axle box,
spring damping, braking device, etc. The composition of the bogie’s structure is shown in
Figure 1. The bogie manufacturing process includes many welding processes, and imple-
menting intelligent welding decisions benefits productivity and improves quality. Welding
manufacturing is a complex process of multi-departmental collaboration, mainly including
structural design, process selection, manufacturing, quality inspection, and experimenta-
tion. The structural design phase is mainly completed by determining geometric structure
information such as static dimensions, fatigue dimensions, and joint forms. Next, in the
process selection stage, a suitable process is selected according to the structural information
and relevant standards and then issued to production. Structural and process information
will be considered in the production phase to complete the assembly and welding of the
parts. Molded parts that meet the quality inspection requirements are used for vehicle
assembly. In addition, parts with quality problems need to be traced back to the cause and
repaired to ensure manufacturing quality.

As described above, the bogie welding process involves multi-department, multi-
component, and multi-station information, and its manufacturing process requires a great
deal of decision making. Expert experience and manual decisions alone do not easily
guarantee manufacturing quality and efficiency. Therefore, replacing manual decision
making with computers will help reduce manual casualness, avoid repetitive work, and
improve decision making efficiency.

2.2. Domain Knowledge Modeling

Knowledge modeling is the process of structurally summarizing and characterizing
domain knowledge. Proper structural design can effectively reduce knowledge redundancy
and improve application efficiency. The data and application characteristics are essential
factors in designing the model structure. The bogie welding manufacturing process in-
cludes several stages of structural design, process selection, production operations, and
quality inspection, which have evident process characteristics. In addition, each assignment
phase corresponds to some specific professional content. For example, the structural design
includes joint design and quality level. Process selection includes welding method and
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position selection. Therefore, based on the domain data characteristics, we proposed a
collaborative production process and top-down fusion approach to achieve model struc-
ture design. The operation phase is the first level of classification information, and its
sub-information is classified sequentially based on a top-down approach. The domain
knowledge model is shown in Figure 2.
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Figure 2. The welding knowledge model.

The model structure is also designed considering the association between nodes and
the type of application. The purpose of the model is to summarize the entities involved in
the bogie welding process and to support decision making via cause-and-effect relationships
between entities. Thus, decision problems are divided into cause-based, result-based, and
other decisions, for example, Q1: “what attributes support the decision of attribute A?”; Q2:
“which attribute is selected based on attributes A and B?”; Q3: “what attributes do attribute
C contain?”. The tracing of reasons for decision attributes is called the cause-based decision,
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as in the Q1 class of queries. The process of determining the results’ attributes from known
attributes is a results-based decision, as described in the example in Q2. In addition,
decisions on attribute ontology features, such as in Q3, are classified as other decisions.

2.3. Collaborative Decision Making

Depending on the target task, the welding manufacturing decision process can be
divided into directed and undirected decisions. Directed decisions are mainly aimed at
standardized documents, such as welding process specifications (WPS), welding plans,
and inspection plans. Decision attributes are largely fixed and rely on a large amount
of experience and structured data. Undirected decisions are used to solve unstructured
semantic problems with random attributes. Considering the characteristics of welding
manufacturing data, we propose a collaborative decision-making scheme that employs
case-based reasoning (CBR) and rule-based reasoning (RBR) for attribute-specific decisions
and constructs knowledge graphs for undirected decisions. The overall process is shown in
Figure 3.
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(1) Case-based decision making. The CBR is a method for completing decisions by ana-
lyzing the similarity between a problem and a known case base. Its main elements
are case representation, case retrieval, case revision, and case learning. Case rep-
resentation is the process of designing the rational storage form of data, and the
characteristics of actual cases need to be considered. In this study, we divide the
data into conditional and result fields and store them in a structured database. Case
retrieval is a crucial step of CBR, which realizes case matching by calculating the
similarity between cases. When the similarity of the condition fields is greater than
a certain threshold for a decision problem, we consider the result field a reasonable
decision. Case revision mainly consists of modifying invalid decisions into reasonable
decisions. In order to continuously expand the case base and make it have a strong
generalization ability, it is necessary to supplement the revised reasonable cases to
the case base. This process is called case learning. The decision process is shown in
Figure 4.

(2) Rule-based decision making. The RBR is the process of transforming domain expert
knowledge into computer logic language to complete decision making. The main
steps to complete the decision are the representation, acquisition, and reasoning
of knowledge. From the perspective of knowledge, decision making is a process
from knowledge representation to knowledge acquisition. Knowledge is generally
divided into factual knowledge and process knowledge. Factual knowledge is the
basic description of things and represents the characteristics of individual attributes.
For example, we can immediately understand the welding angle when referring to
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the welding position. Process knowledge is a collection of knowledge obtained by
some means or logical operation. For example, the preheating temperature needs to
compare to the preheating temperature of base-metal-1 and base-metal-2 and select
the minimum temperature value. According to different sets of knowledge, choosing
different knowledge expression methods is the key to realizing process reasoning.
Rules are the logical expression of knowledge relations and expert experience. Rules
can be divided into dynamic and logical rules according to different action modes.
Dynamic rules refer to the correspondence between fields. They define fields A, B, and
C. When A and B occur, C must occur. Therefore, there is a correspondence between
A, B, and C. This correspondence is called a dynamic rule. Logical rules refer to the
description statements connected with logical expressions, such as defining fields A,
B, C, and D, and there is a logical statement “IF A > B THEN C, ELSE D,” which is the
logical rule between fields.

(3) Knowledge graph-based decision making. Knowledge graph-based decision-making
transforms unstructured natural language into structured query statements and re-
trieves the graph for the best matching answer. Identifying keywords and relation-
ships is a vital part of the search and decision making. The automatic relationship
extraction model is trained and used to define interrogative relationship categories in
the knowledge graph’s construction. In addition, the trained entity recognition model
is also used as a preliminary determination of keywords. Next, the Term Frequency-
Inverse Document Frequency (TF-IDF) method is employed to identify the most
critical terms. The TF-IDF is calculated according to Equations (1)–(3), and the larger
its value, the more critical the corresponding vocabulary. Structured statements are
created based on keywords and relationships and are used to retrieve decision results.

TF− IDF = TFij × IDFi (1)

TFij =
nij

∑k nkj
(2)

IDFi = log

(
|D|

1 +
∣∣{j : ti ∈ dj

}∣∣
)

(3)

where nij is the number of occurrences of the target lexical entry in the semantics, and
the summation nkj represents the number of all lexical entries. D is the total number
of lexical entities in the corpus. {j:ti∈dj} is the number of corpora containing ti.
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3. Experiments
3.1. The System Design

A function-based modular design is adopted to reduce the coupling between func-
tional modules. System functions are divided into five modules: system management,
graph creation, graph list, business decision, and business approval. System management
realizes authority division by assigning corresponding function modules to users. Graph
creation and lists are used for knowledge graph creation and presentation, and the creative
process includes manual and automatic creation. The business decision module realizes
the decision of structured files and causality based on the constructed knowledge system.
In addition, the decision results processed and issued via the approval module will be
considered formal decisions.

3.2. Build Cases and Rules

Case construction is divided into three subtasks: case representation, case retrieval,
and case revision. Case representation can also be seen as a form of case storage. Depending
on the data characteristics of the weld file, cases are stored in a structured database. Case
retrieval is a critical element of the acquisition decision, and the best matching result is
obtained by calculating the similarity between new and old cases. The similarity calculation
compares the problem with the known cases to obtain the highest matching result to
complete the decision. In order to obtain credible matching results, the computational
process must consider the attribute characteristics of the target data. As far as welding
decisions are concerned, each condition attribute has a different degree of influence on
the result attribute. It is necessary to define the weights for each attribute. The steps of
similarity calculation based on weight are as follows:

(1) Case similarity calculation. The new case is defined as P, the old case as C, and the
similarity calculation process between cases is shown in Equation (4). We calculate
the product of the similarity of each attribute and its weight and sum it to obtain
the case similarity. Here, sim (P, C) represents the case similarity, n is the number of
case condition attributes, ai represents the i-th attribute, and ωi represents the i-th
attribute weight:

sim(P, C) =
n

∑
i=1

ωi · sim
(

aP
i , aC

i

)
(4)

(2) Attribute similarity calculation. Attributes generally include numeric, symbolic, and
conforming attributes. Equation (5) is the numerical attribute calculation process. For
symbolic attributes, the attribute similarity is “1” when the attribute values are equal
and “0” when the attribute values are unequal. The calculation process is shown
in Equation (6). Composite attributes contain numeric and symbolic characteristics.
Among them, the symbolic feature is selected as the first matching element. The
similarity is calculated according to Equation (5), when the symbols are equal. If the
symbols are not equal, the similarity is “0”:

sim
(

aP
i , aC

i

)
=

1

m|a
P
i −aC

i |
, (5)

sim
(

aP
i , aC

i

)
=

{
1, aP

i = aC
i

0, aP
i 6= aC

i
, (6)

where aP
i is the i-th attribute value of the new case, aC

i is the i-th attribute value of the
old case, and m is constant (m = 1.2 according to field experience).

(3) Attribute weight division. Assigning the same weight to the attributes is unreasonable
because the conditional attributes in the case have different degrees of influence on
the decision attributes. Therefore, the conditional attribute weights are calculated



Appl. Syst. Innov. 2023, 6, 29 8 of 15

based on the number of decision attributes associated with the attribute, which is
calculated as Equation (7), where ai denotes the i-th conditional attribute and count(ai)
denotes the number of decision attributes associated with the conditional attribute:

ωi =
count(ai)

n
∑

i=1
count(ai)

(7)

Based on expert experience, 0.85 is chosen as the case-matching threshold, and cases
below the threshold do not have reusability. For valid cases, case revision is required to
ensure the usability of the case. Rule-based decision-making methods are employed to
revise the case. Rule construction is the process of transforming expert experience into
an executable computer program. Logic rules are divided into dynamic rules and static
rules. Dynamic rules rely on database calls to build the logic. For example, the decision
rules for welding procedure qualification records (WPQR) require a structural database
correspondence to complete the development. Rules constructed only through logical
relations and predicates are called static rules, for example, “IF weld quality level == CP A
THEN weld inspection level == CT 1”. In this study, 20 rules were constructed involving
several required fields such as welding position, preheating temperature, quality level, and
welder qualification. Constructed rules are used as case corrections, and approved cases
for distribution are added to the case base to improve data quality.

3.3. Building a Knowledge Graph

Creating a knowledge graph is a key element in enabling decision making. Entities
and relationships are the essential elements of knowledge, so fast extraction of entities and
relationships from unstructured data is necessary. An automatic method of data extraction
based on manual creation was designed in this study. The process of extraction and creation
is as follows:

(1) Data processing. The purpose of the design knowledge graph is to provide guided
decisions for the bogie welding manufacturing process. Domain guidance documents
are selected, such as domain standards, regulations, and production requirements.
Most of these data are unstructured files and cannot be extracted directly. In order to
obtain valid research data, the document information is split into several sentences
based on essential separators such as full stops, exclamation marks, question marks,
and semicolons. Sentence-level data are saved as a data source and divided into
several attribute vocabularies via the CRF model [33]. The vocabulary data and
terminology were converted into numerical vectors with the skip-gram model of
Word2vec. Sentence-level, word-level, and word vector data are used to support the
extraction of entities and relationships. In addition, the Begin-Inside-Outside (BIO)
approach is employed to label the entity vocabulary dataset for entity identification.
Labels and sentence-level semantics are defined to support relation extraction.

(2) Entity extraction. Based on the established knowledge model, semantic relationships
are classified into six categories: “Design,” “Technology,” “Manufacture,” “Quality,”
“Department,” and “Standard.” Subordinate production process attributes have a
small amount of data with many categories, so high-quality models are challenging
to train. The relation “belong_to” is used as a link between the production process
category and the subordinate attributes to replace the classification of the subordinate
entities. This relation is also trained in the relation extraction task. Several models
based on supervised learning Hidden Markov Model (HMM), CRF, and Bi-directional
Long Short-Term Memory (BiLSTM) were trained on the same dataset. Higher-quality
models are employed to extract domain entities automatically.

(3) Relationship extraction. Relationships are the ties linking entities and are impor-
tant supporting information for knowledge graph decisions. This study divided the
relationships into five main categories: belong_to, reference, requirement, applica-
ble_to, and unknown. The “belong_to” category is used to associate upper-level and
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lower-level category attributes. We use relation “reference” to express the retroactive
relationship in decision making. Equally, relations “requirement” and “applicable_to”
are defined to support cause-based decision making. The Bi-directional Long Short-
Term Memory and Attention (BiLSTM + Attention) [34] and CR-CNN [35] models for
relation extraction are trained under supervision.

3.4. Database Design

A fusion decision-making method centered on knowledge graphs, collaborative CBR,
and RBR is proposed for bogie welding manufacturing. Its functional implementation
requires the support of a graph database and a structured relational database. The relational
database includes a terminology dictionary, base materials, welding procedure qualification
records, welder qualifications, welding materials, and a welding parameters database. An
MYSQL database was employed and built for structured document decisions and partial
business execution. Graph databases are mainly used to support the construction of
knowledge graphs because of their compatibility with complex relationships. Neo4j was
chosen as the graph data creation tool, which stores node, relationship, attribute, and label
information in arrays.

4. Results and Interpretability
4.1. Model Training Results

Metrics are essential to evaluating the quality of a model. We combined the influence
of the number of data categories and selected Precision, Recall, and F1-score as model
evaluation metrics. The calculation process and variable information are shown in Table 1.

Table 1. Description of model validation metrics.

No. Equations Variable Interpretation

1 Precision =
TP

TP + FP
TP (True Positive): both true and predicted categories are positive examples.

FP (False Positive): true category is negative and predicted category is positive.

2 Recall =
TP

TP + FN
TN (True Negative): both true and predicted categories are negative examples.

FN (False Negative): true category is positive and predicted category is negative.

3 F1-score =
2× Precision× Recall

Precision + Recall
Precision and Recall refer to the equations numbered 1 and 2, respectively.

F1-score is calculated by the equation numbered 3.

For the dataset, 19,410 sample pairs of entity-labeled data were obtained and divided
into a training set, a test set, and a validation set. We manually checked and adjusted
some data to ensure that the partitioned data were evenly distributed in each category.
The training set contains 15,113 pairs of data samples, the test set involves 2350 pairs of
samples, and the validation set has 1947 pairs of samples. In addition, to compare the
training relationship extraction models, we divided the 1832 pairs of labeled sentence-level
data into a training set, a test set, and a validation set in a ratio of 8:1:1. The entity and
relationship extraction training results based on Precision, Recall and F1-score metrics are
presented in Tables 2 and 3, respectively.

As the results show, CRF obtained a high score in the entity extraction model, which
was employed to complete the automatic entity extraction task. For the relationship
extraction task, CR-CNN model achieved a higher F score for “belong_to,” “reference,” and
“requirement.” The BiLSTM + Attention model performed better in the other categories
and had a higher overall score. Since the category “unknown” positively contributes to the
composite score of BiLSTM + Attention, it has low importance in the relationship category.
Therefore, we combine the other category F1-scores and employ CR-CNN to implement
the relationship auto-extraction task. In addition, we consider that annotation quality and
feature acquisition methods may be important factors for improving model quality.
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Table 2. Entity extraction model results metrics.

Model Metrics Technology Manufacture Design Department Standard Quality

HMM
Precision 0.512 0.569 0.593 0.556 0.905 0.713

Recall 0.528 0.474 0.743 0.590 0.880 0.599
F1-score 0.519 0.517 0.646 0.569 0.892 0.650

CRF
Precision 0.783 0.686 0.715 0.722 0.935 0.758

Recall 0.603 0.429 0.788 0.501 0.891 0.671
F1-score 0.678 0.527 0.748 0.586 0.912 0.710

BiLSTM
Precision 0.613 0.476 0.592 0.662 0.937 0.569

Recall 0.386 0.463 0.542 0.497 0.818 0.497
F1-score 0.473 0.469 0.535 0.568 0.873 0.530

Table 3. Relationship extraction model results metrics.

Models Metrics Belong_to Reference Requirement Applicable_to Unknown Macro-Average

BiLSTM +
Attention

Precision 0.838 0.568 0.806 0.857 0.872 0.788
Recall 1.000 0.875 0.625 0.878 0.850 0.846

F1-score 0.912 0.688 0.704 0.867 0.861 0.816

CR-CNN
Precision 0.912 0.704 0.670 0.818 0.850 0.791

Recall 1.000 0.792 0.763 0.878 0.638 0.814
F1-score 0.954 0.745 0.713 0.847 0.729 0.802

4.2. Intelligent Decision Results

The 284 welding process data for bogie welding were used for system testing, including
107 side beams, 55 cross beams, 55 frames, and 22 brake hangers and beams. The data
are mainly derived from WPS data that have been approved by experts and applied in
engineering production. We defined design information as known data (type of base
material, size of base material, quality grade, joint form, etc.) and process information
(welding position, assembly gap, blunt edge, welding parameters, preheating temperature,
etc.) as decision data. The model completes validates the decision information based on
known information. The ratio of correct cases to the number of test cases, called Case
Accuracy, is used to evaluate the accuracy of case matching. The accuracy of corrected
cases (Corrected Accuracy) is calculated by the ratio of correct cases (Case Accuracy) to test
cases (Test Cases). The test results are shown in Table 4.

Table 4. Structured document decision accuracy.

No. Part Name Test Cases Right Case Case Accuracy Corrected Case Corrected
Accuracy

1 Side Beam 107 90 0.841 103 0.963
2 Vehicle Frame 110 92 0.836 107 0.973
3 Crossbeam 55 35 0.636 49 0.891
4 Brake hanger/beam 12 8 0.667 10 0.833

Total - 284 225 0.792 269 0.947

As shown in Table 4, the case accuracy is 0.792, and the corrected accuracy is 0.947.
Compared with the case-matching results, the corrected case significantly improved accu-
racy. The low case matching accuracy is mainly due to the incomplete case base, especially
the lack of “Crossbeam” and “Brake hanger/beam” cases. In addition, the correctness of
the input known conditions also affects the matching accuracy. Even though the corrected
case achieves high accuracy, the limitation that the logical representation is designed for
most problems and those individual problems are easily ignored has a negative impact on
accuracy. Therefore, the decision accuracy of the system may be improved by enhancing
the iterative ability of the case base, monitoring the condition input, and improving the
rule compatibility.
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For causal decision making, 10 decision questions were selected for testing the sys-
tem. These issues involve multiple relationships (“belong_to,” “reference,” “requirement,”
applicable_to) and categories (“Design,” “Technology,” “Manufacture,” “Quality,” “De-
partment,” “Standard”). The decision problems and results are presented in Table 5 as
unstructured natural language. As the results show, nine questions obtained corresponding
decision results that are consistent with the relevant standards, and experience and can
provide effective guidance for the bogie welding manufacturing process. However, ob-
taining a valid result is challenging when multiple entities or relationships are involved in
the decision. Therefore, how to optimize the relationship and entity extraction strategy for
the welding manufacturing process and design a relational storage structure for complex
problem solving may become our next research focus.

Table 5. Causal decision results.

No. Decision Issues Decision Results

1 What check grade is required for weld grade CP A? The weld grade CP A requires check grade CT 1
2 How to choose the base material for welding. The base material reference CEN ISO/TR 15,608, weld grade
3 What properties determine the preheating temperature? The preheating temperature reference material, plate thickness
4 How to determine the welding position. The welding position reference joint and weld seam form
5 What does the welding position include? The welding position includes PA, PB, PC, PD, PE
6 What welding position is required for a-joint? The a-joint requires welding position PB

7 What assembly gap is selected for welding method t135 and
plate thickness of 14? No Result

8 Which department designs the welded joints? The design department tasks include welded joint design
9 What parts are carbon steel applied to? Carbon steel is applied to side beam, vehicle frame, crossbeam
10 What does Standard EN ISO 6520 apply to? The Standard EN ISO 6520 is applied to defect classification

4.3. System Realization

Hybrid decision-making methods are applied to the bogie welding process in the
form of intelligent systems, which consist mainly of structured documented decisions and
cause-and-effect-based, guided decision-making tasks. Structured documented decisions
are used for the rapid development of WPS, welding schedules, inspection schedules,
etc. The information to be decided is obtained by pre-inputting known data and based
on a decision inference system to guide the welding production. Cause-and-effect-based
decision making is mainly used for unstructured data. For example, the rapid determination
of relevant standards in joint design, the acquisition of recommendations for inspection
levels and means during quality inspection, and the provision of reference information for
the traceability of welding defects.

The system mainly applies to welding decision making for structure documentation
and causal issues. Vue is employed to implement page design, and JAVA is used for system
business implementation. Structured file decisions are shown in Figures 5 and 6. The
system enables importing conditional data through single additions and external Excel files,
and the data can be modified through edit and delete buttons. Imported data are batch
decided by selecting conditional data and clicking on the decision button. The structured
file after the decision is presented as shown in Figure 6, which includes information such
as condition data, welding parameters, and joint images. These documents are approved
to guide the welding manufacturing process directly and are stored in a case database for
optimization and iteration of case retrieval.
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Figures 7 and 8 causal decision-related pages. As shown in Figure 1, the manually
created and automatically extracted entities and relationships in the form of nodes and
edges constitute the domain knowledge graph. We can obtain information about entities
and relationships of interest by entering keywords and finding information about arrays
by clicking on the view data button. Figure 8 shows the cause-and-effect guided decision
process. Decision questions are entered in natural language, and decision results are
presented in natural language and knowledge graphs. In addition, we can select the
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question area on the left side of the search box to improve the efficiency and accuracy of the
decision. This decision result can provide guiding suggestions for basic problem queries
and complex engineering problem solving. For example, reference standards for bogie
welding tasks are available, the terminology is quickly retrieved, and the traceability of
welding quality is supported.
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5. Conclusions

A hybrid model is designed that combines CBR, RBR, and knowledge graphs to
overcome some limitations in welding decision making. A case retrieval algorithm based
on weights and a knowledge graph oriented to the welding cycle were constructed. Entity
identification, relationship extraction, and hybrid decision models were validated with
engineering data. As a result, optimal entity (CRF, 0.710 for F1-score) and relational
(BiLSTM + Attention, 0.816 for F1-score) models for our data were used for knowledge
graph construction. The decision accuracy for structured documents is 0.947, and practical
guidance is provided for causal issues.

The proposed hybrid decision-making approach is beneficial for intelligent decision
making in welding engineering. Such an innovative means of introducing knowledge
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graphs into welding decision systems enriches the domain of decision theory. In addition,
this study may be helpful for decision making in other areas, such as casting and forging.

Although this study can support most decision problems, there are limitations to
multi-entity and multi-relationship decisions. Therefore, optimizing the extraction, storage,
and retrieval of multi-entity and multi-relationship decisions may become the focus of
future research.
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