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Abstract: Internet traffic prediction has been considered a research topic and the basis for intelligent
network management and planning, e.g., elastic network service provision and content delivery
optimization. Various methods have been proposed in the literature for Internet traffic prediction,
including statistical, machine learning and deep learning methods. However, most of the existing
approaches are trained and deployed in a centralized approach, without considering the realistic
scenario in which multiple parties are concerned about the prediction process and the prediction
model can be trained in a distributed approach. In this study, a distributed multi-agent learning
framework is proposed to fill the research gap and predict Internet traffic in a distributed approach,
in which each agent trains a base prediction model and the individual models are further aggregated
with the cooperative interaction process. In the numerical experiments, two sophisticated deep
learning models are chosen as the base prediction model, namely, long short-term memory (LSTM)
and gated recurrent unit (GRU). The numerical experiments demonstrate that the GRU model trained
with five agents achieves state-of-the-art performance on a real-world Internet traffic dataset collected
in a campus backbone network in terms of root mean square error (RMSE) and mean absolute
error (MAE).

Keywords: internet traffic prediction; distributed multi-agent learning; long short-term memory;
gated recurrent unit

1. Introduction

Internet traffic has grown considerably in the past few years, with the development of
new networking paradigms, including 5G/6G, the Internet of Things and the Industrial
Internet, and new Internet applications, including live streaming, video sharing and virtual
reality. A precise prediction for Internet traffic has been proposed as an important research
topic in the past few years as the basis for intelligent network management and planning,
e.g., elastic network service provision and content delivery optimization. Different ap-
proaches have been proposed for achieving satisfactory traffic prediction performance,
which can be categorized into statistical, machine learning and deep learning types.

Statistical models mainly include autoregressive integrated moving average (ARIMA)
and vector autoregression (VAR) when the Internet traffic prediction problem is modeled
as a univariate or multivariate time series problem. These statistical models have the
advantages of low computational cost and high interpretability. However, their prediction
performance is not as competitive as that of machine learning and deep learning models [1].
Machine learning models mainly include support vector machine and decision tree-based
models, e.g., random forest and AdaBoost, and have both a medium computation cost and
a medium prediction performance. More recently, deep learning models including various
neural network structures have been proven more effective for prediction problems [2–5].
With a flexible structure, deep learning can be used in different problem formats, e.g.,
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recurrent neural networks for time series-format prediction [6,7], convolutional neural
networks for grid-based prediction [8,9] and graph neural networks for graph-format
prediction [10,11].

However, most of the existing studies for Internet traffic prediction focus on the cen-
tralized approach, in which the prediction models are trained and deployed in a centralized
server, neglecting the case that multiple parties are concerned about the prediction pro-
cess and want to be involved in the training process in a distributed approach. In reality,
multiple parties would be interested in the prediction result of Internet traffic usages. For
example, for the campus backbone network considered in this paper, the involved parties
include the university network management department, the Internet service provider
and the Internet content provider. All these parties behave as an intelligent agent with
their own computation and communication facilities that can be leveraged in the traffic
prediction task. On the other hand, distributed multi-agent learning has been proven more
efficient than training a deep learning model on a single agent [12]. However, few previous
discussed whether better performance can be achieved with such settings in the problem of
Internet traffic prediction.

To the best of our knowledge, this paper presents a pioneer work which predicts Inter-
net traffic with a distributed multi-agent learning approach when Internet traffic prediction
is modeled as a supervised learning problem. For this paper, the research motivation is
to validate the marginal benefit of the distributed multi-agent learning approach over
traditional centralized learning and initiate the research direction of a potential further
performance improvement in follow-up studies. Two recurrent neural networks, namely,
long short-term memory (LSTM) [13] and gated recurrent unit (GRU) [14], are adopted as
the base prediction model and compared on a real-world Internet traffic dataset. The nu-
merical experiments show that the GRU-based distributed multi-agent learning approach
achieves state-of-the-art performance, outperforming both the LSTM-based multi-agent
learning approach and the centralized learning approach in a previous study [15].

The contributions of this paper are summarized as follows:

1. To the best of our knowledge, this paper presents a pioneer work which predicts
Internet traffic with a distributed multi-agent learning approach when Internet traffic
prediction is modeled as a supervised learning problem and the base prediction
models are trained cooperatively among different agents.

2. An effective interaction process is used for coordinating the different agents in the
distributed training step, which can be modeled and analyzed as an irreducible
aperiodic Markov chain with a finite state, and the convergence property of the
interaction process is proved.

3. The effectiveness of the proposed approach is validated with a real-world Internet
traffic dataset collected at the State University of Ceará for half a year from 16 January
2019 to 15 July 2019, and the five-agent GRU-based distributed multi-agent learning
scheme achieves state-of-the-art performance with the smallest prediction errors and
outperforms several sophisticated deep learning models in terms of root mean square
error (RMSE) and mean absolute error (MAE).

The remainder of this paper is organized as follows. In Section 2, different types of
prediction models are further discussed. In Section 3, a real-world Internet traffic dataset is
introduced and the prediction problem is defined. In Section 4, the distributed multi-agent
learning approach as well as the LSTM and GRU models are introduced. In Section 5,
numerical experiments are conducted with the traffic dataset and the results are analyzed.
In Section 6, the conclusion and future research directions are discussed.

2. Related Work

In this section, a brief introduction for the different types of prediction models is given,
including statistical, machine learning and deep learning models. More comprehensive
discussions can be found in recent relevant surveys [16–18].
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2.1. Statistical Prediction Models

Statistical models are featured by their explicit mathematical formulas based on a set
of statistical assumptions for the data generation or distribution patterns. Their prediction
performance can be analyzed and quantified in theory. Some representative statistical
prediction models include ARIMA and Holt–Winters (HW) models. Other models include
the simple exponential smoothing model, which is used for cellular traffic prediction [19],
and the particle filtering method, which is used for 5G traffic demand prediction [20].
However, statistical prediction models are less common in recent years for network traffic
prediction problems, because their prediction performance is worse than machine learning
and deep learning models.

2.2. Machine Learning-Based Prediction Models

Machine learning models are applied for network traffic prediction because of their
strong learning ability for mapping historical network traffic data to future situations in
a supervised learning approach. With the accumulation of network traffic datasets and
the growth of computation capacities, machine learning models are becoming popular in
the computer network domain, not only for traffic prediction but also for a wider range of
applications, e.g., traffic classification, routing and intrusion detection [21].

Compared with deep learning models represented by deep neural networks, the
machine learning models discussed in this subsection are those with shallow structures,
e.g., decision trees and random forests. These tree-based machine learning models represent
better interpretability and less overfitting severity compared with neural networks and
are still used in network traffic prediction tasks, e.g., Gaussian process regression has been
adopted for network traffic prediction in different network scenarios [22–24]

Besides, different machine learning models can be used jointly, e.g., random forest (RF)
and LightGBM are used together for mobile network traffic prediction when RF is used for
feature filtering and LightGBM is used to make predictions [25]. Machine learning models
can also be used together with statistical models for further performance improvement,
e.g., the combination of soft clustering and traditional time series models [26].

2.3. Deep Learning-Based Prediction Models

As a subset of machine learning models, deep learning models are becoming the
mainstream solutions for network traffic prediction problems in various scenarios due to
their superior performance. Deep learning-based prediction models can be roughly divided
into different categories based on the neuron connection method in neural networks, i.e.,
recurrent neural networks, convolutional neural networks and graph neural networks.

Recurrent neural networks (RNNs) have been proposed for handling long sequence
data, e.g., natural languages and time series, by adding the recurrent connection and
memory mechanism. LSTM and GRU are two representative RNN variants and solve
the problem of vanishing gradients faced by the original RNN structure. They have been
adopted in network traffic problems with both univariate and multivariate time series
forecasting problem formulations [7,27,28].

When considering network traffic prediction problems in a regular grid, convolutional
neural networks (CNNs) can be used by taking traffic data in different grids as image pixel
values [29–31]. The attention mechanism [32] can be further incorporated into CNNs for
a better prediction performance [33]. For example, the attention mechanism is combined
with ConvLSTM for capturing long-term spatial-temporal dependency for cellular traffic
prediction and helps to achieve accurate prediction under hourly and daily time scales [34].
Based on the Transformer network, a spatial-temporal downsampling neural network
model is further proposed for citywide mobile traffic prediction [35].

More recently, graph neural networks (GNNs) have been proposed as the new fron-
tier of artificial intelligence research, and the input data are formulated as graphs [36].
GNNs have been successfully applied in communication networks, with a wide range
of applications including network traffic prediction [37–39]. To further improve the per-
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formance of the GNN-based prediction model in large-scale traffic prediction, transfer
learning is introduced for knowledge reuse and computation reduction in cellular traffic
prediction [40].

While there are various network traffic prediction models in the literature, most of
them are considered in a centralized approach. Thus, the main research motivation of this
paper is to fill in the research gap that the distributed multi-agent learning approach has
not been considered in the Internet traffic prediction problem before, in the cooperative
way more specifically. Two main research questions arise in this paper, i.e., would the
interaction among different agents converge in the long run, and could the distributed multi-
distributed learning approach outperform the traditional centralized learning approach?
From our research, both questions are answered in the affirmative.

3. Dataset and Problem

In this paper, we use an open real-world dataset [41] to validate the proposed dis-
tributed multi-agent learning approach and compare it with the centralized learning base-
line. The dataset contains the Internet traffic data collected in a university campus backbone
network located in the State University of Ceará for half a year from 16 January 2019 to
15 July 2019, with a sampling time period of one hour. The mean, maximum, and mini-
mum bandwidth usage values are recorded. Figure 1 shows the Internet traffic data in the
first three weeks of the data collection time period. For clarity, the mean, maximum, and
minimum values are plotted in three subfigures. Both a weekly pattern and a daily pattern
on weekdays are observed from Figure 1. The stationarity of this specific Internet traffic
time series has also been validated with the Dickey-Fuller test, and the rationality of using
the mean, maximum, and minimum usage values as input has also been justified with the
cointegration test [15].

Following previous studies [15], the Internet traffic prediction problem is modeled as
a supervised learning problem, in which the mean traffic value in the future is the short-
term prediction target and the historical traffic data (containing the mean, maximum, and
minimum usage values) in the historical time window are the input features. We consider
the single-step prediction problem in this study, in which the mean traffic value in the
next hour is chosen as the prediction target. To compare with existing centralized learning
results, we choose 24 h as the historical time window size and leave the exploration for
multi-step predictions as well as the influence of varying historical time window sizes in
our future studies.

In this study, we take a step further and consider Internet traffic prediction using
supervised learning and distributed multi-agent learning approach. The problem is to
design an effective cooperation and aggregation process in which the historical traffic
data are used by different agents as the base prediction model input and a final result
is aggregated from the predictions of different agents as the output. Different from the
centralized learning approach in which only one prediction model is trained in a central
server, the learning approach for the base prediction models is distributed among different
agents with their own facilities.
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Figure 1. The Internet traffic data in the first three weeks. (a) Mean values; (b) Maximum values;
(c) Minimum Values.

4. Methodology

In this paper, a distributed multi-agent learning approach is proposed for Internet
traffic prediction, as shown in Figure 2. An interaction process is added into the individual
training process so that the base prediction models are trained in a cooperative approach
among the agents and an aggregated prediction is used as the final output, e.g., an average
value. In this study, the base prediction model is considered a deep learning model with
multiple layers and the described interaction is conducted at a layer-to-layer level for agents
so that the prediction model can be cooperatively trained.

Mathematically, the influence between different agents in the interaction process is
modeled as an adjacency matrix W with row sum 1. Denote that there are m agents and
the agent set is I. Each agent trains a base prediction model with L layers. Denote f (`)i as
the mapping function for layer ` of agent i, to extract information from the input historical
data. The distributed multi-agent learning in a single iteration is formulated as follows:

f (`+1)
i =

m

∑
i=1

wij f (`)j (1)
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where wij is an element of W, which is usually a positive value between 0 and 1. wij
reflects the interaction degree among agent i and agent j. The above process can be iterated
n times, and the convergence of the distributed multi-agent learning approach can be
guaranteed when n is large enough [12]. The interaction among different agents is modeled
as an irreducible aperiodic Markov chain with a finite state, in which a single stationary
distribution {πj, j ∈ I} exists. Theoretically, when n goes to ∞, the influence among agents

converges to the stationary distribution, i.e., limn→∞ w(n)
ij = πj, j ∈ I. This observation

answers our first research question that the interaction among different agents would
converge in the long run in our proposed approach.

Interaction Process

Aggregated Prediction

Figure 2. The general process of the proposed distributed multi-agent learning approach.

In the proposed approach, all the agents adopt the homogeneous base prediction
model, e.g., LSTM or GRU, so that the computation requirement is the same and fair for
different agents who want to be involved. An asynchronous communication requirement
among the involved agents is also assumed in the proposed approach, so that the mappings
can be exchanged and aggregated. It would be interesting to extend our study from the
homogeneous and synchronous case to the heterogeneous or asynchronous cases when
different agents have different computation and communication resources. For example,
deep learning models with a higher computational burden can be trained on a computation-
rich agent.

Two deep learning models are adopted in this paper, namely, LSTM and GRU. Based
on the gate mechanism, LSTM is proposed to learn the long dependency relationship
from the input sequence while mitigating the problem of vanishing gradients. GRU is a
simplified variant of LSTM with only two gates, instead of three gates as LSTM, as shown
in Figure 3. More specifically, denote t as the time point, xt as the input, ht as the output
value, and ct as the cell state. The three gates used in an LSTM cell can be denoted as
follows. The forget gate is as follows:

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (2)

The input gate is as follows:

ct = ft ∗ ct−1 + σ(Wxixt + Whiht−1 + Wcict−1 + bi) ∗ tanh(Wxcxt + Whcht−1 + bc) (3)

And the output gate is as follows:

ht = σ(Wxoxt + Whoht−1 + Wcoct + bo) ∗ tanh(ct) (4)

where W∗ and b∗ are learnable parameters, σ(∗) is the sigmoid activation function and
tanh(∗) is the tanh activation function.
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The two gates used in a GRU cell can be denoted similarly. The update gate is
as follows:

zt = σ(Wxzxt + Whzht−1 + bz) (5)

And the output gate is as follows:

ht = (1− zt) ∗ ht−1 + zt ∗ tanh(Wxoxt + Whoσ(Wxrxt + Whrht−1 + br) ∗ ht−1 + bo) (6)

Two widely used evaluation metrics are adopted in this paper, namely, RMSE and
MAE. Given the true values y and the predictions ŷ, RMSE is defined as

RMSE(y, ŷ) =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (7)

and MAE is defined as

MAE(y, ŷ) =
1
N

N

∑
i=1
|yi − ŷi| (8)

where N is the test subset size and the evaluation is conducted on the test subset.

× +

× ×

tanh σσ σ

tanh

tx

th-1th

-1tc tc

(a)

× +

σ

tx

-1th
th

×

tanh

×

σ

1-

(b)

Figure 3. The LSTM and GRU cells. (a) LSTM; (b) GRU.

5. Experiment and Analysis

The Internet traffic dataset is divided into training and test subsets at a ratio of 5:1. The
deep learning models are implemented with Python and TensorFlow, with three recurrent
layers and 20 neurons in each recurrent layer. Adam is used as the optimizer with an
adaptive learning rate starting from 0.01 and mean square error (MSE) is used as the
loss function. The batch size is 128 and each model is trained for 200 epochs. For each
agent number, ten runs are conducted separately. The weight matrix W for different agent
numbers from the previous study [12] is used in this paper:

W2 =

[
0.9 0.1

0.15 0.85

]
(9)

W3 =

 0.9 0.05 0.05
0.1 0.8 0.1

0.025 0.025 0.95

 (10)

W4 =


0.8 0.025 0.025 0.1

0.05 0.85 0.025 0.075
0.025 0.025 0.9 0.05
0.05 0.1 0.1 0.75

 (11)
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W5 =


0.8 0.05 0.05 0.05 0.05

0.05 0.85 0.025 0.025 0.05
0.025 0.025 0.85 0.05 0.05
0.05 0.1 0.05 0.7 0.1
0.04 0.11 0.05 0.05 0.75

 (12)

The evaluation results with different agent numbers for the LSTM and GRU models are
shown in Figure 4, which are box and whisker plots for ten separate runs. With the increase
in agent numbers, both LSTM and GRU demonstrate better performance with decreased
RMSE and MAE values. GRU maintains a better performance than LSTM in Figure 4. While
adding more agents into training might bring a further potential performance improvement,
the marginal improvement becomes increasingly smaller. In addition, it becomes more
difficult to coordinate more agents in practice. Thus, an agent number up to 5 is used in
this paper. Since the research motivation of this paper is to validate the superiority of the
distributed multi-agent learning approach over traditional centralized learning, we leave
the exploration of using more agents in the follow-up studies.
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Figure 4. The evaluation results with different agent numbers. (a) RMSE; (b) MAE.

The mean RMSE and MAE results are further listed in Table 1 for LSTM and GRU
models trained with different agent numbers. The baselines for comparison are those so-
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phisticated deep learning models from previous studies, including Time Series Transformer
(TST) [42], Multilayer Perceptron (MLP) [43], Temporal Convolutional Networks (TCN) [44],
Fully Convolutional Network (FCN) [45], Residual Neural Network (ResNet) [45], and
InceptionTime [46] in the traditional centralized learning approach. Among these baseline
methods, the previous best prediction result is obtained with InceptionTime. While LSTM
or GRU trained with a single agent is not competitive with InceptionTime, an improved
performance is obtained by adding and involving more agents. Only three agents are
enough for defeating InceptionTime when GRU is the base prediction model in individual
agents, as indicated in Table 1. A new state-of-the-art performance in the literature is
achieved for the considered Internet traffic data by GRU-based distributed multi-agent
learning trained with five agents, as shown in bold in Table 1. The results in Table 1 answer
our second research question that the proposed distributed multi-distributed learning
approach manages to outperform the traditional centralized learning approach and would
be worthy a further investigation in the future studies for similar problems.

Table 1. The experimental results.

Model Agent Number RMSE (Mbps) MAE (Mbps)

TST [42] N/A 16.28 9.71

MLP [43] N/A 14.81 8.51

TCN [44] N/A 13.39 9.31

FCN [45] N/A 12.79 8.10

ResNet [45] N/A 11.68 7.16

InceptionTime [46] N/A 11.65 7.07

LSTM

1 12.57 7.10

2 12.11 6.86

3 11.93 6.77

4 11.83 6.69

5 11.43 6.54

GRU

1 12.11 6.84

2 11.84 6.71

3 11.56 6.55

4 11.42 6.50

5 11.22 6.45

Figure 5 further shows the comparison between true and predicted results for the first
week in the test set. For clarity, only a single run with five agents is plotted for LSTM or
GRU. From Figure 5, the predictions from both models present a similar pattern with the
true values. However, LSTM generates larger predicted values when the true values are
small, e.g., from 22 June 2019 to 23 June 2019, which results in a larger error than GRU. In
other words, the GRU-based scheme is more stable, with less extreme predicted values
than LSTM and a better overall prediction performance.
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Figure 5. The comparison between true and predicted results for the first week in the test set.

6. Conclusions

The Internet traffic prediction problem is considered in this paper when multiple
parties are involved, and a distributed multi-agent learning approach is proposed as the
solution for the first time. In the proposed approach, an effective interaction process is used
for coordinating the different agents in the distributed training step and the aggregated
prediction from different agents is the final result. The interaction process is modeled and
analyzed as an irreducible aperiodic Markov chain with a finite state, and its convergence is
proven to be guaranteed. Numerical experiments are further conducted with LSTM or GRU
as the prediction model, based on a real-world Internet traffic dataset collected at the State
University of Ceará for half a year from 16 January 2019 to 15 July 2019. Compared with
sophisticated deep learning baseline models trained in the centralized learning approach,
the five-agent GRU-based distributed multi-agent learning scheme achieves a new state-of-
the-art result, with RMSE of 11.22 Mbps and MAE of 6.45 Mbps for the considered dataset
in the literature.

For further research directions, the distributed multi-agent learning approach can
be extended to more complex prediction problem scenarios, e.g., grid-format and graph-
format prediction problems with more varied neural network structures in a distributed
way [47]. Another research direction which can be further explored is that the time-varying
or learnable weight matrix in the interaction network can be further explored, instead of
using the empirical predefined values.
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