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Abstract: Among the levers carried in the era of Industry 4.0, there is that of using Artificial Intel-
ligence models to serve the energy interests of industrial companies. The aim of this paper is to
estimate the active electrical power generated by industrial units that self-produce electricity. To
do this, we conduct a case study of the historical data of the variables influencing this parameter to
support the construction of three analytical models three analytical models based on Deep Learning
algorithms, which are Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN),
as well as the hybrid CNN algorithm coupled with LSTM (CNN-LSTM). Subsequently, and thanks
to the evaluation of the created models through three mathematical metrics which are Root Mean
Square Error (RMSE), Mean Square Error (MSE), and the variance score (R-squared), we were able to
make a comparative study between these models. According to the results of this comparison, we
attested that the hybrid model is the one that gives the best prediction results, with the following
findings: the variance score was about 98.29%, the value of RMSE was exactly 0.1199 MW, and for
MSE the error was equal to 0.0143 MW. The obtained results confirm the reliability of the hybrid
model, which can help industrial managers save energy by acting upstream of the process parameters
influencing the target variable and avoiding substantial energy bills.

Keywords: electrical power; steam turbine; deep learning; artificial intelligence; industry 4.0

1. Introduction

Nowadays, the fields of electrical energy production have become of vital importance
in industrial factories characterized by their energy-intensive aspect, in particular those
whose manufacturing processes allow the release of thermal energy. This importance is
seen mainly in the possibility of achieving the self-sufficiency in electrical energy, so as to
cover partially or totally the internal consumption of the plant.

The industrial method most commonly used in this sense is to recover the heat released
by these processes into tubular exchangers by evaporating the feed water in the thermal
boilers. Then, the steam produced is used under pressure to drive a turbine coupled to an
electricity generator.

Nevertheless, the prediction of produced electricity has now become a key factor in
reducing the energy bills of factories, which is why it is necessary to construct Artificial
Intelligence (AI) models to control and master upstream the factors that create undesirable
reductions in or disruptions to electrical power.

The structure of this work is as follows:

• Section 2 presents state-of-the-art techniques previously used by scientific researchers
to predict electrical power;

• Section 3 discusses the three methods we employed for prediction, starting with a
technical framework of our case study.
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• Section 4 presents the results of the developed models including a comparison of their
performance.

• Section 5 discusses and interprets the obtained results.
• Section 6 provides the conclusion, which highlights the benefits of these contributions,

as well as some perspectives.

2. Related Works Linked to the Prediction of Electrical Power

In this section, we present a summary of the most recent research works related to the
subject. This summary is shown in Table 1 with various case studies.

Table 1. Summary of recent related works.

Team Year
Prediction Technique

Followed

Application
Side
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of the Case Study
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Khan 2019 ARIMA (Auto-Regressive Integrated Moving Average);
SVM (Support Vector Machine). X X [1]

Zafirakis 2019 SVR (Support Vector Regression).
ANN (Artificial Neural Network). X X [2]

Sabri 2021 GRU (Gated Recurrent Units).
CNN (Convolutional Neural Network) X X [3]

Saleel 2021 ANN (Artificial Neural Network).
DNN (Deep Neural Network). X X [4]

Kons-
tantinou 2021 LSTM (Long Short-Term memory). X X [5]

Wang 2021 Hybrid model LSTM-GPR (Gaussian Process
Regression), Bayesian Network. X X [6]

Heydari 2021 Fuzzy-GMDH model optimized by Grey Wolf. X X [7]

Liu 2021 CNN (Convolutional Neural Network). X X [8]

Al
Rayess 2021 Decision Tree (DT), Generalized Linear (GL),

Gradient-Boosted Trees (GBT), and Random Forest (RF). X X [9]

Bendiek 2021 FBP(Facebook Prophet).
SVM(Support Vector Machine). X X [10]

Zhou 2022 NOFGHW (Novel Optimized Fractional Grey
Holt–Winters). X [11]

Shohan 2022 Hybrid model LSTM-NP (Neural Prophet). X [12]

Rossi 2022 MLR (Multiple Linear Regression). X X [13]

Wang 2022 LSTM improved by EMD-PCA-RF. X X [14]

It should be noted that the research works on electrical power prediction cited above
mainly focused on consumption rather than production.

Similarly, although they used various algorithms, they were more oriented toward
renewable sources than fossil energies. We suggest that some of the works required more
research efforts to optimize their uses, especially in the case of steam power plants.

In the present work, we aim to shed light on the prediction of power at the production
level and the level of a steam power plant associated with an industrial exothermal process
linked to the combustion of sulfur as a raw material.
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3. Materials and Methods

This section focuses on the framing of the problem of our case study, the exploration
of the data required to develop the solution, as well as the presentation of the techniques
used for the prediction of electrical power production.

3.1. Industrial Process Description

The application considered is an industrial process in a thermal power plant for the
production of electrical energy, which is associated with a sulfuric acid production line, as
presented in (Figure 1).
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Figure 1. Overview of the process related to the co-production of sulfuric acid and electricity.

The plant is continuously supplied with high-pressure steam due to the exothermic
nature of the sulfuric line process. Therefore, electricity is produced through the mechanical
drive of a turbine coupled with an alternator.

Then, the local electrical network ensures the internal self-supply of energy, which
could also be connected to the distribution grid of the public operator to ensure an electri-
cal exchange.

3.2. Dataset Presentation

Before preparing the dataset, it should be noted that the construction of the models
was carried out on a platform using Python as a computing tool.

To achieve the objective of the study, we collected numerical data from a factory using
the same aforementioned production process. The data covered a period of 6 months, with
1 value recorded every five 5 min as the sampling frequency, i.e., a total of 51,840 data points.

According to the analysis of the process history, there are five main parameters related
to steam that impact the variation in the electrical power generation in megawatts (MW),
which are presented in Table 2.
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Table 2. Main feature parameters that influenced the variation in power in the studied power plant.

Parameter Category Mathematical
Symbol

Physical
Measuring Unit

Electrical power
at the output of the generator Target Pelec MW

Pressure losses
between furnace and boiler Feature ∆PFB mmH2O

Steam temperature Feature Temp
◦C

High pressure of driving steam Feature PHP bar

Flow rate of steam
(at the boiler output) Feature QmB t/h

Flow rate of steam
(at the collector output) Feature QmS t/h

The rated capacity of the alternator dedicated to this application is 58 MW, which also
has a rated apparent power of 68 MVA.

3.3. Correlation Analysis

The accuracy of the models depends significantly on the correlation between the
variables used. Thus, it is necessary to evaluate the correlation of different inputs with
the outputs of power production. The calculation of these coefficients before constructing
the models can give us a clear idea about the highly correlated parameters and weakly
correlated parameters.

In mathematics and statistics, covariance is a measure of the relationship between
two random variables, whereas correlation is a measure of the strength of the relationship
between the variables. In other words, correlation is the scaled measure of covariance.

The mathematical formulas for covariance (1) and correlation (2) are as follows:

cov(X, Y) =
1
N ∑N

i=1

(
Xi −

¯
X
)
×
(

Yi −
¯
Y
)

(1)

corr(X, Y) =
cov(X, Y)
σX ×σY

(2)

where
Xi is the values of the X variable.
Yi is the values of the Y variable.
¯
X is the mean value (average) of the X variable.
¯
Y is the mean value (average) of the Y variable.
N is the number of data points.
σX is the standard deviation of the X variable.
σY is the standard deviation of the Y variable.
It was expected in this work that the dependency relationships between several

variables can be represented by a correlation matrix in Python.

3.4. Considered Deep Learning Algorithms
3.4.1. Long Short-Term Memory (LSTM)

Before explaining LSTM, it is important to understand recurrent neural networks
(RNN) given the close relationship between them. The structure of the RNN consists
of an input layer, one or more hidden layers, and an output layer. RNNs have chain-
like structures of repeating modules, which are used as memory for storing important
information from previous processing steps [15].
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LSTM is an evolution of RNNs and was introduced to eliminate the drawbacks of
RNNs related to vanishing / exploding gradients and rectify the problems of the short
memory linked to RNNs by adding complementary interactions per cell.

3.4.2. Convolutional Neural Network (CNN)

There are two types of convolutional neural networks, biological neural networks and
artificial neural networks. This work mainly discusses artificial neural networks.

A CNN-based artificial neural network is a modeling method that promotes data
and is similar in form to the synaptic links of the human brain. It is composed of several
neurons; the output of the previous neuron can serve as the input of the next neuron.

To sum up, the structural diagram of the CNN algorithm is composed of an “Input
Layer” that is connected to an “Output Layer” through three steps: “the Convolution Layer
n◦1”, “the Convolution Layer n◦2”, and a “Hidden Layer” [16].

3.4.3. CNN-LSTM Hybrid Model

A CNN (convolutional neural network) model consists of three layers: an input layer,
a hidden layer, and an output layer. The input of a three-dimensional array is usually fed
into a convolutional layer, where the dimensions are represented by the height, weight,
and number of channels [17].

Both CNN and LSTM models have specific features. Thus, a hybrid CNN–LSTM
DL model was considered in this study, which includes the advantages of both CNN and
LSTM models.

3.5. Assessment Strategy for the Models

Since we are working on a regression problem linked to archived historical data, we
evaluated the studied models using the following metrics: the RMSE (root mean square
error) [18] governed by Equation (3), the MSE (mean square error) [19] described by
Equation (4), and R-squared (explained variance score) expressed by Equation (5).

RMSE=

√
1
N∑n

i=1

(
yi−

^
y
)2

(3)

MSE=
1
N∑n

i=1

(
yi−

^
y
)2

(4)

R2=1−
∑n

i=1

(
yi−

^
y
)2

∑n
i=1

(
yi−

¯
y
)2 (5)

where
yi is the actual value of y of the target variable (measured value of electrical power).
ŷ is the predicted value of y of the target variable (predicted value of electrical power).
y is the mean value of y of the target variable (mean value of electrical power).
N is the number of samples related to the prediction.

4. Results

Before presenting the results, we note that for each model, the used dataset was
divided into two sub-samples. The first was the learning sample (80% of the scope of the
dataset) and the second was the validation sample (20% of the scope of the dataset).

Each model was built on the training sample and validated on the test sample with a
performance score.
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4.1. Correlation Check between Variables

By performing a dependency analysis between the studied parameters, we generated
the corresponding correlation matrix in Figure 2, which is based on the heat map concept.
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4.2. Theoretical Interpretation of Correlation Results

As seen in the above matrix, the parameter « Steam Mass flow rate QmS » had the
highest dependency relationship with the target parameter (Pelec).

We demonstrated theoretically that this strong dependence was justified by a physical
link between these two parameters, as seen in Figure 3.
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By applying the first law of thermodynamics [20] to the HP steam turbine following
the Rankine cycle model, the internal energy is expressed as follows:

∆HHP + ∆EK + ∆EP = Q + W (6)

where
∆HHP is the variation in enthalpy (kJ).
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∆EK is the variation in kinetic energy (kJ).
∆EP is the variation in potential energy (kJ).
Q is the calorific energy (kJ).
W is the work carried out on the system (kJ).
By considering the following hypotheses of the Rankine cycle:

- the transformation is adiabatic (Q = 0);
- the linear velocity is constant (∆EK = 0);
- the altitude is constant (∆EP = 0).

we obtain
∆HHP = W (7)

Likewise, by multiplying the work by the mass flow rate of the steam QmS, we obtain
the useful power of the steam Pstm:

Pstm = W. QmS = ∆HHP.QmS (8)

Then,

Pstm =
∆HHP.QmS

m
(9)

where
Pstm is the power of the steam (kW).
∆HHP is the variation of enthalpy (kJ).
QmS is the mass flow rate of steam at collector output (t/h).
QmS is the mass of the steam (tons).
Otherwise, we calculate the global efficiency of the steam turbine [21] coupled with

the generator:
ηG = ηtur. ηgen (10)

ηtur =
Pmec

Pstm + ΣPL1
(11)

ηgen =
Pelec

Pmec + ΣPL2
(12)

where
ηG is the global efficiency of the turbine generator.
ηtur is the efficiency of the turbine.
ηgen is the efficiency of the generator.
ΣPL1 is the global losses at the level of the turbine (kW).
ΣPL2 is the global losses at the level of the generator (kW).
Considering the fact that losses tend to zero, we obtain

Pstm =
Pelec

ηtur . ηgen
(13)

According to Equations (9) and (13), we deduce

Pelec = K .Qms (14)

where K is a positive coefficient that is equal to

K =
∆HHP .ηtur. ηgen

m
(15)

From Equation (14), we observe that there is a direct proportional relationship between
the target variable (Pelec) and its most correlated feature (Qms).

Thus, the correlation of 99% found automatically through Python is physically justified.
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4.3. Results of Electrical Power Prediction Using LSTM Model

• Training and validation phase:

The result of this phase is described in the Figure 4 below.
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• Testing phase:

The result of this phase is described in the Figure 7 below.
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4.6. Performance Metrics Comparison of the Constructed Models

The results obtained by the calculation of the evaluation metrics are presented in
(Table 3), which also shows a comparison of the performance achieved by each prediction model.

Table 3. Comparison of the performance metrics during the testing phase.

Model RMSE MSE R-Squared

LSTM 0.2414401 0.05829334 0.98385581

CNN 0.43010269 0.18498833 0.94662498

CNN-LSTM 0.1199 0.014397927 0.982824288

5. Discussion
5.1. Findings

As observed in the correlation analysis in Figure 2, the variables “Steam Flow Rate
at the collector output” and “Steam Flow Rate at the Boiler output” had the strongest
dependencies on the target variable studied with correlations of 99% and 97%, respectively.
They were followed by the parameters “Steam Pressure” and “Pressure Losses”, with
respective dependencies of 87% and 84%. Finally, the variable “Steam Temperature”
correlated with electrical power with a percentage of 73%.

We then deduced that all predefined parameters had a significant correlation with
the target variable. It is therefore appropriate to retain all of them to train and test the
studied models.

On the other hand, and in light of the performance results obtained in (Table 3), the
model based on the long short-term memory (LSTM) algorithm offered a better quality of
prediction of the electrical power parameter. This performance was seen in the R-squared
metric score, which was the highest (≈98.39%). However, the scores of the two metrics
RMSE and MSE, which interpreted the errors, were, respectively, 0.241 MW and 0.058 MW.

Similarly, and by training the model based on the CNN-LSTM algorithm, we were able
to maintain a high R-squared score (≈98.29%) and also minimize the error margins gener-
ated by LSTM to achieve an RMSE of 0.1199 MW and MSE equal to 0.0143 MW. This im-
provement confirmed that the CNN-LSTM hybrid mode is very suitable for power prediction.

As for the convolutional neural network (CNN) algorithm, its performance was less
acceptable given that its score was also high (R2 = 94.66%), except that the margin of error
was greater than that of the two previous models, with an RMSE of 0.4301 MW and an MSE
of 0.1849 MW, which makes this model ranked third in our comparative study.

To allow a more complete analysis of the models, the loss curves were drawn during
the training phase and are presented in Figure 4 for the LSTM model, Figure 6 for the
CNN model, and Figure 8 for the CNN-LSTM model. In this sense, the LSTM algorithm
reached its maximum score (98%) after 100 epochs, the CNN-LSTM model reached a score
of 98% after only 50 epochs, and finally, we recorded a score of 94% for the CNN model
after 200 epochs, which also makes the calculation time of the CNN model much more
important than the previous two models.

According to the respective results obtained in Figures 5, 7 and 9, it is shown that the
three chosen models offer good predictions of the target variable, with an advantageous
prediction accuracy for the CNN-LSTM hybrid model compared to the others.

5.2. Implications of Findings

Given that 35 MW is the nominal consumption of the industrial unit, and as shown in
Figure 10, the energy exchanged between the self-produced electricity of the factory and
the public electrical grid plays a dual role:

(a) It can inject and sell supplementary energy to the external electrical grid when the
produced power exceeds the internal nominal consumption;
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(b) It provides the possibility for the industrial unit to obtain electricity during periods
when its thermal power plant does not cover local self–supply, i.e., when it is in deficit.
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Figure 10. Electrical production of a factory self–producing electricity: (a) case of normal production
and consumption of electricity, leading to the export of 18 MW, (b) case of undesirable decreasing of
produced electrical power, leading to the import of 13 MW from the public grid.

For this type electrical energy deficit problem, there is a need to predict the power
produced since in this case, the industrial unit will have to buy electricity, impacting its
energy bill.

In other words, the prediction of the target parameter Pelec can allow industrial
operators to act upstream at the right time on the processing parameters described in
Table 2, primarily when the power produced is likely to decrease to under 35 MW.

6. Conclusions and Perspectives

This study showed that the hybrid CNN-LSTM model was the most reliable algorithm,
which made it possible to provide accurate and efficient predictions of the electrical power
produced in the case of a steam power plant based on industrial exothermic reactions. This
achievement implied an impact seen at two levels.

First, the prediction of the attenuation linked to the electrical power as the target
parameter takes on an important anticipation characteristic, which can act as a decision-
making tool for industrial managers. This is seen as being particularly important for
ensuring the continuous and autonomous electrical feeding of industrial facilities.

Second, this prediction also aims to determine the input parameters that influence
the decrease in the produced power. Thus, this prediction can provide the opportunity
to instantly take action in the process in order to prevent the occurrence of prolonged
undesirable variations in these input variables, that may force the end-user to import
electricity for a long period of time.

In terms of perspective, it is now necessary to use Business Intelligence (BI) techniques
to create a dynamic dashboard, which displays in real-time the measurement curve of
electrical power superimposed on that of the prediction with a forecast horizon, as well as
the real-time measurement of the input parameters to visualize and track their variations.
As a result, helping decision makers to take the necessary actions at the right time can
increase the profitability of industrial plants that self-produce electricity.



Appl. Syst. Innov. 2022, 5, 123 12 of 12

Author Contributions: Conceptualization, K.F.; Methodology, C.E. and M.E.M.; Software, K.F.;
Validation, C.E. and M.E.M.; Formal analysis, K.F., C.E. and M.E.M.; Investigation, M.E.M. and
C.E.; Resources, K.F., C.E. and M.E.M.; Data curation, K.F.; Writing—original draft preparation, K.F.;
Writing—review and editing, K.F., C.E. and M.E.M.; Visualization, K.F., C.E. and M.E.M.; Supervision,
C.E. and M.E.M.; Project administration, C.E. and M.E.M.; Funding acquisition, K.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mansoor, K.; Tianqi, L.; Farhan, U. A New Hybrid Approach to Forecast Wind Power for Large Scale Wind Turbine Data Using

Deep Learning with TensorFlow Framework and Principal Component Analysis. Energies 2019, 12, 2229.
2. Dimitris, Z.; Georgios, T.; John, K. Forecasting of Wind Power Generation with the Use of Artificial Neural Networks and Support

Vector Regression Models. In Proceedings of the Applied Energy Symposium and Forum, Renewable Energy Integration with
Mini/Microgrids, Rhodes, Greece, 29–30 September 2018.

3. Mohammed, S.; El Hassouni, M. A Novel Deep Learning Approach for Short Term Photovoltaic Power Forecasting Based on
GRU-CNN Model. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 336, p. 00064.

4. Ahamed Saleel, C. Forecasting the energy output from a combined cycle thermal power plant using deep learning models. Case
Stud. Therm. Eng. 2021, 28, 101693. [CrossRef]

5. Maria, K.; Stefani, P.; Alexandros, G. Solar Photovoltaic Forecasting of Power Output Using LSTM Networks. Atmosphere 2021,
12, 124. [CrossRef]

6. Ying, W.; Feng, B.; Qing-Song, H.; Sun, L. Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and
Gaussian Process Regression Method. Sustainability 2021, 13, 3665.

7. Azim, H.; Meysam Majidi, N.; Mehdi, N.; Davide Astiaso, G.; Farshid, K.; Livio, D.; Lina, B. A Combined Fuzzy GMDH Neural
Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data.
Energies 2021, 14, 3459.

8. Tianyang, L.; Zunkai, H.; Tian, L.; Yongxin, Z.; Wang, H.; Songlin, F. Enhancing Wind Turbine Power Forecast via Convolutional
Neural Network. Electronics 2021, 10, 261. [CrossRef]

9. Alrayess, H.; Asli, U. Forecasting the hydroelectric power generation of GCMs using machine learning techniques and deep
learning (Almus Dam, Turkey). Geofizika 2021, 38, 1–90. [CrossRef]

10. Paula, B.; Ahmad, T.; Qammer, H.; Basel, B. Solar Irradiance Forecasting Using a Data-Driven Algorithm and Contextual
Optimisation. Appl. Sci. 2022, 12, 134.

11. Weijie, Z.; Huihui, T.; Huimin, J. Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting.
Sustainability 2022, 14, 3118. [CrossRef]

12. Shohan, M.; Faruque, M.; Simon, Y. Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model. Energies 2022,
15, 2158. [CrossRef]

13. Elena, R.; Isabella, P.; Renato, I. Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of
OFMSW. Sustainability 2022, 14, 4393. [CrossRef]

14. Dongyu, W.; Xiwen, C.; Dongxiao, N. Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF. Sustainability 2022,
14, 7307. [CrossRef]

15. Xuan-Hien, L.; Hung, V.; Giha, L.; Sungho, J. Application of Long Short-Term Memory (LSTM) Neural Network for Flood
Forecasting. Water 2019, 11, 1387. [CrossRef]

16. Wang, J.; Zihao, L. Research on Face Recognition Based on CNN. In IOP Conference Series: Earth and Environmental Science,
Proceedings of the 2nd International Symposium on Resource Exploration and Environmental Science, Ordos, China, 28–29 April 2018; IOP
Publishing Ltd.: Bristol, UK, 2018; Volume 170, p. 170.

17. Rahim, B.; Taghi Aalami, M.; Adamowski, J. Short-term water quality variable prediction using a hybrid CNN–LSTM deep
learning model. Stoch. Environ. Res. Risk Assess. 2020, 34, 415–433.

18. Reddy, P.C.; Sureshbabu, A. An Adaptive Model for Forecasting Seasonal Rainfall Using Predictive Analytics. Int. J. Intell. Eng.
Syst. 2019, 12, 22–32. [CrossRef]

19. Saengmuang, A.; Sitjongsataporn, S. Convergence and Stability Analysis of Spline Adaptive Filtering based on Adaptive
Averaging Step-size Normalized Least Mean Square Algorithm. Int. J. Intell. Eng. Syst. 2020, 13, 267–277.

20. Loverude, M.E.; Kautz, C.H.; Paula, R.L. Heron: Student understanding of the first law of thermodynamics: Relating work to the
adiabatic compression of an ideal gas. Am. J. Phys. 2002, 70, 137. [CrossRef]

21. Onwuamaeze, P.I. Improving steam turbine efficiency: An appraisal. Res. J. Mech. Oper. 2018, 1, 24–30.

http://doi.org/10.1016/j.csite.2021.101693
http://doi.org/10.3390/atmos12010124
http://doi.org/10.3390/electronics10030261
http://doi.org/10.15233/gfz.2021.38.4
http://doi.org/10.3390/su14053118
http://doi.org/10.3390/en15062158
http://doi.org/10.3390/su14084393
http://doi.org/10.3390/su14127307
http://doi.org/10.3390/w11071387
http://doi.org/10.22266/ijies2019.1031.03
http://doi.org/10.1119/1.1417532

	Introduction 
	Related Works Linked to the Prediction of Electrical Power 
	Materials and Methods 
	Industrial Process Description 
	Dataset Presentation 
	Correlation Analysis 
	Considered Deep Learning Algorithms 
	Long Short-Term Memory (LSTM) 
	Convolutional Neural Network (CNN) 
	CNN-LSTM Hybrid Model 

	Assessment Strategy for the Models 

	Results 
	Correlation Check between Variables 
	Theoretical Interpretation of Correlation Results 
	Results of Electrical Power Prediction Using LSTM Model 
	Results of Electrical Power Prediction Using CNN Model 
	Results of Electrical Power Prediction Using CNN-LSTM Hybrid Model 
	Performance Metrics Comparison of the Constructed Models 

	Discussion 
	Findings 
	Implications of Findings 

	Conclusions and Perspectives 
	References

