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Abstract: Malaria is one of the most infectious diseases in the world, particularly in developing
continents such as Africa and Asia. Due to the high number of cases and lack of sufficient diagnostic
facilities and experienced medical personnel, there is a need for advanced diagnostic procedures
to complement existing methods. For this reason, this study proposes the use of machine-learning
models to detect the malaria parasite in blood-smear images. Six different features—VGG16, VGG19,
ResNet50, ResNet101, DenseNet121, and DenseNet201 models—were extracted. Then Decision
Tree, Support Vector Machine, Naïve Bayes, and K-Nearest Neighbour classifiers were trained using
these six features. Extensive performance analysis is presented in terms of precision, recall, f-1score,
accuracy, and computational time. The results showed that automating the process can effectively
detect the malaria parasite in blood samples with an accuracy of over 94% with less complexity than
the previous approaches found in the literature.
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1. Introduction

Malaria is a disease caused by mosquitoes through bites by female Anopheles mosquitoes.
Different types of mosquito parasites infect humans because of these bites. These include
Plasmodium Ovale, Plasmodium malariae, Plasmodium vivax, and Plasmodium falci-
parum. The world malaria report in 2020 [1] showed that these parasites are responsible
for up to 229 million estimated cases of malaria and a total of 409,000 deaths worldwide.
Children aged under 5 are the most vulnerable group, accounting for 67% of global deaths
caused by malaria. Africa accounted for up to 94% of global cases, and six countries
accounted for approximately half of the global deaths caused by malaria: Nigeria (23%),
Burkina Faso (4%), Niger (4%), the Democratic Republic of Congo (11%), United Republic
of Tanzania (5%), and Mozambique (4%). Other locations affected more by malaria include
South-East Asia and the Eastern Mediterranean.

Despite all the efforts and financial resources put in place, e.g., more than USD
3 billion was accumulated for malaria control and elimination in 2019, of which a USD
900 million contribution came from malaria-endemic countries, the disease is still ravaging
and threatening lives.

Light microscopy using blood films is currently the most popular technique for diag-
nosing malaria [2]. Diagnosing malaria under a microscope is conducted by applying a
patient’s blood drop on a glass slide, and subsequently immersing it in a staining solution
to make the parasites visible. Thick and thin blood smears are prepared; thick smears
allow the parasite to be detected more efficiently than thin smears. Thin smears, on the
other hand, are not without advantages, since they allow the examiner to identify species
and recognise parasite stages easily [3]. Light microscopy requires no complex tools but
only human expertise which makes it cheaper, affordable, and readily available. However,
the biggest disadvantages of using this technique include the requirement for extensive
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training of personnel to equip them with necessary skills to become proficient slide readers.
Training and employing staff is highly expensive and involves a large volume of manual
work.

Therefore, this study proposes the use of a state-of-the-art automated technique to
detect malaria parasites in blood-smear images. Our contributions include the design of
automatic procedures using transfer learning to detect blood samples infected by malaria
parasites. Secondly, several deep-learning models were used for feature extraction and
four machine-learning algorithms for classification are comprehensively analysed. We also
provided an in-depth analysis of the computational complexity in each case.

The rest of the paper is organised as follows: Section 2 provides excerpts of related
literature, Section 3 provides a detailed description of the methodology, Section 4 provides
experimental results and discussion, and Section 5 provides the conclusion.

2. Literature Review

The latest trend that has boosted the performance of many non-medical domains is
the use of deep learning. Deep learning is an extension of a well-known multilayer neural
network that automatically learns complex data representations, also known as features.
However, deep-learning models, unlike humans, require a huge database of quality and
annotated data to learn and make an effective decision on future occurrences. This, perhaps,
is one of the reasons the medical domain has been unable to adopt the new technology
during its early proliferation because is harder to obtain annotated training sets and many
privacy concerns arise. Interestingly, the trained deep-learning models can be used to
solve problems in the different but similar applications via an approach known as transfer
learning. These trained deep-learning models are better known as pre-trained models,
which can be described as a model that has already learned to solve a similar problem as the
intended one. Transfer learning is one of the three ways to use deep-learning techniques.
Other techniques include training the deep-learning model from scratch and fine-tuning
the existing deep-learning models [4]. Examples of pre-trained deep-learning models
include the VGG16, VGG19, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet201,
AlexNet, and Xception models.

Deep learning has been applied in the medical field to address various problems
such as face recognition [5–7], effective classification of skin burns [8–12], and cancer
diagnosis [13–15], as well as in financial fraud detection [16,17]. Interestingly, a similar
approach was adopted recently to discriminate between blood-smear images that include
the Plasmodium parasite and those that do not.

In [18], the authors proposed the use of deep-learning techniques for the diagnosis
of malaria diseases. This was used basically to discriminate a blood-smear sample that
contains malaria and those samples that are negative. During the investigation, two well-
known approaches were used: training from scratch and transfer learning approaches
using 27,578 RGB images comprising infected and uninfected samples in the ratio 1:1. All
images were resized into 44 × 44 pixels. In the first approach, 16-layered Convolutional
Neural Network (CNN) architecture was used with 6 convolution layers and 3 fully
connected layers. The first and the second convolution layers had 32 filters each and they
were followed by the max-pooling layer. The third and the fourth convolution layers
had 64 filters each and were followed by the average pooling layer, and the fifth and
sixth convolution layers had 128 and 256 filters, respectively. Lastly, the architecture
of the CNN model was followed by three fully connected layers each with 256 feature
neurons. The model was trained with 90% of the images and tested using the remaining
10% of the unseen image samples, and achieved 97.37% accuracy. In the second approach,
a pre-trained CNN model (i.e., AlexNet) was used for feature extraction and SVM for
classification. This transfer learning approach achieved a 91.99% accuracy

In another development, a study by Huq, A., et al. [19] used 27,558 images that
consisted of 13,779 normal images and 13,779 malaria-infected images obtained from the
National Institute of Health. Though all the images were of variable sizes, and all have
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three channels, they were all rescaled to 224 × 224 to match the input shape of the VGG16
pre-trained model used. In addition, as part of the data preparation before the training,
the data were split into three: 70% of the data from each class was labeled as training data,
30% was for validation, and 10% was taken out of the training data as testing split. The
training data further shrank to 60%. Two experiments were conducted: a standard one
and adversarial pieces of training. In the standard training, original images were used,
and during testing, and thereafter, some adversarial images were introduced or added
into the testing images. The standard accuracy and adversarial accuracy achieved were
95.96% and 29.40% respectively, in which the study showed that the model was fooled by
the perturbation introduced. In the second phase of the training (i.e., adversarial training),
adversarial images were incorporated into the training dataset and the algorithm was
able to learn and classify adversarial images (testing split) more effectively, achieving
up to 93.38% accuracy, allowing the model to learn robustly and to stand against such
perturbation. It also achieved a 95.79% accuracy on standard images.

In a similar development, research by Rajaraman et al. [3] was conducted to classify
27,558 blood-smear images in which 13,779 contained malaria parasites and 13,779 were
uninfected using both deep learning from scratch and a transfer learning approach. A
CNN model trained from scratch contained 3 convolution layers with a max-pooling layer
after each layer, 2 FC layers, and ReLU activation. The CNN model had an input shape of
100 × 100 × 3 and all convolution layers had a filter size of 3 x 3. The second approach
of that study used a certain specific layer which according to the authors provides strong
discriminatory features. These pre-trained models included AlexNet, VGG16, ResNet50,
Xception, and DenseNet121, and the corresponding feature layers were fc6, block5_conv2,
res5c_branch2c, block14_sepconv1, and conv_16_x2, respectively. The results showed that
the trained CNN model achieved a classification accuracy of 92.7% and for the transfer
learning approach, ResNet50 achieved the best recognition accuracy of 95.9% with a
sensitivity of 94.7%.

Another study by Rajaraman et al. [20] proposed the use of ensemble learning using
three pre-trained models (VGG19, SqueezeNet, and InceptionResNet-V2) and a custom-
trained CNN model. Features of those four models were put together before final classi-
fication to discriminate images that are infected with the malaria parasite and those that
are healthy. In addition, the pre-trained models were also trained independently, and a
comparison was made. The result showed that VGG19 achieved a 99.32% accuracy with a
sensitivity of 99.31%, outperforming all other pre-trained models including the ensemble
method, which recorded an accuracy of 99.11% with a sensitivity of 98.94%

A study by Reddy et al. [21] used a pre-trained ResNet50 model to classify 27,558
blood-smear images for malaria detection. These images were evenly distributed into
infected and non-infected images. The approach in this study was the removal of the top-
most (classification) layer which was originally trained to classify 1000 classes of objects. In
the new scenario, a classification layer with 2 output neurons was added to solve the binary
problem, while the earlier (lower) layer of the ResNet50 was frozen allowing them only
to contribute features towards training the newly added layer at the top. The new model
was compiled and trained using Stochastic Gradient Descent and recorded a validation
accuracy of 95.4%.

Several pre-trained models—AlexNet, VGG16, NasNetMobile, Xception, Inception
and ResNet50—were also used for malaria parasite detection using blood-smear images by
Sriporn et al. [22]. A total of 7000 RGB blood-smear images comprising 4500 infected and
2500 uninfected were used in the study, and data augmentation was applied by rotating
images by 90, 180, and 270 degrees to increase the number of the samples while preserving
the detailed information. Two activation functions (ReLU and Mish), along with three
different optimizers (RMSprop, Nadam, and SGD), were tested with each model. The
results showed that the Xception model with the Nadam optimizer and Mish activation
function achieved the best detection accuracy of up to 98.8%.
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3. Materials and Method
3.1. Dataset

In this study, we used a subset of the archived blood-smear images from Chittagong
Medical Hospital, Bangladesh [3]. The dataset contains infected and uninfected erythrocyte
images evenly distributed into two classes. The samples of infected and uninfected images
are shown in Figure 1 below.
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Figure 1. Sample of blood-smear images.

3.2. Dataset Pre-Processing

The images were normalised corresponding to the actual input shape of each feature
extraction model, i.e., 224 × 224 × 3 for VGG16, VGG19, ResNet50, and ResNet101 pre-
trained CNN models. Additionally, for each DenseNet121 and DenseNet201 models, the
input shape is 224 × 224 × 3. All six pre-trained models were originally trained using
ImageNet database [23,24], recognising and classifying 1000 distinct object classes.

3.3. Feature Extraction

For each pre-trained CNN model, top-most classification layers were removed, the
remaining lower layers were retained and used only for feature extraction. Moreover, for
each of the pre-trained CNN models, classification algorithms were independently used to
replace the chopped top-most layers of the existing models.

3.4. Classification

Several classification algorithms can be used to classify whether a given blood-smeared
image contains a malaria parasite or the parasite is absent. Since we want to make a thor-
ough comparison with six different deep-learning features, four classification algorithms
were chosen based on performance and simplicity. These include Decision Tree (DT),
Support Vector Machines (SVM), Naïve Bayes (NB), and K-Nearest Neighbour (KNN).

DT is used for classification problems and has an interpretability advantage over other
classification algorithms [25]. It partitions data recursively into smaller subdivisions based
on a set of a test at each node in the tree [26]. It contains a root node formed from the entire
data set, with internal nodes or splits and the terminal nodes (also known as leaves). DT
has several other advantages such as the ability to handle nonlinear relationships between
feature representations, and it learns quickly [3]. SVM is one of the most popular supervised
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learning algorithms used for binary classification problems. It has been applied successfully
to various classification problems related to healthcare issues. [10,12]. SVM works by
iteratively segregating inputs into two by finding an optimum separating hyperplane
therefore producing a maximum separating distance (margin) between them. It is relatively
memory-efficient and it provides clear margin distance between the classes [4]. NB is used
to discriminate or classify different entities based on certain distinct features [27]. NB is
based on Bayes theorem P(A/B) = P(B/A)P(A)

P(B) , where probability of A can be obtained
given that B has occurred. KNN is a supervised machine-learning algorithm used for
solving both classification and regression problems. It works by looking at similar features
in the data presented by grouping those data points with similar features. Similar to the NB
classifier, it is computationally very fast in making decisions [5,28]. The choices of selection
of these classification algorithms can be attributed to their ability to work well even on
small datasets and are easy to implement.

For training, 70% of the features are reserved for training and the remaining 30% for
testing the trained classification algorithm. Machine-learning algorithms require lots of
data samples to learn from, to generalise effectively, hence the reason for assigning a high
proportion of the features for training. In addition, we applied 10-fold cross-validation on
the training data split to train each model. The final prediction accuracy of the models was
evaluated using the testing split. Figure 2 summarises the training process.
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Figure 2. The feature extraction and training process.

4. Results and Discussion

Table 1 presents the results using VGG16 features. It shows the accuracy of each
classification algorithm along with several performance evaluation measures, such as
precision, recall (sensitivity), f1-score, and training time. Precision (also known as positive
predictive value) represents a fraction of the relevant parasitic blood-smear images among
the retrieved instances. Precision is mathematically represented as TP

TP+FP , where TP stands
for true positive, and FP stands for false positive. Recall represents a fraction of relevant
retrieved instances from parasitic blood-smear image samples. Recall is mathematically
represented as TP

TP+FN , where FN stands for false negatives. F1-score is the harmonic mean
of precision and recall.
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Table 1. Classification results using VGG16 features.

Performance Evaluation MetricsClassification
Algorithms Precision Recall F1-Score Accuracy Time (s)

DT 0.8910 0.8933 0.8922 0.8924 3528.79

SVM 0.9426 0.9557 0.9491 0.9488 71,163.34

NB 0.6283 0.9647 0.7610 0.6970 23.01

KNN 0.8866 0.9649 0.9241 0.9207 9626.79

The result in Table 1 shows the performance outputs of all four classification algo-
rithms. These results were obtained from the VGG16 features. DT and SVM achieved
precision of 89.10% and 94.26%, recall of 89.11% and 95.57%, f1-score of 89.22% and 94.91%,
and accuracy of 89.24% and 94.88%, respectively. The precision for NB and KNN classifiers
is 62.83% and 88.66%, recall of 96.47% and 96.49%, f1-score of 76.10% and 92.41% and
accuracy of 69.70% and 92.07%, respectively

The result in Table 2 shows performance outputs of all the four classification algo-
rithms obtained from the VGG19 features. DT and SVM achieved precision of 86.06% and
93.84%, recall of 85.82% and 95.22%, f1-score of 85.94% and 94.52%, and accuracy of 85.94%
and 94.48%, respectively. The precision for NB and KNN classifiers are 60.26% and 85.71%,
recall of 96.64% and 95.15%, f1-score of 74.23% and 90.19% and accuracy of 66.46% and
89.64%, respectively.

Table 2. Classification results using VGG19 features.

Performance Evaluation MetricsClassification
Algorithms Precision Recall F1-Score Accuracy Time (s)

DT 0.8606 0.8582 0.8594 0.8594 2375.60

SVM 0.9384 0.9522 0.9452 0.9448 80,246.96

NB 0.6026 0.9664 0.7423 0.6646 23.64

KNN 0.8571 0.9515 0.9019 0.8964 9635.20

The result in Table 3 shows performance outputs of all the four classification algo-
rithms obtained from the ResNet50 features. DT and SVM achieved precision of 86.89%
and 94.22%, recall of 87.17% and 95.53%, f1-score of 87.03% and 94.87%, and accuracy of
87.05% and 94.84%, respectively. The precision for NB and KNN classifiers are 80.82% and
84.69%, recall of 87.67% and 94.76%, f1-score of 84.11% and 89.44% and accuracy of 83.43%
and 88.81%, respectively.

Table 3. Classification results using ResNet50 features.

Performance Evaluation MetricsClassification
Algorithms Precision Recall F1-Score Accuracy Time (s)

DT 0.8689 0.8717 0.8703 0.8705 2723.95

SVM 0.9422 0.9553 0.9487 0.9484 34,231.91

NB 0.8082 0.8767 0.8411 0.8343 11.90

KNN 0.8469 0.9476 0.8944 0.8881 5029.97

The result in Table 4 shows performance outputs of all the four classification algo-
rithms obtained from the ResNet101 features. DT and SVM achieved precision of 88.93%
and 94.11%, recall of 88.40% and 95.60%, f1-score of 88.45% and 94.85%, and accuracy of
88.48% and 94.81%, respectively. The precision for NB and KNN classifiers are 82.95% and
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83.11%, recall of 88.67% and 96.02%, f1-score of 85.72% and 89.10% and accuracy of 85.22%
and 88.25%, respectively.

Table 4. Classification results using ResNet101 features.

Performance Evaluation MetricsClassification
Algorithms Precision Recall F1-Score Accuracy Time (s)

DT 0.8893 0.8840 0.8845 0.8848 3315.88

SVM 0.9411 0.9560 0.9485 0.9481 30,682.47

NB 0.8295 0.8867 0.8572 0.8522 11.86

KNN 0.8311 0.9602 0.8910 0.8825 4988.34

The result in Table 5 shows performance outputs of all the four classification algo-
rithms obtained from the DenseNet121 features. DT and SVM achieved precision of 87.45%
and 92.55%, recall of 86.82% and 96.15%, f1-score of 87.13% and 94.32%, and accuracy of
87.08% and 94.21%, respectively. The precision for NB and KNN classifiers are 71.67% and
79.77%, recall of 73.79% and 89.27%, f1-score of 72.71% and 84.26% and accuracy of 72.31%
and 83.00%, respectively.

Table 5. Classification results using DenseNet121 Features.

Performance Evaluation MetricsClassification
Algorithms Precision Recall F1-Score Accuracy Time (s)

DT 0.8745 0.8682 0.8713 0.8708 1607.55

SVM 0.9255 0.9615 0.9432 0.9421 26,035.99

NB 0.7167 0.7379 0.7271 0.7231 6.91

KNN 0.7977 0.8927 0.8426 0.8300 2671.86

The result in Table 6 shows performance outputs of all the four classification algo-
rithms obtained from the DenseNet201 features. DT and SVM achieved precision of 86.60%
and 92.93%, recall of 86.14% and 95.99%, f1-score of 86.37% and 94.43%, and accuracy of
86.33% and 94.34%, respectively. The precision for NB and KNN classifiers are 68.05% and
77.95%, recall of 83.96% and 93.93%, f1-score of 75.17% and 85.20% and accuracy of 72.27%
and 83.68%, respectively.

Table 6. Classification results using DenseNet201 Features.

Performance Evaluation MetricsClassification
Algorithms Precision Recall F1-Score Accuracy Time (s)

DT 0.8660 0.8614 0.8637 0.8633 3612.66

SVM 0.9293 0.9599 0.9443 0.9434 50,593.37

NB 0.6805 0.8396 0.7517 0.7227 12.96

KNN 0.7795 0.9393 0.8520 0.8368 4246.80

Figure 3 depicts the comparison of each classification algorithm based on accuracy.
The SVM classifier performed effectively well than the rest of the algorithms and VGG16
features carry strong discriminatory information. In terms of computational efficiency, we
keep track of the training time of each classification algorithm in seconds. Tables 1–6 show
the respective training times using VGG16, VGG19, ResNet50, ResNet101, DenseNet121,
and DenseNet201 features, respectively.
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Figure 3. Comparison between the accuracy of each classifier and features.

Figure 4 shows that the SVM is computationally inefficient compared to the rest of
the classifiers during the training stage, while NB is more efficient computationally than
the rest of the classifiers. When we compare the NB training time, one will notice that it
is the poorest classification compared to the rest of the algorithms used in this study to
detect the malaria parasite in blood-smear samples. Moreover, VGG16 features provide
the best detection and classification accuracy with SVM of up to 94.88% but it took more
than 71163 s (19 h equivalent) to train. VGG19 features has not performed any better than
VGG16 features with SVM in terms of both accuracy and computational time. Both features
from VGG16 and VGG19 have 4096 feature vectors each. ResNet50 and ResNet101 have
2048 feature vectors each, and each performed better with SVM achieving classification
accuracy of up to 94.84% and 94.81%, respectively, and higher computational time with
ResNet50 features as seen in Figure 4. Lastly, DenseNet121 with 1024 feature vectors and
DenseNet201 with feature vectors yielded the best detection accuracy of 94.21% and 94.34%,
respectively along with SVM.
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Figure 4. Computational efficiency.

One notable thing we observe is that the accuracy is higher with an increased number
of feature vectors. Additionally, SVM produced outstanding results in each case, with a
slight fractional difference.
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Receiver Operating Characteristics (ROC) Curve

To further analyse the results obtained in this study, ROC curve is used. It has been
used widely as a tool for analysing overall test performance and for the comparison of the
discriminating ability of clinical tests [12,29]. It is based on the graphical curve plotting the
relationship between true positive rate and false positive rate over threshold points of a
test. The area under the ROC curve (AUC) summarises the overall performance estimate of
the test, where AUC value below 0.5 indicates poor diagnostic test, AUC = 0.5 is considered
same as random guesswork by an inexperience clinician, AUC > 0.5 indicates a good
diagnostic test, and AUC = 1 stands for perfect diagnostic test.

Figure 5 shows ROC curves of all the four classification algorithms using VGG16
features. All four classification algorithms produced impressive results, outperforming
random guess with SVM achieving an almost perfect diagnostic test. The ROC curve
depicted in Figure 6 was generated using VGG19 features, with SVM outperforming all the
other classifiers.
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Figures 7 and 8 are the ROC curves using ResNet50 and ResNet1010 features, respec-
tively. With ResNet50 features, SVM achieved an AUC of 0.985 and with ResNet101, the
AUC is 0.987
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5. Conclusions

In this study, we presented a comprehensive investigation using state-of-the-art algo-
rithms to effectively detect malaria parasites in blood-smear samples. We took advantage
of existing pre-trained models to extract useful discriminatory features from the dataset
images and subsequently used machine-learning algorithms to classify each sample to
know whether a patient with a given blood sample is infected or not.

The result shows feasibility of using machine learning to detect malaria parasites in
blood samples with accuracy of over 94%.

However, the dataset may contain parasites other than malaria. As such, this a
limitation that is worth investigating in the future in addition to detecting each parasite
(i.e., Plasmodium Ovale, Plasmodium malariae, Plasmodium vivax, and Plasmodium
falciparum).
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