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Abstract: Diabetic retinopathy (DR) is an increasingly common eye disorder that gradually damages
the retina. Identification at the early stage can significantly reduce the severity of vision loss. Deep
learning techniques provide detection for retinal images based on data size and quality, as the
error rate increases with low-quality images and unbalanced data classes. This paper proposes
a hybrid intelligent framework of a conventional neural network and a fuzzy inference system to
measure the stages of DR automatically, Diabetic Retinopathy Stage Measurement using Conventional
Neural Network and Fuzzy Inference System (DRSM-CNNFIS). The fuzzy inference used human
experts’ rules to overcome data dependency problems. At first, the Conventional Neural Network
(CNN) model was used for feature extraction, and then fuzzy rules were used to measure diabetic
retinopathy stage percentage. The framework is trained using images from Kaggle datasets (Diabetic
Retinopathy Detection, 2022). The efficacy of this framework outperformed the other models with
regard to accuracy, macro average precision, macro average recall, and macro average F1 score:
0.9281, 0.7142, 0.7753, and 0.7301, respectively. The evaluation results indicate that the proposed
framework, without any segmentation process, has a similar performance for all the classes, while
the other classification models (Dense-Net-201, Inception-ResNet ResNet-50, Xception, and Ensemble
methods) have different levels of performance for each class classification.

Keywords: diabetic retinopathy (DR); computer vision; automation; convolutional neural network
(CNN); fuzzy inference system (FIS); transfer learning

1. Introduction

Diabetic retinopathy (DR) is a major cause of vision loss worldwide [1]. Regular
screening for DR can detect early features or symptoms. However, human experts in this
domain still perform the diagnosis. Computer-aided disease diagnosis in retinal image
analysis could provide a reasonable solution for the screening and diagnosis processes.
Automated tools for clinical stage measurements of retinal problems can provide continuous
and accurate monitoring of the disease. Advances in artificial intelligence and machine
learning approaches enable such application for clinical practice [2].

Recently, an important need has arisen for the automation of an accurate DR detection
system, as providing an affordable, accurate system will overcome the problem of a lack of
retina specialists around the word [3]. The detection of different patterns in retinal images
is a key factor in DR measurement. Retinal tissue in diabetic patients deforms in different
ways, such as microaneurysms that appear as tiny red dots on images of early-stage DR.
Microaneurysms usually grow into retinal hemorrhages in moderate DR cases, and in some
cases yellow or white exudates can observed, while in severe cases, blood vessels leak into
the retina, known as macular edema, causing blurry vision [4].

Intelligent health care application has an important function in retinal image analysis
and feature extraction, and provides a reasonable solution to control the growth of DR, es-
pecially if the detection occurs at the early stages; moreover, deep learning methods for DR
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grading have achieved significantly improved performance [5]. However, accurate classifi-
cation for DR grading remains challenging due to many reasons, such as the insufficiency
of training samples and the poor quality of fundus images taken using different devices [6].
The measurement of the DR severity stage is a difficult task due to the differences in the
sizes of lesions among fundus images of the same class and visual similarities in detected
features, such as shapes and colors between the fundus images of different classes [7].

Hybrid artificial intelligence approaches face performance challenges in CNN models.
Zhang et al. [8] proposed a Hybrid Graph Convolutional Network (HGCN) for diabetic
retinopathy grading with limited labeled data and a large amount of unlabeled data (semi-
supervised learning), and the experimental results showed the better performance of
HGCN in semi-supervised retinal image classification.

Considering all of these facts, the proposed work implemented a simple CNN for
feature extraction and combined it with a rule-based expert system for better classification
using the model used in [9]; the model was trained using Kaggle public datasets [10],
and the rules changed based on the new domain of application. The grading of diabetic
retinopathy was implemented without segmentation; furthermore, the framework gives
similar performance for all classes. This study provides important contributions to this
field by enhancing the accuracy and the performance based on a hybrid approach and a
relatively small amount of data.

The goal of the proposed hybrid intelligent framework consisting of a conventional
neural network and a fuzzy inference system to efficiently measure the stages of DR.

• The framework has similar performance for all classes, overcoming the problem of
different data sizes in each training class;

• The framework does not need a segmentation phase;
• The framework adds a rule-based system based on human experts’ knowledge to the

deep learning model;
• The evaluation and comparison with related models show that the framework outper-

forms the other models.

The rest of this paper is organized as follows: Section 2 provides the background and
previous works. In Section 3, we present the research methodology in detail. Section 4
shows the evaluation and experimental results. Finally, in Section 5, we conclude our work
and identify future work avenues.

2. Background and Previous Work

Diabetic retinopathy (DR) appears in people with a medical history of diabetes [11]
and high blood glucose levels. Many researchers have worked on DR symptom detection
using feature recognition techniques [12].

Other methods are based on recognizing the retinal blood vessels and pathologies
from fundus images as features and classifying the diabetic retinopathy severity grades [13].
Feature extraction and image analysis for DR classification show great potential for DR
grading; however, they excessively depend on labelled data. These methods rely on pixel-
level annotation data. This type of annotation is useful in techniques to locate lesions
within an image and segment out regions of interest from the background [14].

Image processing techniques using machine-learning methods suffer from the lack of
domain experts for validation [15]; in such cases, the dependency on data and statistical
models without human experts’ validation is still questionable [16].

Currently, deep learning and convolutional neural networks (CNNs) are frequently
used in medical applications with computer vision, especially the automated detection of
diabetic retinopathy [17,18]. Extracting important features, such as hard exudates, blood
vessels, and texture [19], using a transfer learning-based CNN architecture from fundus
images performs relatively well.

CNN studies address the grading of non-proliferative DR categories, namely mild,
moderate, and severe stages, using a transfer learning-based DR detection system [20], but
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performance issues face most of the deep learning methods due to the small number of DR
fundus images used to train a deep CNN model; hence, overfitting problems appear [21–24].

Convolutional neural networks (CNNs) are a powerful tool for DR detection, which
includes different tasks: classification [25], segmentation [26], and detection [27].

Researchers [28] have coupled CNNs with transfer learning and hyper-parameter
tuning, adopted AlexNet, VggNet, GoogleNet, and ResNet, and analyzed how well these
models handle DR image classification, using Kaggle datasets to train these models. The
best classification accuracy is 95.68% using transfer learning with data augmentation, where
the fundus images data were increased to 20 times the original.

The authors of [29] (Resnet50, Inceptionv3, Xception, Dense121, Dense169) enhanced
the classification of different stages of DR. The experimental results show that the proposed
model detects all of the stages of DR. The achieved accuracy is 80.8%.

Many hybrid methods based on CNN and other intelligent methods have been pro-
posed, such as the Swarm Optimization (PSO) algorithm-based Convolutional Neural
Network (CNN) Model, also called the PSO-CNN model [30], to detect DR from color fun-
dus images. Many proposed hybrid CNN models used preprocessing, feature extraction,
and classification [31].

Orujov et al. [32] used feature extraction for blood vessels in retinal fundus images
using a contour detection algorithm based on fuzzy rules. Fuzzy rules were applied to
image gradient values to extract edges and make DR classification decisions based on
membership functions. The results of this model offered a similar performance to CNN
methods, but it contains flexible rules, offering an alternative to current deep learning
applications, severity classification of DR using CNN and attention module proposed
in [33], which reduced both the complexity of the model and the training time needed.

This research work proposed a method for fine-tuning a pre-trained CNN model for
DR grading using fuzzy rules and fundus images. The method takes a retinal fundus image
as the input, the CNN model processes it with the fine-tuned model and grades it into
normal or DR levels and then the fuzzy system takes the processed images and classifies
them based on human experts’ rules into four categories (normal, mild, moderate and
severe) with the grading percentage.

An intelligent computer-aided diagnosis framework for the DR grading of retinal
fundus images is implemented, and the framework does not need any segmentation process
for the retinal fundus images.

The proposed framework has two parts. The first part embeds the DR lesion structures
in a pre-trained CNN model. The second part uses the extracted features of retinal fundus
images in a fuzzy inference system (FIS), which significantly reduces the model complexity
and data dependency and measures the severity percentage, so multiple uses of the system
can provide the progression rate in this case.

Table 1 summarizes the related works’ techniques, findings, and limitations compared
to the proposed framework.

Table 1. Comparison of studies conducted with diabetic retinopathy image datasets and the pro-
posed study.

Model References Data Used Performance (Accuracy) Limitation

DenseNet [33]

APTOS dataset
(https://www.kaggle.com/c/
aptos2019-blindness-detection,
accessed on 12 October 2022)

0.9580 Model implementation used small
and imbalanced datasets.

Inception-ResNet [24] Customized dataset. 91.61
The non-proliferate symptoms are

not visible on retina images.
Small dataset.

ResNet-50 [34] Messidor
EyePACS

The accuracy achieved ranges from 96%,
on a two-category Messidor-2 dataset, to

75.09% on a five-category EyePACS
dataset and

The model is highly demanding.
Repositories of a large dataset for

deep learning.

Xception [35] IDRiD, 84% on the binary classification of IDRiD. Shortage in performance.

https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.kaggle.com/c/aptos2019-blindness-detection
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Table 1. Cont.

Model References Data Used Performance (Accuracy) Limitation

Ensemble
methods [36] (APTOS 2019 BD) dataset. Accuracy of 94.20%.

Noisy images, duplicate images
with improper labelling, uneven

image resolution, and varying
class sample sizes.

AlexNet, VggNet, GoogleNet,
ResNet, [28] Kaggle fundus images data were

increased to 20 times the original. The best classification accuracy is 95.68%. Huge training dataset.

Resnet50, Inceptionv3,
Xception, Dense121,

Dense169
Ensemble

[29] Same Kaggle dataset. The best classification accuracy is 80.8%. Very long training time.

DRSM-CNNFIS — Kaggle dataset increased to 3.6
times the original. The best classification accuracy is 92.8%.

Need for a human domain expert
for rule and framework

fine-tuning.

3. (DRSM-CNNFIS) Framework

This section presents the steps of the Diabetic Retinopathy Stage Measurement using
the Conventional Neural Network and Fuzzy inference system (DRSM-CNNFIS) frame-
work and the dataset used in training and testing.

3.1. Dataset Description

Different retinal image types and qualities are available for developing and testing digital
screening for diabetic retinopathy. The public dataset used in this work was Kaggle Diabetic
Retinopathy Detection [10], which is sponsored by the California Healthcare Foundation.

The Kaggle DR Dataset has 35,126 fundus images for training. Different devices
collected the images. Kaggle DR is one of the largest publicly available DR classification
datasets; most of the labelling was performed manually and the quality of the images is
not homogenous.

These images were labeled using a scale of 0 to 4 based on the severity of diabetic
retinopathy (DR). Table 2 shows the five classes of DR as well as their respective percentage
from the total data. According to the international clinical diabetic retinopathy scale [35],
binary classification, images with labels of 0 and 1 were classified as “No PDR”, and
relabeled with 0, and images with labels of 2, 3, and 4 were classified as “RDR” and
relabeled with 1, as shown in Table 3. The distribution of labels was: {0:25,810, 1:2443,
2:5292, 4:708, 3:873}. Total images: 35,126.

Table 2. Distribution of multiclass classification.

Label Class Number of Samples Percentage

0 Normal 25,810 73.84%
1 Mild NPDR 2443 6.96%
2 Moderate NPDR 5292 15.07%
3 Sever NPDR 873 2.43%
4 Proliferative DR 708 2.01%

Table 3. Distribution of binary classification.

Label Class Number of Samples Percentage

0 No PDR 28,253 80.4%
1 RDR 6873 19.6%

Table 2 provides the five grades of the dataset with their percentage, and Table 3
provides the distribution of the binary classification in the training set of the Kaggle dataset.
Figure 1 shows sample gradable images from Kaggle DR.
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Figure 1. Sample gradable images from Kaggle DR.

In this research, the class imbalance issue was addressed using two methods—first,
data augmentation, as explained in Section 3.2, and human experts’ rules for the results, as
explained in Section 3.3.

3.2. Image Pre-Processing and Data Augmentation

For preprocessing, first, median filters were used for noise removal and contrast
improvement. In addition, images were resized to a standard size of 256 × 256, followed
by cropping, random rotation, and flipping. Finally, normalization using the mean was
applied to all images.

Random rotation for all the images in all the directions was used for data augmentation.
The representation of images after applying various color augmentation operations is
displayed in Figure 2. The details of augmentation operations after applying them to the
training dataset are given in Table 4. The augmented dataset was 3.6 times larger than the
original dataset, and most importantly all DR grades were balanced.
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Table 4. Distribution for multiclass classification before and after data augmentation.

Label Class Number of Samples Augmented Samples

0 Normal 25,810 25,810
1 Mild NPDR 2443 24,410
2 Moderate NPDR 5292 25,330
3 Sever NPDR 873 26,470
4 Proliferative DR 708 25,480

Total 35,126 127,500

3.3. The Framework Design

Combining rules with feature extraction results from convolutional neural network
showed high accuracy in [9]. The combined model was reused in this framework by
changing the training data and improving and changing the fuzzy rules following the
application domain, which was diabetic retinopathy stage identification. Convolutional
layers and pooling layers extracted the most relevant features that were used by rules in
the next step; the addition of rules provided a robust stage for identification because it was
medical expert-driven and it was domain-specific. Meanwhile, it reduced the training time
and provided high accuracy based on the experts’ rules.

Figure 3 shows the first part the framework (DRSM-CNNFIS), which is the feature
extraction part, with the relevant features obtained by multiple convolutional layers (Layers
1, 2, 3, 5, 6, and 7), and two max pooling layers added (Layers 4 and 8) for dimensionality
reduction. The filter size and number were changed and optimized experimentally.
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Figure 3. Feature extraction part of the DRSM-CNNFIS framework.

The output vector provided the extracted features of the system, which were numeric
values used in the diabetic retinopathy stage measurement part, with the fuzzy inference
system (FIS) using the constructed rules based on medical experts that explain the direct
relation between the extracted vector and the severity stage. The rules were built based
on human expert knowledge. The key inputs for the fuzzy inference were features such
as microaneurysms, intraretinal hemorrhage, exudates, and macular edema [25]. Linear
membership functions were used for the output features: vector mean, standard deviation,
max, and min.

Figure 4 shows the second part the framework (DRSM-CNNFIS), which builds the
rule-based fuzzy inference system starting with the linear membership functions for the
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inputs, and manually added rules based on expert knowledge until the final diabetic
retinopathy stage grading.
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3.4. DRSM-CNNFIS Implementation

Multiple rounds of convolution and pooling layers were used to provide single-vector
output that was used by experts to extract rules associated with each class of diabetic
retinopathy (normal, mild, moderate, severe, and proliferative diabetic retinopathy). In the
training of CNN with Stochastic, the gradient descent with momentum (SGDM) learning
rate was set to 0.1, and an early stop mechanism was used. Tuning for the linear membership
function used for the FIS was based on the labeled data. The implementation used Keras
and the number of epochs was set to 400. The key inputs for the fuzzy inference were
features that could be measured by experts, such as:

• Microaneurysms, which are red patterns that increase the mean value of the output
numeric vector;

• Intraretinal hemorrhages, which are outlined patterns starting as dot shape that then
defuse into a flame shape and increase the maximum value of the output vector;

• Exudates, which have a yellow or white thick texture and affect the range of the
standard deviation of the output vector;

• Macular edema, which occurs when blood leaks into scattered parts of the retina,
affecting the minimum value of the extracted features vector.

Four trapezoidal membership functions were used for the output features: the vector
mean, standard deviation, max, min, and feature map max. Table 5 presents the description
for the linguistics terms used in the membership function for all variables.

Table 5. Input and output linguistic variables and their ranges.

Diabetic Retinopathy Stage Measurement Inference System

Linguistic Variable Linguistic Value Numerical Range

Input 1: output vector average—microaneurysms Low, average, high 0–100
Input 2: output vector maximum—intraretinal

hemorrhage Low, average, high 0–100

Input 3: output vector standard
deviation—exudates Low, average, high 0–100

Input 4: output vector minimum—macular edema Low, average, high 0–100

Output: diabetic retinopathy (DR) stage Normal DR (NDR), mild DR (MDR), moderate
(MoDR), severe DR (SDR), proliferative DR (PDR) 0–100
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To accomplish the stage identification task, medical experts provided rules based on
the output feature vector and the associated labels. The medical experts’ decisions were
based mainly on features, such as microaneurysms, hemorrhages, exudates, and macular
edema [35]. Some of the rules used in the fuzzy system are shown in Figure 5.
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The aggregation method used for the rules evaluation is Mamdani inference [9].
Figure 6 shows the membership function for all the linguistic values for the fuzzy output
variable: diabetic retinopathy (DR) stage, starting with normal DR (NDR), followed by
mild DR (MDR), moderate (MoDR), and severe DR (SDR), and ending with proliferative
DR (PDR).
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After evaluating the rules, the output showed as stage percentage. In this phase,
human adjustment of the membership function interval was calculated several times to
improve the classification accuracy.

4. Experimental Results

The experiments were implemented on two Nvidia Quadro RTX 8000 GPUs in an
Ubuntu environment. Fold validation was implemented to obtain more robust results,
and due to the size of the dataset, we used five-fold cross-validation to train on 80% of
the dataset and tested using 20% of the original dataset during each trial. Early stopping
callback was used to minimize validation loss.

Models were evaluated using accuracy precision recall and F1 score; the equations
used were applied for the performance assessment mentioned in [36–38].
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Table 6 shows that DRSM-CNNFIS outperforms the CNN-only models—DenseNet-
201, Inception-ResNet-V2, Inception-V3, ResNet-50, Xception, Majority Vote Ensemble, and
Average Ensemble—with an accuracy of 0.9281. The model was evaluated on the macro
average, the weighted average for precision, recall, and F1-score to obtain the performance
of the model using the single-label classification method of the study. The macro average
and the weighted average for precision, recall, and F1-score were evaluated for five classes.
Macro averages of 0.7142, 0.7753, and 0.7301, and weighted averages of 0.9371, 0.9281, and
0.9296 were recorded for precision, recall, and F1-score, respectively.

Table 6. Evaluation of macro averages and weighted averages for precision, recall, and F1-score and
comparative classification results using data with 80% training and 20% testing (validated using
five-fold cross-validation) for the diabetic retinopathy classification system.

Experiment Accuracy
Macro

Average
Precision

Macro
Average
Recall

Macro
Average
F1-Score

Weighted
Average
Precision

Weighted
Average
Recall

Weighted
Average
F1-Score

DenseNet-201 0.8226 0.5842 0.6333 0.6021 0.8297 0.8226 0.8248
Inception-ResNet-V2 0.8114 0.5894 0.6487 0.6047 0.8405 0.8114 0.8214

Inception-V3 0.8050 0.5568 0.6315 0.5676 0.8327 0.8050 0.8101
ResNet-50 0.8054 0.5662 0.5884 0.5615 0.8150 0.8054 0.8025
Xception 0.8122 0.5677 0.6387 0.5948 0.8270 0.8122 0.8183

Majority Vote
Ensemble 0.8378 0.6108 0.6379 0.6137 0.8437 0.8378 0.8370

Average Predictions
Ensemble 0.8381 0.6080 0.6522 0.6200 0.8471 0.8381 0.8396

DRSM-CNNFIS 0.9281 0.7142 0.7753 0.7301 0.9371 0.9281 0.9296

Tables 7–13 illustrates the performance of the five models and the ensemble methods
in the class-specific classification in terms of precision, recall, and F1 score. Our framework
(DRSM-CNNFIS) shows robust behavior in detecting classes (0, 1, 2, 3, and 4), as shown
in Table 14, compared with the distorted behavior for other models that have different
performances in each class (0, 1, 2, 3, and 4).

Table 7. Experiment 1—DenseNet-201 CNN model class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9256 0.9209 0.9232

Class 1—Mild 0.3615 0.4053 0.3821
Class 2—Moderate 0.6659 0.5699 0.6142

Class 3—Severe 0.4296 0.6727 0.5244
Class 4—Proliferative
Diabetic Retinopathy 0.5385 0.5978 0.5666

Table 8. Experiment 2—Inception-ResNet-V2 CNN model class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9350 0.9014 0.9179

Class 1—Mild 0.3149 0.5199 0.3922
Class 2—Moderate 0.7129 0.5370 0.6126

Class 3—Severe 0.3921 0.6568 0.4911
Class 4—Proliferative
Diabetic Retinopathy 0.5922 0.6281 0.6096
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Table 9. Experiment 3—Inception-V3 CNN model class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9260 0.9166 0.9213

Class 1—Mild 0.3167 0.4751 0.3801
Class 2—Moderate 0.7303 0.4254 0.5376

Class 3—Severe 0.3453 0.7205 0.4669
Class 4—Proliferative
Diabetic Retinopathy 0.4658 0.6198 0.5319

Table 10. Experiment 4—ResNet-50 CNN model class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.8997 0.9327 0.9159

Class 1—Mild 0.2768 0.3480 0.3083
Class 2—Moderate 0.7467 0.4215 0.5388

Class 3—Severe 0.4124 0.6364 0.5004
Class 4—Proliferative
Diabetic Retinopathy 0.4955 0.6033 0.5441

Table 11. Experiment 5—Xception CNN model class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9326 0.8990 0.9155

Class 1—Mild 0.3628 0.4061 0.3832
Class 2—Moderate 0.6177 0.6083 0.6130

Class 3—Severe 0.3914 0.6795 0.4967
Class 4—Proliferative
Diabetic Retinopathy 0.5343 0.6006 0.5655

Table 12. Experiment 6—Average Predictions Ensemble class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9312 0.9379 0.9345

Class 1—Mild 0.3983 0.4701 0.4312
Class 2—Moderate 0.7405 0.5554 0.6347

Class 3—Severe 0.4080 0.6750 0.5086
Class 4—Proliferative
Diabetic Retinopathy 0.5622 0.6226 0.5908

Table 13. Experiment 7—Majority Vote Ensemble class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9241 0.9458 0.9348

Class 1—Mild 0.3898 0.4377 0.4124
Class 2—Moderate 0.7563 0.5311 0.6240

Class 3—Severe 0.4053 0.6659 0.5039
Class 4—Proliferative
Diabetic Retinopathy 0.5785 0.6088 0.5933



Appl. Syst. Innov. 2022, 5, 102 11 of 13

Table 14. Experiment 8—DRSM-CNNFIS class-specific metrics.

Classes Precision Recall F1-Score

Class 0—No Diabetic
Retinopathy 0.9871 0.9685 0.9777

Class 1—Mild 0.7796 0.8754 0.8247
Class 2—Moderate 0.8663 0.8711 0.8687

Class 3—Severe 0.7896 0.8854 0.8348
Class 4—Proliferative
Diabetic Retinopathy 0.7785 0.8088 0.7934

5. Conclusions and Future Work

In this hybrid framework (DRSM-CNNFIS), the diabetic retinopathy stage identifi-
cation process provided robust performance in all classes (normal DR (NDR), mild DR
(MDR), moderate (MoDR), severe DR (SDR), and proliferative DR (PDR)), with an overall
accuracy of 93%. Membership functions were constructed and tuned based on labelled
data [14] that increased only by 3.6-fold compared to the original data. In the first step,
the convolutional neural network was used to obtain the output vector of image features.
In the next step, a fuzzy rule-based system was implemented based on human expert
knowledge to measure the stage of DR. The final framework showed better performance
compared with existing CNN models and ensemble models mentioned in the related work:
DenseNet-201, Inception-ResNet-V2, Inception-V3, ResNet-50, Xception, Majority Vote
Ensemble, and Average Ensemble. The proposed system showed better results and robust
performance for multiclass classification with a weighted average of 0.9371, 0.9281, and
0.9296 for precision, recall, and D1-score, respectively, using the five-fold cross-validation
method. In the future, automated method for rule extraction in the fuzzy rule-based system
based on the training data will be implemented.

Implementing the proposed model in clinical practice at hospitals and ophthalmology
offices will enable regular automated diagnostic measurement, which will save time and
cost, and increase the chance of early stage diagnosis, as the results of the proposed model
provide stable accuracy for all classes. Furthermore, dealing with noisy or low-quality data
can open the door for the future of using mobile phone cameras for such applications.

The proposed model overcomes data dependency problems for deep learning models
by using human expert (ophthalmology consultant) knowledge, but the limitation of this
work can be seen in different aspects, such as the variation of the performance using
different devices and the ethical aspects of health application automation.
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