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Abstract: Seismic hazard analysis of the earthquake-prone Eastern Anatolian Region (Turkey) has
become more important due to its growing strategic importance as a global energy corridor. Most of
the cities in that region have experienced the loss of life and property due to significant earthquakes.
Thus, in this study, we attempted to estimate the seismic hazard in that region. Seismic moment
variations were obtained using different types of earthquake magnitudes such as Mw, Ms, and Mb.
The earthquake parameters were also determined for all provincial centers using the earthquake
ground motion levels with some probabilities of exceedance. The spectral acceleration coefficients
were compared based on the current and previous seismic design codes of the country. Additionally,
structural analyses were performed using different earthquake ground motion levels for the Bingöl
province, which has the highest peak ground acceleration values for a sample reinforced concrete
building. The highest seismic moment variations were found between the Van and Hakkari provinces.
The findings also showed that the peak ground acceleration values varied between 0.2–0.7 g for
earthquakes, with a repetition period of 475 years. A comparison of the probabilistic seismic hazard
curves of the Bingöl province with the well-known attenuation relationships showed that the current
seismic design code indicates a higher earthquake risk than most of the others.

Keywords: Eastern Turkey; site-specific spectra; seismic hazard; seismic moment

1. Introduction

Earthquake risk is defined as the probability of ground motion that can damage
and cause loss of life in a certain place within a certain time period. Seismic hazard
analysis is an essential stage for the estimation of earthquake risk. Earthquake parameters
such as the peak ground acceleration (PGA), peak ground velocity (PGV), and spectral
acceleration may be obtained by traditional probabilistic seismic hazard analyses. Mostly,
these parameters are obtained using the annual probability of exceedance for a specific
location of the event and design characteristics [1–6]. Significant loss of life and property
after an earthquake’s occurrence clearly shows the importance of the seismic hazard
estimation studies. Assessing and managing the necessary information about earthquakes
are also important factors for spatial planning and urban renewal [7–12]. The seismic
design codes and earthquake hazard maps can be updated through the new data obtained.
In this way, potential seismic hazard estimations can be made more realistically.

The studies of reducing earthquake damage started after the Erzincan earthquake
(Mw = 7.9), which was recorded as the biggest earthquake in Turkey; 33,000 people lost
their lives. Turkey’s first seismic zoning map was officially produced in 1945 [13,14]. This
map was updated in 1945, 1947, 1963, 1972, 1996, and 2019. Except for the latest map, the
previous ones were produced based on regional risk. The last updated map was produced
by taking into account earthquake hazards based on specific sites. The current map was
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prepared within the scope of a project titled “Updating the Seismic Hazard Map of Turkey”,
which was supported by the Disaster and Emergency Management Presidency of Turkey
(DEMP) in the scope of the National Earthquake Research Program (UDAP). The latest
updated map was prepared in a more detailed manner using the recent earthquake source
parameters, earthquake catalogues, and also the newest mathematical models. Dissimilar
to the previous ones, PGA values are starting to be used, and the approach of “earthquake
risk regions” lost its significance [14–17]. In the updated Turkish Earthquake Hazard Map,
both the horizontal and vertical spectral parameters can be obtained for four earthquake
ground motion levels, which are given in the following sections. In this map, seismic risk
is defined probabilistically due to its uncertainties related to geographical location [18].
Technological developments and scientific innovations in civil and earthquake engineering
have necessitated some changes in earthquake-resistant building design principles. So far,
10 different seismic design codes have come into force at different times in Turkey. The
most detailed and up-to-date one was completed in 2018 and entered into use in 2019. In
this study, the effects of different earthquake ground motion levels and site-specific design
spectrums on structural analyses were examined on a regional basis. In the previous code,
only the standard design earthquake motion with a repetition period of 475 years was in
question. However, 4 different ground motion levels with 2475, 475, 72, and 43 repetition
periods are taken into account with the current regulation. Another innovation taken into
account in this study is the site-specific design spectra. In the previous code, four different
design spectra were being used for a total of four different earthquake zones. A design
spectrum specific to each geographical location is used with the current map and code.

Seismic forces threating the structures are directly related to the ground motions. One
of the most important terms for determining these forces are the design spectra. There is
a need to update the earthquake hazard map, providing input data to the design spectra
obtained from seismic zoning. Hence, seismic zoning studies for ground motions are im-
portant indicators in determining seismic risk. In this context, the effects of ground motion
on structures and the target displacements expected from the structure can be obtained
more realistically using microzoning and site-specific analyses of seismic hazards. In micro-
zoning studies, the region is divided into subregions, and efficient plans and strategies can
be performed to minimize earthquake damages. Thus, using technological developments,
economical potential, and scientific approaches, seismic microzoning has started to be used
in the country with the updated Turkish Earthquake Hazard Map. Henceforth, site-specific
seismic hazard analyses for any geographic location can be performed by using this map.

In this study, the seismic risk of the Eastern Anatolian Region was evaluated using a
performance-based earthquake engineering approach. This approach aims at improving
seismic risk decision making through assessment and design methods that have a strong
scientific background and express options that enable stakeholders to make informed
decisions. It includes four processing steps such as hazard analysis, structural or non-
structural analyses, and damage and loss estimations. The first step requires hazard
analysis, in which one or more ground motion Intensity Measurements (IMs) are evaluated.
The IM is obtained independently from local soil conditions by conventional probabilistic
seismic hazard analysis for a standard earthquake. Generally, an IM is defined by an
associated average annual probability of exceedance, which is specific to the location and
design characteristics of the region [4,19,20]. It is possible to quantify the damage levels
that may occur under the design’s ground motion within the structural system elements
in the performance-based design and evaluation method. Acceptable damage limits are
defined to be consistent with the expected performance targets at various earthquake
ground motion levels [21,22]. First, the earthquake demand is calculated in performance-
based design and assessment methods. It is then necessary to determine the structural
performance by comparing these demand values with the deformation capacity for the
selected performance levels [23–26]. However, it may not reflect the expected state of
the design, since the acceleration values given in the standards cannot clearly meet the
actual physical conditions in which the buildings exist [27–30]. According to the Turkish
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Earthquake Building Code (TBEC-2018) [31], the demand spectra are determined for the
seismic performance of an existing building based on a different probability of exceedance
in 50 years.

The Eastern Anatolia Region is seismically very active region. The 2003 Bingöl
(Mw = 6.4), 2011 Van (Mw = 7.2), and 2020 Elazığ (Mw = 6.8) earthquakes reveal the
seismic hazard in the region. Earthquake-prone regions may be determined—and signifi-
cant contributions can be made—to update seismic design codes by using the data obtained
from destructive earthquakes. In this context, the effects of the 2011 Van earthquakes in
particular contributed to the development of the the TBEC-2018 [31]. Moreover, it is manda-
tory to use an earthquake hazard map with this updated code. The earthquake building
parameters can be obtained for any location through this map [31,32]. Here, all provincial
centers in the Eastern Anatolia Region (Figure 1) were studied. The seismic moment (Mo)
variations for the region were obtained using different types of earthquake magnitudes such
as Mw, Ms, and Mb. Additionally, using the earthquake ground motion levels with 2%,
10%, 50%, and 68% probability of exceedance within a 50-year period, the short-period map
spectral acceleration coefficient (Ss), map spectral acceleration coefficient for 1 s (S1), PGA,
and PGV were calculated. The earthquake ground motion level (DD-2) was used to obtain the
horizontal and vertical elastic design spectra for all provinces. Aside from that, these spectra
were compared for the Bingöl province, which has the highest PGA. The spectra obtained for
this province were compared with different seismic attenuation relationships.
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Figure 1. The location map showing the provincial centers in the Eastern Anatolian Region.

There are some studies about the differences between previous and updated earth-
quake codes and maps. In those studies, the seismic force calculation methods, base shear
forces, displacements, period, target displacements, spectra, local soil conditions, and
section damage values were examined [33–44]. In those studies, changes in the seismicity
parameters on a provincial or regional basis or changes in the structural analyses on a
sample structure were examined. In this study, both the earthquake and structural analysis
results were obtained for all provinces in the region, and the results were compared. Here,
the Eastern Anatolian Region, which has the longest active fault length in Turkey and is
highly active in terms of seismicity, was chosen as an example, and all the provinces in
the region were taken into account. The investigation of the effect of different earthquake
ground motion levels on building earthquake behavior makes this study different from
the other studies. The spectral responses for different exceedance of probabilities for the
Bingöl province, which has the highest PGA in the region, were compared with different
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attenuation relationships. Additionally, distribution of seismic moments in Eastern Anato-
lia was carried out according to the current earthquake data. Based on these current data,
an image map was produced to obtain the seismic moment distribution in the region.

2. Materials and Methods
Seismicity of the Eastern Anatolia Region

The region is located where the Arabian and African Plates move toward the Eurasian
Plate. This compressional regime controls the formation of many active faults and the
seismicity of the region. The general tectonic structure of the region is mainly controlled
by the deformation zone known as the Bitlis Zagros Thrust Fault Belt (BZTFB), where
the northward-moving Arabian Plate collides with the Anatolian Plate. The dominant
fault zones in the region are the East Anatolian Fault Zone (EAFZ), the North Anatolian
Fault Zone (NAFZ), and the BZTFB. The collision is managed through the Karlıova Triple
Junction, where the right lateral strike-slip NAFZ joins with the left lateral EAFZ (Figure 2).
Additionally, to the east of this junction, the dominant elements are mostly NW-SE striking
right-lateral and NE-SW striking left-lateral faults. The E-W striking Muş, Lake Van, and
Pasinler ramp basins are the other significant tectonic elements in the Eastern Anatolian
Region. Due to this active tectonic regime mentioned above, the region has experienced
numerous earthquakes so far. The distributions of the historical and recent earthquakes
(Ms ≥ 3.0) produced from the database of the DEMP for the country are given in Figure 3.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 4 of 24 
 

 

in the region were taken into account. The investigation of the effect of different earth-
quake ground motion levels on building earthquake behavior makes this study different 
from the other studies. The spectral responses for different exceedance of probabilities for 
the Bingöl province, which has the highest PGA in the region, were compared with dif-
ferent attenuation relationships. Additionally, distribution of seismic moments in Eastern 
Anatolia was carried out according to the current earthquake data. Based on these current 
data, an image map was produced to obtain the seismic moment distribution in the region. 

2. Materials and Methods 
Seismicity of the Eastern Anatolia Region 

The region is located where the Arabian and African Plates move toward the Eura-
sian Plate. This compressional regime controls the formation of many active faults and the 
seismicity of the region. The general tectonic structure of the region is mainly controlled 
by the deformation zone known as the Bitlis Zagros Thrust Fault Belt (BZTFB), where the 
northward-moving Arabian Plate collides with the Anatolian Plate. The dominant fault 
zones in the region are the East Anatolian Fault Zone (EAFZ), the North Anatolian Fault 
Zone (NAFZ), and the BZTFB. The collision is managed through the Karlıova Triple Junc-
tion, where the right lateral strike-slip NAFZ joins with the left lateral EAFZ (Figure 2). 
Additionally, to the east of this junction, the dominant elements are mostly NW-SE strik-
ing right-lateral and NE-SW striking left-lateral faults. The E-W striking Muş, Lake Van, 
and Pasinler ramp basins are the other significant tectonic elements in the Eastern Anato-
lian Region. Due to this active tectonic regime mentioned above, the region has experi-
enced numerous earthquakes so far. The distributions of the historical and recent earth-
quakes (Ms ≥ 3.0) produced from the database of the DEMP for the country are given in 
Figure 3. 

 
Figure 2. Simplified neotectonic and relief maps of Turkey and the surrounding area [45–49]. SBT: 
Southern Black Sea Thrust; NAFZ: North Anatolian Fault Zone; NEAFZ: Northeast Anatolian Fault 
Zone; WAEP: West Anatolia Extensional Province; EAFZ: East Anatolian Fault Zone; DSFZ: Dead 
Sea Fault Zone; BZTFB: Bitlis Zagros Thrust Fault Belt. 

After the collision of the Eurasian and Arabian Plates, Eastern Anatolia has con-
tracted an average of 40–60% in the N-S direction in the last 10 million years (which began 
in the Middle Miocene in the neotectonic period), and the Earth’s crust has thickened and 
increased in the region [50]. The NAFZ and the EAFZ limit the Eastern Anatolia Region 
in the west. As a result of the compression in the region, generally, E-W striking, N- or S-

Figure 2. Simplified neotectonic and relief maps of Turkey and the surrounding area [45–49]. SBT: Southern Black Sea
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Province; EAFZ: East Anatolian Fault Zone; DSFZ: Dead Sea Fault Zone; BZTFB: Bitlis Zagros Thrust Fault Belt.

After the collision of the Eurasian and Arabian Plates, Eastern Anatolia has contracted
an average of 40–60% in the N-S direction in the last 10 million years (which began in
the Middle Miocene in the neotectonic period), and the Earth’s crust has thickened and
increased in the region [50]. The NAFZ and the EAFZ limit the Eastern Anatolia Region
in the west. As a result of the compression in the region, generally, E-W striking, N- or
S-dipping high-angle thrusts, folds with E-W striking axes, left-lateral strike-slip faults
with NE-SW striking, right-lateral strike-slip faults with NW-SE striking, and N-S striking
extensional fractures and volcanic activity related to these fractures were formed. In the
region and to the north in the Caucasus, the N-S compression movement was found to
be 30 mm/year, and it was stated that 10–40% of the deformation here was related to
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earthquakes. A significant part of the deformation passes over the EAFZ, which forms the
border of this region with the Anatolian Plate in the west. In the region, inter-mountain
depression basins have formed lateral slip faults, opening cracks, folded-thrust areas, and
Plio-Quaternary (2 my) volcanic eruptions by jamming [51].
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Most of the earthquakes in the region occurred at depths of 2–10 km. Except for the
EAFZ, one of the main active faults in the region is the Narman-Horasan Fault, which
is a left-sided strike-slip fault [52]. The northern part of this fault produced the Narman
earthquake (1983). The Çaldıran Fault is a right-sided strike-slip, and it produced the
Çaldıran earthquake (1976). An average surface rupture of 50 km was observed. The
Tendürek-Balıkgöl Fault contains normal faults in the Balıkgölü section and becomes a
distinctly right-sided strike-slip fault toward the southeast of the lake. It was stated that
the 1840 Ağrı earthquake was related to this fault [53]. The Karayazı Fault is located
parallel to the Tutak Fault at a distance of 15–20 km. Both faults are right-handed and
strike-slip [54]. The Erzurum-Tortum Fault has left-sided strike-slip characteristics. The
width of the area covered by shear cracks along the belt is up to 10 km. The southern part
of this fault produced some earthquakes that caused significant losses in the vicinity of
Erzurum province in 1200, 1482, and 1859 [53]. Some of the historical earthquakes that
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occurred between the years 240 and 1893 are shown in Table 1 [55–59]. The strongest
earthquake occurred in the Çaldıran-Bitlis region with an intensity of X, which corresponds
to a magnitude of >7. It is seen that such strong earthquakes were occurring in the vicinity
of the Erzincan province.

Table 1. Significant historical earthquakes in the Eastern Anatolian Region. The Modified Mercalli Intensity Scale was used
as the intensity scale (between I (min) and XII (max)).

No Date Region Intensity
(MMI) (Io) No Date Region Intensity

(MMI) (Io) No Date Region Intensity
(MMI) (Io)

1 240 Kayseri-
Malatya IX 13 1374 Erzincan VIII 25 1790 Erzurum VIII

2 771 Fırat Basin VIII 14 1422 Erzincan VIII 26 1852 Erzurum IX

3 802 Fırat Basin VIII 15 1441 Van-Bitlis VIII 27 1859 Erzurum IX

4 995 Palu-Sivrice VI 16 1458 Erzincan IX 28 1866 Erzurum VIII

5 1011 Erzurum VIII 17 1482 Erzincan IX 29 1868 Erzurum IX

6 1045 Erzincan IX 18 1584 Erzincan IX 30 1871 Ağrı VIII

7 1111 Van-Ahlat IX 19 1647 Van-Bitlis IX 31 1874 Elazığ IX

8 1245 Ahlat-Van VIII 20 1696 Çaldıran-
Bitlis X 32 1875 Erzurum IX

9 1268 Erzincan IX 21 1701 Van VIII 33 1881 Van-Bitlis IX

10 1276 Ahlat-Van VIII 22 1715 Van -Erçiş VIII 34 1890 Erzincan IX

11 1319 Ağrı VIII 23 1784 Erzincan VIII 35 1891 Muş-Bitlis VIII

12 1363 Muş IX 24 1789 Elazığ VIII 36 1893 Malatya IX

Significant instrumental period earthquakes that occurred in the region are given in
Table 2 [57–64]. In Turkey, the most destructive and largest earthquake occurred in 1939
(Erzincan, Mw = 7.9), and about 33,000 people were killed. A total of 232,549 damaged
buildings also shows the seismic hazard in the region.

Table 2. Significant instrumental period earthquakes in the Eastern Anatolian Region.

No Date Region MMI Io Mw Loss
of Life

Damaged
Buildings No Date Region MMI Io Mw Loss

of Life
Damaged
Buildings

1 1901 Erzurum VIII 6.1 500 10,000 26 1988 Kars X 6.9 4 546

2 1903 Muş IX 6.7 600 450 27 1992 Erzincan VIII 6.8 653 8057

3 1905 Malatya IX 6.8 500 5000 28 1992 Tunceli VII 5.8 439

4 1906 Kars 6.2 29 1995 Tunceli VI+ 5.7 1

5 1908 Van 6.3 30 1998 Bingöl VI 5 148

6 1924 Erzurum IX 6.8 60 380 31 2003 Tunceli VII 6.2 1 50

7 1926 Kars VIII 5.9 3 2043 32 2003 Bingöl VIII 6.4 176 6000

8 1930 Hakkari X 7.2 2514 3000 33 2004 Erzurum VII 5.6 9 1280

9 1939 Erzincan VII 5.9 43 500 34 2004 Ağrı VII 5.1 17 1000

10 1939 Erzincan X-IX 7.9 32,968 116,720 35 2004 Elazığ VII 5.9

11 1941 Van VIII 5.9 192 600 36 2005 Hakkari VII 5.9 3 82

12 1941 Erzincan VIII 5.9 15 600 37 2005 Bingöl VI 5.7

13 1946 Muş VIII 5.9 839 3000 38 2005 Bingöl VII 5.9 760

14 1949 Bingöl IX 6.7 450 3500 39 2005 Bingöl VI 5.7

15 1952 Erzurum VIII 5.8 41 701 40 2005 Bingöl VI 5.7
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Table 2. Cont.

No Date Region MMI Io Mw Loss
of Life

Damaged
Buildings No Date Region MMI Io Mw Loss

of Life
Damaged
Buildings

16 1964 Malatya VIII 6 8 847 41 2007 Elazığ VI 5.5

17 1966 Muş VIII 5.6 14 1100 42 2007 Elazığ VII 5.9

18 1966 Muş IX 6.9 2396 20,007 43 2010 Elazığ VII 6.1 42

19 1967 Tunceli VIII 5.9 97 1282 44 2010 Elazığ VI 5.6

20 1971 Bingöl VIII 6.8 878 9111 45 2011 Erzincan VI 5.6

21 1976 Van IX 7.5 3840 9232 46 2011 Van VIII 7.2 644 17,005

22 1983 Erzurum VIII 6.9 1155 3241 47 2011 Van VI 5.6

23 1984 Erzurum VIII 6.4 3 570 48 2011 Van VI 5.6 40

24 1986 Malatya VIII 5.9 7 824 49 2020 Elazığ 6.8 41 3300

25 1986 Malatya VIII 5.6 1 1174 50 2020 Van 6.0 9

3. Distribution of Seismic Moments in Eastern Anatolia

The process of energy accumulation and release is known as the seismic activity.
The seismic moment (Mo) is a measure used to calculate the energy released during an
earthquake and is defined as the physical moment of forces at the earthquake source. The
characteristic Mo accumulation and oscillation model follows the energy balance principle
and assumes that the moment produced by an earthquake is equal to the accumulation
along a seismic fault over a recurrence interval. It is also one of the basic parameters char-
acterizing the magnitude of an earthquake [65]. The Mo, which considers the magnitude
of the earthquake in terms of displacement phenomenon, has been accepted as the most
useful measure [66]. The moment magnitude (Mw) derived from the static seismic moment
is a measure of an earthquake, namely the average tectonic effect of an earthquake. The
Mo depends on the difference in energy of the stress before and after the earthquake. It is
largely controlled by the dynamic and kinematic properties of the rupture process, and
therefore it is extremely important to assess the true damage potential associated with the
seismic energy released from an earthquake [67]. The Mo measurement is used to predict
seismic stress and stress drops occurring at a focal point [68]. It acts as the average of the
tectonic conditions, earthquake energy accumulation, and resource properties of a region.
The Mo in numerically recorded earthquakes is usually estimated from seismograms. In
addition, it can be calculated by converting from different types of earthquake magnitudes
through the formulas developed by different researchers. The most commonly used formu-
las were developed by Hanks and Kanomori (1979) [69]. The relationship between the Mo
and body wave magnitude (mb) is given below:

logMo = 1.36mb + 17.24 (1)

Similarly, the relationship between the local magnitude (ML) and the Mo is given as follows:

logMo = 1.5ML + 16.0 (2)

The transformation from Mw is defined below:

logMo = 1.5Mw + 9.045 (3)

The following equations were developed between the magnitude of the surface wave
(Ms) and Mo according to different Ms value ranges [48]:

logMo = 1.5Ms + 16.4 for Ms > 6.8 (4)
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logMo = 30.2 − (92.45 − 11.4Ms)
0.5 for 5.3 < Ms < 6.8 (5)

logMo = Ms + 19.24 for Ms > 5.3 (6)

Here, we produced an image map to obtain the distribution of Mo in the region (Figure 4).
The distributions of the earthquake epicenters are also shown on the map. Large and
destructive earthquakes in Eastern Anatolia showed high Mo values, as expected. Earth-
quakes with magnitudes of 6.0 or more were mostly recorded in the catalogue according to
the Ms. The Erzincan earthquake, which is the largest one in the region (1939, Mw = 7.9),
showed less Mo distribution than the Çaldıran (Van) earthquake (1976, Mw = 7.6). This low
distribution is due to the fact that such a large earthquake has not occurred in the province
of Erzincan or its surroundings so far. The map also shows that the highest Mo distribution
existing in the region between the Van and Hakkari provinces. The region between these
provinces has a much higher energy accumulation, and the recurrence period of large
earthquakes is much shorter. It is inevitable for the seismic moment distribution to attain
high values. In addition, almost every province showed high Mo distribution. This finding
also indicates the high seismic risk in the Eastern Anatolian Region. It can be seen that
the Mo reached higher values in destructive earthquakes, and this showed a linear change
with the released energy.
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4. Seismic Hazard Analysis

The annual exceedance probability of the design level PGA suggested in [70] was used
for seismic risk analyses. Probabilistic seismic hazard analyses define the seismic sources,
formation rates for the size distribution and sources, formation of ground motion, and
finally involve probability analysis. Here, all provincial centers in the region were used
for analysis. Only the earthquake ground motion level with a probability of exceedance of
10% in 50 years and a reputation period of 475 years was defined in the previous seismic
design code. On the other hand, the ground motion levels were defined in four different
types in the updated code. Here, these levels were considered for seismic hazard analysis
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by using the updated TBEC-2018 [31] (Table 3). The PGA, PGV, SS, and S1 were obtained
separately for different probabilities of exceedance in 50 years from the Turkish Earthquake
Hazard Map Interactive Web Application for each province (Tables 4 and 5). The PGA
values were in the range of 0.38–1.14 g for 2%, 0.2–0.65 g for 10%, 0.076–0.28 g for 50%,
and 0.055–0.18 g for 68% probabilities of exceedance in the region. It is clearly seen that
the highest and lowest parameter values were obtained in the Bingöl and Kars provinces,
respectively. Additionally, the Erzincan and Erzurum provinces were also characterized by
high values.

Table 3. Earthquake ground motion levels [31].

Earthquake Level Repetition Period
(Year)

Probability of Exceedance
(in 50 Years) Description

DD-1 2475 0.02 Largest earthquake ground motion

DD-2 475 0.10 Standard design earthquake ground motion

DD-3 72 0.50 Frequent earthquake ground motion

DD-4 43 0.68 Service earthquake movement

Table 4. PGA and PGV values for different probabilities of exceedance in 50 years.

Province

PGA (g) PGV (ms−2)

Probability of Exceedance in 50 Years Probability of Exceedance in 50 Years

2% 10% 50% 68% 2% 10% 50% 68%

Ağrı 0.451 0.234 0.091 0.066 25.925 13.640 5.798 4.313

Ardahan 0.520 0.269 0.098 0.068 29.926 14.694 5.608 4.114

Bingöl 1.136 0.654 0.275 0.179 77.511 43.563 15.636 9.588

Bitlis 0.490 0.260 0.106 0.077 28.200 15.065 6.506 4.847

Elazığ 0.717 0.386 0.179 0.100 46.493 24.215 9.026 5.903

Erzincan 1.092 0.597 0.216 0.147 74.271 39.230 12.859 8.353

Erzurum 0.877 0.477 0.152 0.098 54.049 28.780 9.455 6.033

Hakkari 0.600 0.318 0.116 0.079 34.001 16.676 5.977 4.209

Iğdır 0.481 0.245 0.089 0.062 27.052 13.269 5.414 3.923

Kars 0.379 0.195 0.076 0.055 21.765 11.442 4.900 3.75

Malatya 0.654 0.348 0.136 0.092 41.267 21.446 8.054 5.365

Muş 0.579 0.327 0.138 0.098 35.589 20.461 8.609 5.989

Tunceli 0.672 0.348 0.128 0.087 42.198 21.992 8.393 5.685

Van 0.516 0.271 0.100 0.069 29.756 15.224 5.941 4.303

The spectral acceleration coefficient (SDS) was calculated on a regional basis in the
previous code. However, it was obtained by using site-specific analysis in the updated code.
A comparison between these two codes was performed with SDS for the design earthquake
(DD-2) with a 10% probability of exceedance per 50 years (Table 6). It was observed that
some of the studied provinces produced the same coefficient values through the previous
code, but very different values were obtained for the provinces when using the updated
code. Therefore, site-specific analysis caused the seismic parameters obtained for each
province to differ from each other, as expected. This finding reveals the importance of
microzonation once again.
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Table 5. SS and S1 values for different probabilities of exceedance in 50 years.

Province

Short Period Map Spectral Acceleration Coefficient
(SS)

Map Spectral Acceleration Coefficient for the Period
of 1.0 Seconds (S1)

Probability of Exceedance in 50 Years Probability of Exceedance in 50 Years

2% 10% 50% 68% 2% 10% 50% 68%

Ağrı 1.084 0.549 0.210 0.151 0.279 0.152 0.065 0.049

Ardahan 1.249 0.624 0.222 0.155 0.308 0.153 0.060 0.044

Bingöl 2.873 1.606 0.644 0.423 0.802 0.421 0.155 0.095

Bitlis 1.192 0.613 0.243 0.176 0.311 0.172 0.076 0.055

Elazığ 1.747 0.920 0.346 0.230 0.502 0.260 0.098 0.064

Erzincan 2.709 1.434 0.497 0.333 0.832 0.413 0.133 0.085

Erzurum 2.181 1.134 0.350 0.226 0.564 0.294 0.102 0.066

Hakkari 1.484 0.749 0.268 0.183 0.362 0.180 0.066 0.046

Iğdır 1.157 0.571 0.206 0.144 0.280 0.147 0.060 0.043

Kars 0.895 0.449 0.171 0.123 0.238 0.129 0.056 0.042

Malatya 1.594 0.830 0.314 0.213 0.440 0.229 0.085 0.056

Muş 1.449 0.794 0.320 0.226 0.402 0.230 0.098 0.066

Tunceli 1.640 0.827 0.298 0.203 0.454 0.240 0.095 0.064

Van 1.267 0.639 0.227 0.159 0.312 0.163 0.066 0.048

Table 6. The comparison of spectral acceleration coefficients with different ground types. DD-2: the
earthquake ground motion level; ZA: soil type with solid hard rocks; ZE: soil type with loose sand,
gravel, or soft clay-solid clay layers.

DD-2 ZA ZE All Ground Types

Settlements
TBEC-2018 TBEC-2018 TSDC-2007

SDS 0.40SDS SDS 0.40SDS SDS 0.40SDS

Ağrı 0.439 0.176 0.890 0.356 0.75 0.3

Ardahan 0.499 0.200 0.937 0.3748 0.75 0.3

Bingöl 1.285 0.514 1.285 0.514 1 0.4

Bitlis 0.490 0.196 0.931 0.3724 1 0.4

Elazığ 0.736 0.294 1.071 0.4284 0.75 0.3

Erzincan 1.147 0.459 1.185 0.474 1 0.4

Erzurum 0.907 0.363 1.126 0.4504 0.75 0.3

Hakkari 0.599 0.240 0.975 0.39 1 0.4

Iğdır 0.457 0.183 0.906 0.3624 0.75 0.3

Kars 0.359 0.144 0.827 0.3308 0.75 0.3

Malatya 0.664 0.266 1.026 0.4104 1 0.4

Muş 0.635 0.254 1.004 0.4016 1 0.4

Tunceli 0.662 0.265 1.024 0.4096 0.75 0.3

Van 0.511 0.204 0.944 0.3776 0.75 0.3
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Generally, the seismicity characteristics include some parameters such as faults or
fault groups, the properties of the faults, the distance of structures from the fault, the
earthquake history of the region, and the properties of previous earthquakes. In addition
to these parameters, it is a well-known fact that local soil conditions directly affect the
seismic behavior of structures and also modify the reference seismic hazard coefficients
defined for the outcropping rock environment. Moreover, the building stock in the region
is particularly important in terms of the damage and loss of life that may occur as a result
of the earthquake.

The adobe stone masonry style is widely used and generally consists of 1–2 floors,
especially in rural areas in the Eastern Anatolian Region. Such masonry structures are
built by local craftsmen and workers using local materials without any engineering service.
The walls are used as carrier system elements, and they are built in a thick form in the
masonry building stocks. These buildings, which are easy to build from local materials,
are preferred due to economical reasons. Soil drips are generally used in the top covers of
such structures. Thus, the earthquake performances of these large masses are quite low.
The damages in these structures caused by earthquakes clearly reveal this situation in the
region. Most of the buildings in the region are built by medium-height reinforced concrete
(RC) structures together with the masonary structures. However, instead of these buildings,
high-rise RC buildings started to be used in recent years. Steel and prefabricated structures
are generally used in shopping malls and industrial structures.

The interaction between the seismicity characteristics and local soil conditions is used
for structural analysis. Earthquake design spectra obtained from different probabilities of
exceedances can be used in this analysis. Differences in the design spectra significantly
affect the target displacement in structural analysis. Structures which do not meet the
target displacement demands at high values are clearly distant from the true values for the
damage estimates and building performance. More accurate determination of the local soil
conditions and regional seismicity generally provides more realistic building designs and
assessments [71–73]. Ground motion amplification to account for local soil and site effects
is established through a constant soil factor, which uniformly increases the normalized
elastic response spectra in all periods [74].

In the previous seismic design code, soil classes and soil groups were expressed only
as local soil classes together with the updated code, and six different local soil classes were
expressed. Here, an average local soil type was selected as the ZC type given in TBEC-2018
(very dense sand, gravel, hard clay layers, or weathered rocks with many cracks) [31] to
make comparisons. The characteristics of this soil type (ZC) are given in Table 7.

Table 7. Local soil class type ZC [31].

Local Soil Class Soil Type
Upper Average at 30 m

(VS)30 (m/s) (N60)30
(Pulse/30 cm) (cu)30 (kPa)

ZC
Very tight sand, gravel, and

hard clay layers or weathered,
very cracked weak rocks

360–760 50 250

Local ground coefficients (Fs and F1) were used for the first time with the current code.
The local soil effect coefficient FS and local soil effect coefficient for a 1.0-s period (F1) for
the ZC soil type are given in Tables 8 and 9, respectively.

Table 8. Local soil coefficient FS for the short period zone for ZC [31].

Local Soil Class
Local Ground Effect Coefficients (Fs) for ZC Class

SS ≤ 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS = 1.25 SS ≥ 1.50

ZC 1.30 1.30 1.20 1.20 1.20 1.20
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Table 9. Local soil effect coefficients for class ZC (F1) [31].

Local Soil Class
Local Ground Effect Coefficients (F1) for 1.0 s Period

S1 ≤ 0.10 S1 = 0.20 S1 = 0.30 S1 = 0.40 S1 = 0.50 S1 ≥ 0.60

ZC 1.50 1.50 1.50 1.50 1.50 1.40

The horizontal and vertical elastic design spectra were obtained for various recurrence
periods in each province. Here, the amplification factor of the soil was assumed to be
constant (~1.5). However, soil nonlinearity plays an important role in defining soil factors,
especially in soft soils. The amplification of soft soils is higher than that of hard soils. The
soil type and soil nonlinearity affect the definition of seismic hazards and the response
of the structure [75]. The presence of soil nonlinearity highlights the inaccuracy of using
constant soil factors for sites with different seismic hazards [76]. Probabilistic seismic
hazard analyses are usually performed with quasi-experimental ground motion models
from global databases, where the average source, path, and site effects are valid for a
particular area of interest. The site-specific site response differs from the global average
based on the seismic velocity and basin depth field parameters used in ground motion
models [77]. The comparison of the horizontal and vertical elastic design spectra obtained
are shown in Figures 5 and 6, respectively. Unlike the previous seismic design code, vertical
elastic design spectra were used with a horizontal one in the updated code. Therefore, the
effects of the earthquake were considered in both directions.
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As mentioned before and seen from the design spectra, the Bingöl province has the
highest risk in the studied region. Thus, we compared the spectra with different proba-
bilities of exceedance in 50 years, which are defined in TBEC-2018 (Figure 7). Although
there were some differences in the spectral acceleration values, similar curve characteristics
were obtained for other provinces. The magnitude of the expected earthquake increased
when the probability of exceedance decreased. Figure 8 shows various probabilities of
exceedance in 50 years for the region obtained by using the PGA values.
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In the region, there are limited records for strong ground motion accelerations. Ad-
ditionally, there is no attenuation relationship specific to the region. Therefore, as seen
from Figure 9, we performed seismic hazard analysis for the Bingöl province using six
worldwide applicable empirical attenuation relationships [78–83]. The spectra curve ob-
tained by means of the updated code did not fit well with the other ones. However, it
did not reach the upper or lower bounds of the other curves for different probabilities
of exceedance. This finding clearly indicates that the attenuation relationship to be used
should be obtained from the studied region.
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5. Comparison of Structural Analyses under Different Earthquake Ground Motion Levels

We used Seismostruct software [84] to perform structural analysis with different prob-
abilities of exceedance for the Bingöl province. The structural elements were discretized
using beam–column models based on the fiber element approach [85]. Adaptive pushover
analysis applied in estimating the horizontal capacity of a structure was used, taking into
account the effect of the deformation and the frequency content of the input motion on
the dynamic response properties. Analyses were performed by considering the mode
shapes and participation factors obtained from the eigenvalue analyses in each step during
the adaptive pushover analysis [86–89]. We modeled an RC building with seven stories.
Additionally, the same structural characteristics for each probability of exceedance were
used. The ZC soil type was selected as local soil condition. The PGA value and design
spectrum obtained specifically for each earthquake ground motion level were selected
as the variables. The base shear forces, displacements, stiffness values, and limit states
were obtained. As the selected building model was symmetrical, analyses were carried
out in only one direction. The damping ratio and important class were set to 5% and IV,
respectively. The nonlinear concrete model [90] and steel model [91] were used for concrete
and steel material. Figure 10 shows the stress–strain relationship of the material models.
The blueprint of the sample model is given in Figure 11. The two- and three-dimensional
structural models and the applied loads to the building are shown in Figure 12. We used
incremental load values as the displacement load and a permanent load value of 5.00 kN.
The value of 0.42 m was selected for the target displacement. The story heights were 3 m in
the building.
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C25-S420 was selected as the material grade for the sample model. The transverse
reinforcements were set to φ10/10 in the columns and φ10/15 in the beams. The re-
inforcements used in all columns were selected to be 4φ20 in the corners, 4φ16 at the
top and bottom, and 4φ16 on the left and right sides. The reinforcements used in all
beams were selected to be 4φ16 at the lower end, 5φ18 at the upper end, 2φ12 at the sides,
4φ10 in the lower slab, and 6φ10 in the upper slab. Figure 13 shows the column and beam cross-
sections used in the sample model. The model was analyzed with horizontal design spectrum
curves obtained from different earthquake ground motion levels for the Bingöl province.
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While modeling the structural models, force-based plastic hinge frame members
(infrmFBPH) were used for the columns and beams. These element models distributed
inelasticity based on force and only constrained the plasticity to a finite length. The
ideal number of fibers in the cross-section should be sufficient to model the stress–strain
distribution in the cross-section [92]. One hundred fiber elements were defined for the
selected structural sections. This value was sufficient for such sections.

We obtained the displacements for three different points on the idealized curve. The
yield displacement (dy) was the first point. The intermediate displacement (dint) and
the target (or ultimate) displacement (dt) were the second and third points on the curve,
respectively. The elastic stiffness value (K_elas) and effective stiffness (K_eff) for each earth-
quake ground motion level were directly calculated via the stiffness reduction coefficients
predicted. The target displacements for damage estimation must be determined for the
performance limits of structural elements in performance-based earthquake engineering.
In this study, we used the limit states which are defined in Eurocode-8 (Part 3) [93,94].
Table 10 gives the limit states for damage estimation in this code. Typical pushover and
idealized curves as well as the calculated displacements are demonstrated in Figure 14.

Table 10. Limit states in Eurocode 8 (Part 3) [93,94].

Limit State Description Return Period
(Year)

Probability of Exceedance
(in 50 Years)

Limit state of damage
limitation (DL)

Only lightly damaged, damage to
non-structural components

economically repairable
225 0.20

Limit state of significant
damage (SD)

Significantly damaged, some residual
strength and stiffness, non-structural
components damaged, uneconomic

to repair

475 0.10

Limit state of near collapse
(NC)

Heavily damaged, very low residual
strength and stiffness, large

permanent drift but still standing
2475 0.02
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Table 11 shows all target displacements obtained in the X direction in the sample RC
building for all provinces in the region according to the last two seismic design codes. The
DD-2 ground motion level was selected for comparison with the previous code.

Table 11. Comparisons of target displacements.

Provinces Code
Target Displacements (m)

DL SD NC

Ağrı

TBEC-2018

0.106 0.137 0.237

Ardahan 0.122 0.157 0.272

Bingöl 0.298 0.382 0.662

Bitlis 0.118 0.152 0.263

Elazığ 0.176 0.225 0.390

Erzincan 0.270 0.347 0.601

Erzurum 0.217 0.278 0.482

Hakkari 0.145 0.186 0.322

Iğdır 0.111 0.143 0.248

Kars 0.089 0.114 0.197

Malatya 0.158 0.203 0.352

Muş 0.149 0.191 0.331

Tunceli 0.158 0.203 0.352

Van 0.123 0.158 0.274

Bingöl, Bitlis, Erzincan,
Hakkari, Malatya, Muş TSDC-2007 0.182 0.233 0.405

Ağrı, Ardahan, Elazığ,
Erzurum, Iğdır, Kars,

Tunceli, Van
TSDC-2007 0.136 0.175 0.303

The fundamental natural period could be obtained by using eigenvalue analysis [95,96].
Based on the eigenvalue analysis, the natural periods were obtained as 0.55 s for the sample
RC building. The same natural fundamental periods were obtained for all earthquake
ground motion levels. The base shear forces for the sample structural model for each
earthquake ground motion level were calculated. The comparison of the limit states of
performance assessment for different earthquake ground motion levels is demonstrated in
Figure 15. Table 12 lists all values obtained in the X direction.
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Table 12. Comparison of values obtained in the X direction for the sample building model for Bingöl.

Earthquake Ground
Motion Level

Base Shear Displacement K_elas K-eff DL SD NC

(kN) (m) (kN)/m (kN/m) (m) (m) (m)

DD-1 9197.2
0.1194

162,100.6 77,045.55 0.518 0.664 1.1520.2438
1.152

DD-2 9193.25
0.119

162,100.6 77,224.23 0.298 0.382 0.6620.2436
0.6624

DD-3 9183.68
0.1191

162,100.6 77,325.8 0.125 0.161 0.2780.2519
0.4229

DD-4 9174.91
0.1187

162,100.6 77,078.87 0.082 0.104 0.1810.2554
0.4221

Since the structural characteristics were the same, the base shear force, elastic, and
effective stiffness values were approximately equal to each other. The larger values of
the design spectra significantly increased the demand displacements expected from the
building. The increase in the PGA for each ground motion level was approximately
equal to the increase in the displacement values obtained for the performance levels. The
displacement values expected from the building increased depending on the magnitude of
the earthquake.

6. Conclusions

For assessing structural earthquake damage, developments in civil and earthquake
engineering technologies require continuous updating of seismic design codes and seismic
hazard maps. Both the codes and the seismic hazard maps were updated in 2018 in
Turkey. In this study, some innovations were examined in detail within the scope of the last
two codes, and comparisons were made. The Eastren Anatolian Region, which includes
14 provinces, is an excellent example due to its characteristics, such as its high seismicity,
especially with the latest signficant earthquakes (2011 Van and 2020 Elazığ (Sivrice)).
The region also experienced the 1939 Erzincan earthquake, which is the largest recorded
earthquake in Turkey. In this respect, this region is in a position worth examining in terms
of seismicity. It is well known that the seismic activity in Eastern Anatolia (Turkey) is very
high. Both the historical and instrumental period earthquake presence listed here also show
the high activity. Thus, it is of a great importance to perform seismic hazard estimation for
the region. The findings showed that the highest Mo distribution was concentrated between
the Van and Hakkari provinces. The fact that the recurrence periods of large earthquakes
were proportional to the energy they accumulate can be explained by the high released
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energy. Seismic hazard analyses were carried out using the updated earthquake hazard
map of Turkey considering all the provincial centers in the Eastern Anatolian Region. The
PGA and PGV values calculated for different probabilities of exceedance showed that the
Bingöl province had the highest earthquake generation potential, while the Kars province
had the lowest potential.

In the 2007 seismic code, in order to show the earthquake-prone areas, the country
was divided into subregions. The provinces of Bingöl, Bitlis, Erzincan, Hakkari, Malatya,
and Muş were classed as the first-degree earthquake hazardous region, which had the
highest risk in terms of earthquake occurrence, while the other provinces were classified
as the second-degree region. The most effective ground acceleration coefficient for the
first-degree region was 0.40 g, while it was 0.30 g for the second-degree region. However,
higher values were obtained via the updated code. The PGA values were calculated as
0.38–1.14 g for the probability of exceedance of 2%; 0.19–0.65 g for the 10% probability of
exceedance; 0.07–0.28 g for the 50% probability of exceedance; and 0.05–0.18 g for the 68%
probability of exceedance in 50 years for the provincial centers, according to the updated
seismic hazard map. These discrepancies were caused by seismicity elements specific to
the locations, the characteristics of fault or fault group, the distance from the fault or fault
groups, and the earthquake history of the region, which are used in the updated code.
Additionally, it is worth mentioning that calculation of the earthquake building parameters
with site-specific analyses is the most important benefit of the updated code. Therefore, the
behaviors of structures under an earthquake’s effects can be obtained more accurately.

Even in the same earthquake zone and same ground conditions, differences between
the current and previous methods were obtained for the spectral acceleration coefficients.
The design spectral acceleration coefficient (SDS) for the ZA local soil type was lower than
the previous code for the Ağrı, Ardahan, Bitlis, Elazığ, Hakkari, Iğdır, Kars, Malatya, Muş,
Tunceli, and Van provinces. Higher values were found for the Bingöl, Erzincan, and Erzurum
provinces than the previous one. In the ZE local soil class type, while lower values were
obtained in the Hakkari and Bitlis provinces, higher values were obtained for other provinces.
The percentages of change between TSDC-2007 and TBEC-2018 in the design spectral acceler-
ation coefficient (SDS) were 29% in Bingöl for the ZE local soil type for the short period and
50% for Erzurum. While the spectral acceleration values in the previous code were the same
for all soil classes in the same earthquake zones, they had different values for each local soil
class and each geographical location with the current seismic design code. The current code
takes into account both the local ground conditions and site-specific seismicity parameters.
This reveals the importance of site-specific earthquake parameters.

Structural analyses were performed using the same design spectrum curve for Bingöl,
Bitlis, Erzincan, Hakkari, Malatya, and Muş, which are in the first-degree earthquake
hazard zone, and Ağrı, Ardahan, Elazığ, Erzurum, Iğdır, Kars, Tunceli, and Van, which
are in the second-degree earthquake hazard zone in the previous hazard map. Therefore,
the obtained values took on the same values for these provinces in the same earthquake
hazard zone. Different results were obtained for all provinces in the region in the updated
code and seismic hazard map. The necessity of site-specific seismicity calculations emerged
once again. The target displacements were lower than the values predicted in TSDC-2007
for the Bitlis, Hakkari, Malatya, Muş, Ağrı, Ardahan, Iğdır, Kars and Van provinces. The
values obtained for Bingöl, Erzincan, Elazığ, Erzurum, and Tunceli were higher than the
values of TSDC-2007. The same target displacements were obtained in the same earthquake
hazard zone in the previous seismic hazard map. However, the values obtained through
the updated code were different for all of these provinces. As the PGA value increased,
the demands for target displacement expected from the structure also increased when the
ground motion increased, and more significant displacement of the structure was expected.

Four different earthquake ground motion levels were taken into account with TBEC-2018,
while only one earthquake ground motion level was taken into account in TSDC-2007.
Bingöl, which had the highest PGA value in the region, was chosen as an example in
order to reveal the effect of different earthquake ground motion levels on the building
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performance. For DD-1, which is the largest earthquake motion level, the expected target
displacement values from the structure took on the largest values. The target displacements
decreased as the earthquake repetition period decreased. The percentage of change in the
target displacement values from DD-1 to DD-2 for different earthquake ground motion
levels for the Bingöl province were 74% in DL, 74% in SD, and 74% in NC.
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