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Abstract: Underwater images are extremely sensitive to distortion occurring in an aquatic underwater
environment, with absorption, scattering, polarization, diffraction and low natural light penetration
representing common problems caused by sea water. Because of these degradation of quality,
effectiveness of the acquired images for underwater applications may be limited. An effective
method of restoring underwater images has been demonstrated, by considering the wavelengths
of red, blue, and green lights, attenuation and backscattering coefficients. The results from the
underwater restoration method have been applied to various underwater applications; particularly,
edge detection, Speeded Up Robust Feature detection, and image classification that uses machine
learning. It has been shown that more edges and more SURF points can be detected as a result of
using the method. Applying the method to restore underwater images in image classification tasks on
underwater image datasets gives accuracy of up to 89% using a simple machine-learning algorithm.
These results are significant as it demonstrates that the restoration method can be implemented on
underwater system for various purposes.

Keywords: underwater images; underwater image restoration; edge detection; speeded up robust
feature detection; image classification; machine learning

1. Introduction

A considerable part of the earth is covered with water, with the underwater world
consisting of an astounding variety of resources. However, the underwater world is not as
friendly as the atmospheric region. In order to explore underwater resources and discover
the aquatic world, the use of Remotely Operated Vehicles (ROV), such as underwater robots
and submarines with proper underwater cameras may be required. The challenges of
acquiring undistorted underwater images, which primarily focus on the object of interest,
are well-documented due to the distortions caused by marine organisms, floating objects,
marine snow, bacteria and algae present in sea water. These sources of distortion make the
captured underwater images less informative, and consequently, have limited applicability
for some underwater applications, which require undistorted or less distorted images,
such as edge detection, feature point detection, image classification, image stitching, object
detection, underwater studies, underwater archaeology, marine ecology, assisting aquatic
robots, species recognition, and underwater geology. As such, there is a requirement
for underwater image capture to have a high degree of accuracy and quality for proper
interpretation of its information.

Underwater images are commonly dominated by blue and green shades, as red light
from the visible spectrum is quickly absorbed and loses its strength, even in the first part
of the ocean, which is within 10 m depth. Other lights from the visible spectrum, such as
orange, yellow, green, and blue, are also absorbed by the water as we go deeper into the
ocean. Figure 1 shows the light absorption property of water and penetration levels of
lights [1], at various depths. Due to these problems, a proper method that is able to restore
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underwater images is the need of the hour and is required for various studies and scientific
research areas. By gaining more information from the images, the underwater images can
be used for different underwater applications.
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Many restoration algorithms have been proposed in the literature. Reference [2]
provides a review of various underwater image restoration methods that are available
in the literature, generally classifying underwater restoration methods into hardware,
software, and network-based approaches.

Hardware-based approaches employ a variety of hardware to process underwater
images for restoration purposes. These include range-gated imaging techniques [3], po-
larisers [4], imaging using stereo cameras [5], and remotely operated vehicles [6]. However,
these methods have been shown to suffer from errors caused by calibration of the hard-
ware devices.

Network-based approaches involve the use of deep-learning algorithms to process
underwater images. Convolutional neural networks [7,8] and generative adversarial
networks [9,10] are some of the neural networks that have been used for this purpose.
However, deep-learning methods commonly require a good dataset with a large number of
underwater images, together with ground truth images, which are very difficult to acquire
in the case of underwater image processing.

Software-based approaches use the Image Formation Model (IFM) to restore the
captured underwater images, by finding the background light and transmission maps.
Dark Channel Prior (DCP), as proposed by He et al. [11], uses IFM in image restoration, by
assuming scene points closer to the camera as dark images and vice versa. However, due
to the longer wavelength and faster attenuation property of red light, the method fails to
estimate the proper results, and always ends up choosing the red channel as the darkest of
all channels. Variations of DCP have consequently been proposed for underwater images;
using green and blue channels only, [12–14], using the inverse of the red channel [15], and
using the maximum intensity prior [16]. The performances of these methods have been
shown to vary depending on different lighting conditions and priors chosen. Instead of
estimating the transmission map directly, Peng et al. [17] use a depth-estimation strategy to
restore the underwater images. The proposed method involves the use of depth estimation
and transmission map estimation with attenuation coefficient priors, by considering the
backscattering effect, and has been proven to show superior results [18].

Generally, the efficiency of an image-processing algorithm is calculated by comparing
its output processed underwater images to other similar algorithms, and by using quality
metrics, such as Peak Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), and
dedicated underwater performance metrics, including Underwater Color Image Quality
Evaluation (UCIQE) [19] and Underwater Image Quality Measure (UIQM) [20]. These
are more common measures in evaluating image processing methods. However, there is
no approach to evaluate an image processing algorithm based on its applicability in real
applications. This is very important since the motive of developing an image-processing
method is not only to restore or enhance the underwater images, but ultimately, to help
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improve the efficiency of the real applications. In this paper, the first ever approach to
evaluating the efficiency of the proposed algorithm based on its usefulness for underwater
applications, has been shown.

The contributions of the paper are: (1) proposing an underwater image restoration
method, which estimates depth maps using combinations of a blurriness map, background
light neutralization, and red-light intensity. The background light neutralization is esti-
mated using the four-quadrant method, which demands lower computation compared
with other methods [18], and (2) demonstrations of the restored underwater image using
the proposed method on different underwater applications to evaluate the efficiency of the
algorithm. This represents the first ever demonstration of a developed algorithm on real
underwater applications.

The structure of the rest of the paper is as follows: Section 2 describes the proposed un-
derwater image restoration method that may be used to effectively recover original images
from acquired underwater images. Consequently, the usages of the recovered underwater
images on different underwater applications are explored in Section 3. Section 4 discusses
results from the proposed restoration method, as well as its implementation on the selected
underwater applications. The last section concludes the paper.

2. Proposed Restoration Method

The image restoration process employs the Image Formation Model (IFM) given in
Equation (1), to obtain the original scene from a captured underwater scene, with the
process involving estimation of the different parameters of the underwater IFM.

Ic(x) = Jc(x).tc(x) + (1− tc(x)).Bc, c ∈ {R, G, B} (1)

As can be seen, there are two distinct parts of the captured underwater image Ic(x).
Jc(x).tc(x) describes radiance Jc(x) of the object as it travels in the underwater medium,
whilst (1− tc(x)).Bc represents the scattering of background light Bc as it travels towards
the camera. Transmission map tc(x) describes the part of the object radiance that reaches
the camera, after considering for absorption and scattering.

Recovering the original object radiance Jc(x) from the acquired image Ic(x) at the
camera requires knowledge of the background light Bc as well as the transmission map
tc(x), with this information commonly estimated. Taking t̃c(x) and B̃c as the estimated
transmission map and background light, respectively, the recovered scene radiance J̃c(x)
may be estimated as:

J̃c(x) =
Ic(x)− B̃c

max
(
t̃c(x), t0

) + B̃c, c ∈ {R, G, B} (2)

t̃c(x) = e−βc d̃(x), c ∈ {R, G, B} (3)

where, βc is the spectral attenuation coefficient of the direct signal and d̃(x) is the estimated
depth map of the image.

Figure 2 depicts the flowchart of the proposed underwater restoration method for
estimating the recovered scene radiance J̃c(x) from the captured underwater image Ic(x).
Blurriness estimated image pblr and background light neutralized image Ic

BL(x), are calcu-
lated from the input image Ic(x), which are then used, together, with the red-light intensity
Ir(x), to estimate depth d̃(x) of the underwater image. Subsequently, transmission map
t̃c(x) may then be estimated using the estimated depth map d̃(x) by selecting the appropri-
ate spectral attenuation coefficients. The input image Ic(x), estimated background light B̃c,
and transmission map t̃c(x), are then used to find the final scene radiance recovered image
J̃c(x), as per Equation (2).
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2.1. Depth Estimation and Background Light Estimation

Blurriness map estimation pblr is the first process in the restoration process, by
estimating the refined blurriness map, through the initial map and rough map of the
image [17]. This is then followed by background light estimation. To determine the
background light, the input image Ic(x) is segmented into four quadrants, and the mean
value of the pixels calculated. Equation (4) is then used to estimate background light B̃c,

B̃c = max
(

Ic
qBL

(x)
)

(4)

where
Ic
qBL

= qmid, qmid ∈
{

qi={1,2,3,4} − qmax − qmin

}
(5)

The selected pixel, which constitutes the estimated background light B̃c, may not be
the brightest of all pixels in the entire input image, as two quadrants with extremes light
intensity have been excluded from the selection process. The estimated background light
B̃c shall be used for the scene radiance recovery using Equation (2).

Background light neutralized image Ic
BL(x) needs to be estimated to find the depth

map of the underwater image. Initially, average light intensity Ic
qavg in the two quadrants,

excluding the two extremes, is determined, and taken as average of the underwater image,

Ic
qi
= avgx∈qi

(
∑

c
Ic(x)

)
(6)

where qi is the four quadrants i = 1, 2, 3, 4, with Ic
qi

representing the average light intensity
in the respective quadrant qi. The brightest qmax and darkest qmin quadrants are neglected,
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as they are two extremes of the spectrum. Average light intensity in the remaining two
quadrants is then calculated, and taken as average of the underwater image:

Ic
qavg = avgqi∈qmid

(
Ic
qi

)
(7)

This average light intensity Ic
qavg is then used to modify all the pixels of the input

image Ic(x) to retrieve the contrast neutralized image Ic
cn(x), as follows:

Ic
cn(x) = Ic(x) + Ic

qavg (8)

To denoise the image, discrete wavelet transform (DWT) is applied on the contrast-
neutralized image Ic

cn(x) and the gray version of the input image Ig(x). Inverse discrete
wavelet transform (IWDT) is finally applied to retrieve the background light-neutralized
image, with approximation and detailed coefficients modified based on the average of
approximation coefficients and max rule applied on detailed coefficients.

The blurriness map, background light-neutralized image, and intensity of the red
channel can then be used for the depth-estimation process [18]. The maximum intensity of
the red channel, known as red channel map r(x) of the image, is represented by

r(x) = max
y∈ϕ(x)

Ir(y) (9)

where Ir is the intensity of the red channel and ϕ(x) is a square local patch centred at x.
The factors used for estimating depth are passed through a stretching function given by
Equation (10) [18].

d f (x)(x) = 1− Fs( f (x)), f (x) ∈ {r(x), pblr(x), Ic
BL(x)} (10)

where f (x) ∈
{

r(x), pblr(x), Ic
BL(x)

}
can either be the red channel map r(x), blurriness

map pblr(x) or background neutralised image Ic
BL(x), to give dr(x), dpblr (x) and dIc

BL
(x),

respectively. Fs(v) is a stretching function, which accepts vector v as its input.

Fs(v) =
v−min(v)

max(v)−min(v)
(11)

The final depth estimation can be found by Equation (12),

d̃(x) = θb

[
θadIc

BL
(x) + (1− θa)dr(x)

]
+ (1− θb)dPblr (12)

where θb and θa are θa = S
(
avg
(

Ic
BL
)
, 0.5)

)
and θb = S(avg(Ir), 0.1)), respectively; with

avg(.) giving average of the input and the sigma functions S(a,v) given as:

S(a, v) =
[
1 + e−s(a−v)

]−1
(13)

2.2. Transmission Map Estimation

The proposed transmission map estimation involves the use of depth estimation in
Equation (3). Reference [17] estimates transmission map using only the direct signal, with
the effects of backscattered signals neglected. In contrast, the proposed transmission map
estimation involves the use of both direct and backscattered signals in estimating the
transmission map, as shown in Equation (14).

t̃c(x) = tc
D(x) + tc

B(x), c ∈ {R, G, B} (14)

where βc
D is the spectral attenuation coefficient of the direct signal and βc

B is the spectral
attenuation coefficient of the backscattered signal.
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2.2.1. Transmission Map of Direct Signal

The transmission map of direct signal is estimated using spectral attenuation coeffi-
cients calculated for red, green and blue channels, together with the calculated depth map
d̃(x). The transmission map for the red channel can be calculated using,

tr
D(x) = e−βr

D .d̃(x) (15)

Restoration results are not sensitive to spectral attenuation coefficient βr
D of the red

channel [17], with values between [0.125,0.20] for oceanic water type I [21], and hence,
spectral coefficient value βr

D of the red channel is set to 0.142.
The transmission map for the green and blue channels due to direct signal can be

found by utilizing the transmission and attenuation coefficient of the red channel [22],

tk
D(x) = tr

D(x)
βk

D
βr

D , k ∈ {g, b} (16)

where the linear relationship between the attenuation coefficients of the green, blue, and
red channels is given by Equation (17), with values m = −0.00113, and i = 1.62517 [23].
Wavelengths for the red, green and blue light are taken to be 620 nm, 540 nm, and 450 nm,
respectively [17].

βk
D

βr
D

=
B̃r
(

mλk + i
)

B̃k(mλr + i)
, k ∈ {g, b} (17)

where B̃k is the background light estimated using Equation (4) for the respective channel
k ∈ {g, b}.

2.2.2. Transmission Map of Backscattered Signal

Comprehensive studies have been conducted on the estimation of spectral attenuation
backscattering coefficients, with Mie theory used to predict spectral behavior. Whitmire
et al. [24] use Slow Descent Rate Optical Profiler (Slow DROP), to experimentally calculate
backscattering coefficients of particulate matters in five research cruises at five different
wavelengths covering the visible spectrum, over a period of three years. The values selected
based on the wavelengths of interest are shown in Table 1.

Table 1. Determining the total backscattering attenuation coefficient βc
B(λ).

Wavelength βc
BW(λ) [25] βc

BP(λ) [24] βc
B(λ)

450 nm 2.2× 10−3 1.75× 10−2 1.97× 10−2

540 nm 1.0× 10−3 1.26× 10−2 1.36× 10−2

620 nm 0.6× 10−3 1.33× 10−2 1.39× 10−2

Total backscattering coefficient βc
B is a summation of pure water backscattering

coefficient βc
BW and particulate matter backscattering coefficient βc

BP,

βc
B(λ) = βc

BW(λ) + βc
BP(λ) (18)

Transmission map due to backscattered signal may be derived from Equations (3) and
(18) as follow,

tc
B(x) = e−βc

B .d̃(x) c ∈ {r, g, b} (19)

Spectral attenuation coefficients of the direct βc
D and backscattered βc

B signals may
be used to estimate the raw transmission map, using Equation (14). The estimated trans-
mission is then further refined by using a guided filter [26], instead of soft matting [11],
because of its better refinement properties.
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Scene radiance recovery involves the use of the estimated background light and
transmission map to form the final scene radiance. The refined transmission map is used
in Equation (2) to acquire the final restored image.

3. Different Underwater Applications

There are many applications of underwater images, out of which three of the most
common applications have been chosen for evaluation of the proposed underwater image
restoration method. The three applications are edge detection, Speeded Up Robust Feature
(SURF), and image classification using machine learning (ML). One of the main aims
of a restoration method is to reduce blurriness from underwater images; among other
things, to facilitate edge detection, which may be performed with the use of Sobel edge-
detecting operator. Edge detection is mainly used for obstacle detection by unmanned
underwater vehicles. Textured details of underwater images may also be improved by
using a restoration method, and the effectiveness of the restoration method towards
this objective may be evaluated by considering the number of feature points detected
by SURF. For underwater images with coral reefs and fish with a variety of shapes and
sizes, SURF is used to detect features of objects, which may be performed with the help
of the SURF function in MATLAB software. Finally, image classification is performed
to prove the effectiveness of a restoration method in detecting targets. This application
is specifically used for underwater pipeline corrosion, marine sea salt detection, subsea
terrain classification and mineral exploration.

3.1. Edge Detection

Since underwater images are used in pattern recognition, image decomposition, visual
inspection, and also in important processing tasks in computer vision related to underwater
segmentation, the output underwater image needs to be clear, with good texture and details.
Edge detection is particularly useful in underwater image processing, in order to localize
coral reefs and other related tasks. In this paper, the Sobel edge detector is used to detect
the number of edges in an image [27], whereby output from the proposed restoration
method is used as input to the Sobel edge detector, in order to ascertain whether the
proposed restoration method actually improves features and texture details of objects in an
underwater image. A comparison of performances is then made with the input image, in
terms of the number of edges detected.

3.2. Speeded Up Robust Feature (SURF)

SURF is a detection algorithm used to detect points of interest in an underwater image.
One of the basic tasks of computer vision algorithms is local feature points matching, which
forms the basis for underwater studies, such as for the detection of marine animals, and
fish species recognition [28]. The SURF feature matching provided by MATLAB software
is used for performance analysis. For the detection of points of interest, SURF uses an
integer approximation of the determinant of Hessian blob detector that is determined
using a three-integer operation on a precomputed integral image. The feature descriptor is
based on the Haar wavelet response. This can also be used underwater to detect and locate
objects, reconstruct 3D scenes and extract points of interests.

3.3. Image Classification

Image classification is an important application in image processing. It segregates ob-
jects in an underwater image based on the object of interest, which can be useful in various
fields, such as for the detection of pipeline corrosion, marine salt, fish detection, detection
of ship wrecks, mineral exploration, marine animal detection, pollution monitoring, subsea
investigation, and sea floor terrain examination.

In machine learning, the model learns a pattern in a dataset, from which prediction
of a given situation of interest can be made. The learning process starts by providing a
training dataset, which is fed to a designed model to establish the relationship between
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dependent and independent variables. Once trained, the pretrained model may then be
used to predict the output given a set of test inputs.

Machine-learning methods are generally classified as either supervised, unsupervised,
semisupervised or reinforcement learnings. A supervised machine-learning method is used
here for the image classification purpose. The method predicts a new set of outputs based
on what has been learned from the past training datasets, with the learning process starting
with the help of training data that has a set of input and target vectors. In supervised
learning, it is assumed that the actual output values are known for each input pattern.

In the process of classification, image features of the input images from the training set
are extracted using the Discrete Wavelet Transform (DWT) and Gray Level Co-occurrence
Matrix (GLCM), with these features fed into the classification algorithm for training pur-
poses. Two supervised machine-learning algorithms: Support Vector Machines (SVM)
and K-Nearest Neighbor (KNN) have been chosen. SVM has evolved as one of the most
powerful supervised machine-learning methods in classification problems and linear and
nonlinear regressions, whilst KNN is a nonparametric statistical method for classification
and regression problems, and has been used for pattern recognition and feature detec-
tion [29].

4. Results

The proposed underwater restoration method has been used to process numerous
underwater images, with the processed underwater images used as input for the three
underwater applications: edge detection, SURF, and image classification applications.
Particularly, five underwater test images with various underwater conditions: naturally
lit, bluish nature, greenish nature, artificial light source, and backscattered image, have
been selected to appraise the efficiency of the proposed restoration method. Figure 3
depicts the raw underwater images along with their restored underwater images using the
proposed method.
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4.1. Results for Edge-Detection Application

Sobel edge-detection operator is used to detect the edges in an image. Both the raw
and restored underwater images shown in Figure 3 are passed through the Sobel edge-
detector operator, with results given in Figure 4. Results of edges detected from the raw
underwater images of Figure 4a–e, are obtained from passing the raw underwater images
in Figure 3a–e, through the Sobel edge-detection operator, respectively, whilst results of
edges detected from restored images of Figure 4a–e are obtained from passing the restored
images in Figure 3a–e through the Sobel edge-detection operator, respectively.

The number of edges detected on the raw image in Figure 4a is less than the edges
detected on the restored image, with edges of the coral reefs not properly detected on the
raw image. This is in comparison to the clear detection of the edges of coral reefs in the
restored underwater image in Figure 4a. The clear number of edges detected when using
the restored underwater images points to the necessity of the proposed restoration method
for underwater image processing.

In the raw image of Figure 4b, only the edges of the front part of the ship are detected,
whilst after processing with the proposed method, the number of edges detected increases.
The edges of the front as well as the back part of the ship can be detected using the
processed image; showing the efficiency of the proposed method in improving the feature
details of the objects in the image by reducing blurriness, as shown in the restored result of
Figure 4b.

The edges of raw image are almost not detected in Figure 4c, due to the blurriness of
the raw image. Since the proposed method has the ability to reduce blurriness and improve
texture details, the edges detected in the recovered image of Figure 4c are remarkably
improved; the coral reefs as well as the fishes can be clearly detected in the restored
underwater image.

For images from Figure 4d, it can be seen from the raw image that only a limited
number of edges has been detected; particularly, the small sand and stone particles cannot
be detected due to poor clarity of the raw image. On the other hand, the edges of the fish,
sand, and small particles are clearly detected on the restored image, as can be seen in edges
detected in Figure 4d, proving that the proposed method can be used in underwater feature
detection applications.

The raw image of Figure 4e, which is heavily affected by backscattering effect, has
a very limited number of edges detected; with the middle part of the image containing
the turtle, which is almost not detected at all. On the other hand, the edge detection is
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very good in the restored image, and consequently, it can be said that proposed method is
efficient and can be used for underwater edge detection applications.
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4.2. Results of the SURF Application

For detecting SURF features in underwater images, gray versions of the raw under-
water images and restored underwater images in Figure 3 have been used, with the SURF
function in MATLAB used for this purpose. Results of SURF points detected in raw im-
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ages of Figure 5a–e are found using gray versions of raw underwater images shown in
Figure 3a–e, respectively, whilst the results of SURF points detected in processed images
of Figure 5a–e are found using gray versions of restored underwater images shown in
Figure 3a–e, respectively.
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Visually, all gray versions of the restored images are relatively clear and sharp com-
pared to gray versions of input raw images. Consequently, the number of SURF points



Appl. Syst. Innov. 2021, 4, 96 12 of 15

detected in all the restored gray versions of the underwater images is higher than the
input gray version. This clearly suggests that the proposed method is able to improve
underwater images for the purpose of detection of objects as well as extraction of point of
interest in underwater applications, by improving texture details of the processed image
as well as reducing blurriness. Comparison between the number of SURF feature points
detected in the gray version of raw input and restored underwater images in Figure 3a is
shown in Figure 5a. The raw underwater image shown in Figure 3a is a naturally lit image,
with the front part receiving more light than the background region. Consequently, in both
the raw and restored images in Figure 5a, more features are detected in the front part of the
image when compared with the back part of the image. Less feature points are detected in
the front part of the restored image of Figure 5a when compared with the raw image of
Figure 5a. Additionally, SURF feature points in the coral regions are also detected from the
restored underwater image.

Figure 5b depicts the comparison between raw and restored underwater images of
a shipwreck. Less SURF points are detected on the raw image of Figure 5b, with the
detected features concentrated mainly on the front part of the ship. On the other hand,
SURF feature points on the front part as well as the top part of the ship can be clearly
seen from the restored image in Figure 5b. This points to the effectiveness of the proposed
restoration method.

Figure 5c shows comparison of SURF features of an image with greenish nature
between the raw and restored underwater images. On the raw image of Figure 5c, the
detection of feature points focuses only on the coral reefs and not on the fish, but features
are detected on the coral reefs as well on some of the fish in the restored image of Figure 5c.
Thus, the restored image performs better than the input raw image.

Figure 5d shows an image with an artificial light source. Generally, images which are
lit artificially would have more distortions due to the reflection of artificial light source on
floating particles in water. The restored underwater image using the proposed method
handles the artificial light source problems gracefully by reducing the effects of distortions,
as seen in Figure 3d. Consequently, more SURF points are detected on the sand particles as
well as on the fish in the gray version of the restored image of Figure 5d, when compared
with the input raw image of Figure 5d.

Finally, Figure 5e shows comparison of the raw input and restored underwater image
of image affected by backscattered signal. Only four SURF features are detected on the
upper part of the sea turtle of the raw image in Figure 5e. On the other hand, more SURF
features are noticeably detected on the restored image of Figure 5e, since the restored image
deals with backscattering effects effectively, by using proper priors for backscattering
attenuation coefficients.

4.3. Results for Image Classification Application

For investigating the performance of the restored images using the proposed restora-
tion methods for image classification applications, four general classifications are made:
fish, ships, statues, humans. The supervised machine-learning approach is used for design-
ing the classification algorithm.

For the training purpose, 890 raw underwater images have been chosen from the Liu
et al. [30] dataset; with one model trained using the raw underwater images and another
model trained using restored underwater images using the proposed restoration method.
Sensitivity, specificity, and accuracy are used as performance measures. Sensitivity is the
ability of a test to correctly classify an image, while specificity is the ability of the test to
classify the incorrect objects. Accuracy is defined as the capability of the test to produce a
result closer to the original correct classification. In total, 75 underwater images have been
used for testing the trained model.

Unprocessed images and restored images using the proposed restoration method are
used for testing; with results tabulated for both SVM and KNN separately, in Table 2. From
the table, it can be seen that the proposed method is able to improve sensitivity, specificity,
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and accuracy compared to using the raw unprocessed underwater images. Using the
proposed restoration method improves accuracies from 72% and 82%, to 83% and 89% for
SVM and KNN, respectively.

Table 2. Tabulation of SVM and KNN feature values on unprocessed and restored underwater images.

Unprocessed Input Images Restored Output Images

SVM KNN SVM KNN

Sensitivity (%) 73 69 85 79
Specificity (%) 90 77 91 84
Accuracy (%) 72 82 83 89

5. Conclusions

A proposed restoration method for underwater images is given in this paper, which
involves depth estimation from blurriness estimation and background light neutralization
process as well a transmission map estimation using direct and backscattered signals. Any
method that is designed for restoring the image has to provide efficient results not only in
terms of quantitative and qualitative approach, but also in practical applications, which
serves the whole purpose of developing the method in the first place. For this reason,
the proposed underwater image restoration method has been tested on direct underwater
applications. The applications are chosen in such a way that the claims of the proposed
methods are proven. Edge detection, SURF and image classification have been chosen. The
edge detection has been performed using the Sobel edge-detection operator on raw and
restored images using the proposed method, and it has been shown that the number of
edges detected on the restored images are always higher than on the original raw images,
proving that the proposed restoration method is able to reduce blurriness in an image.
Similarly, the SURF function from MATLAB has been used on the gray version of raw and
restored underwater images. Subsequently, it has been shown that the number of SURF
points detected on the restored underwater images increases. This implies the ability of
the proposed method to improve texture details of an underwater image. Finally, image
classification using a supervised machine-learning approach has been performed on a set
of 75 test images before and after restoration, whereby the restored images give better
classification results in terms of accuracy when used for image classification using both
SVM and KNN.

These results on different underwater imaging applications show that the recovered
images from the proposed method provide good and efficient results when compared
to unprocessed raw input images. As such, the proposed method can be considered as
an important step to recover underwater images before applying them to underwater
applications, with an efficient outcome.
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