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Abstract: In this article, the parabolic dense fuzzy set is defined, and its basic arithmetic operations
are studied with graphical illustration. The lock set concept is incorporated in a parabolic dense
fuzzy set. Then, it is applied to the problems of fishery culture via the modeling of an economic order
quantity model. Here, the fingerlings are fed to reach the ideal size to fulfill the customer’s demand.
The growth rate of the fingerlings is assumed as a linear function. After the sales of all fish, the pond
is cleaned properly for a new cycle. Here, the model is solved in a crisp sense first. Then, we fuzzify
the model considering the demand rate as a parabolic dense lock fuzzy number and obtain the result
in a fuzzy environment. The main aim of our study was to find the quantity of the ordering items
such that the total inventory cost gets a minimum value. Lastly, sensitivity analysis and graphical
illustrations were added for better justification of our model.

Keywords: inventory management; growing items; parabolic dense fuzzy number; arithmetic
operations; fishery; optimization

1. Introduction
1.1. Literature Review on Dense Fuzzy Sets

Zadeh [1] first observed that there is nonrandom uncertainty behind every fact in real-
ity. This type of uncertainty occurs not only in mathematics but also in any other research
field. He handled this type of uncertainty by introducing a fuzzy set concept where each el-
ement of a set has a membership value. After that, Bellman and Zadeh [2] utilized this new
concept in decision-making problems of operations research. Dubois and Prade [3] defined
for the first time some arithmetic operations over fuzzy numbers. Then, Atanassov [4]
developed the intuitionistic fuzzy set concept where each set element contains membership
and non-membership values. The summation of membership and non-membership values
always lies between zero and one. In 1985, Kaufmann and Gupta [5] introduced some
fuzzy arithmetic theory and its applications. Chutia et al. [6] defined an alternative method
for finding the membership value of each element in a fuzzy set. Learning experiences play
a crucial role in every inventory management problem. However, most researchers did
not consider this theory for simplification of inventory problems. In 2016, De and Beg [7]
defined a new type of fuzzy set, namely, the dense fuzzy set, by incorporating learning
experiences in a general fuzzy set. Here, all the fuzzy set components are considered a
sequence of functions that converge to a crisp value for approaching learning experiences
to infinity. They also defined a new defuzzification method of triangular dense fuzzy sets.
After that, De and Mahata [8] introduced the concept of a cloudy fuzzy number where each
component is a function of time t and, after infinity time, each component converges to
a crisp value. They used the cloudy fuzzy set concept to optimize a backorder economic
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order quantity (EOQ) model. In our real-life problems, we see that every decision maker
established some strategies for optimizing their profit. Keeping this in mind, De [9] first
defined the dense fuzzy lock set concept where the lock means the strategy taken by the
decision maker. This concept is much more helpful for any decision maker to optimize
the inventory profit. Faritha [10] studied parabolic fuzzy numbers for optimizing a backo-
rder EOQ model using the nearest interval approximation. Garg [11] defined some basic
arithmetic operations over generalized parabolic fuzzy numbers utilizing the concept of
the distribution function. Maity et al. [12] gave a comparative study among triangular,
trapezoidal, pentagonal, hexagonal, and nonlinear heptagonal dense fuzzy sets using an
application in inventory problems. Maity et al. [13] also studied cloud-type nonlinear
intuitionistic dense fuzzy sets and their application in inventory control problems.

1.2. Literature Review on Inventory Models

Harris [14] first proposed the EOQ inventory model. In this model, he minimized
the total inventory cost, including the ordering cost and holding cost. After that, several
researchers produced many research articles on inventory problems. All of them considered
the demand rate as a deterministic one. For the first time, Karlin [15] found uncertainty
in one-stage inventory problems. Today, modern researchers have shown interest in
solving inventory problems in uncertain environments. De [16] studied an EOQ model
considering the daytime nonrandom fuzzy demand rate. Das et al. [17] used a step order
fuzzy approach for solving an EOQ model. He regarded it as uncertain daytime demand,
where demand in the backorder period depends on time. De et al. [18] developed an
EOQ model with selling price and promotional efforts depending on demand rate. They
optimized the model using the intuitionistic fuzzy technique. Kazemi et al. [19] introduced
the learning effect concept for solving an EOQ model for imperfect quality items. In 2016,
De and Sana [20] studied an EPQ model with uncertain lead time and demand rate. They
considered all parameters of the intuitionistic fuzzy number and used the intuitionistic
fuzzy aggregation Bonferroni mean for defuzzification of the model. Karmakar et al. [21,22]
considered an EPQ model and used the dense fuzzy lock set concept to reduce pollution
by reusing waste items of the sponge iron industry. Maity et al. [23] developed an EOQ
model with dense fuzzy demand rate where two decision makers make a single decision
to optimize the model. Maity et al. [24] studied an EOQ model under daytime uncertain
demand rate. They introduced a computer-based algorithm and flowchart to optimize
the model by updating key vectors automatically. De and Mahata [25] considered and
EOQ model of imperfect-quality items with considerable discounts. They optimized the
model using cloudy fuzzy numbers. Liang and Wang [26] presented an integrated decision
support model for customers to buy their desired products online. Nobil et al. [27] studied
a generalized EOQ model for growing items where the size and weight of the items increase
over time. He also gave a case study of a poultry farm. Rezaei [28] developed an EOQ
model for growing items for fish farming and poultry industries. In these inventories, the
items increase during the shortage period. Zhang et al. [29] introduced an inventory model
of growing items and added a constraint of carbon emissions. De et al. [30] incorporated
the carbon emission issue into an EOQ model of deteriorating items under a volumetric
fuzzy system. He developed a methodology for optimizing the inventory profit function.
Mahata et al. [31] studied a three-echelon supply chain model in an imperfect production
system. In this model, they considered inspection error, learning effect, and return policy
under a fuzzy system.

1.3. Motivation and Specific Study

To find the novelty of this article, we have to find the research gap first. The research
gaps in some recent major studies are given in Table 1.
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Table 1. Literature review of recent major studies of growing items.

Authors
Product

Demand
Matter of

Growing Items Solution Approach
Conventional Items Growing Items

Harris [14]
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This Paper  ✓ Fuzzy (PDFS 
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New solution algorithm via new 

defuzzification methods 

From the above literature review of fuzzy sets, we can see that none of the researchers 
defined the parabolic dense fuzzy lock set concept. To avoid complexity, most researchers 
considered linear membership function. However, in real life, this does not always hap-
pen. In PDFLS, we incorporate the learning experience and the nonlinearity concept. The 
PDFLS concept may be used for not only inventory problems but also any research prob-
lem where we use a fuzzy environment. Table 1 shows that many researchers studied 
growing items but none of them considered the demand rate or any other parameters as 
a fuzzy number. However, we all know that fuzziness plays a vital role in any inventory 
management problem. Recently, Choudhury and Mahata [37] developed a two-echelon 
supply chain model of growing items. De-la-Cruz-Márquez et al. [38] studied an inven-
tory model for growing items. Here, the demand rate was price-sensitive under carbon 
emissions. After that, several researchers (Gharaei and Almehdawe [39], Mittal and 
Sharma [40], and Alfares and Afzal [35]) discussed inventory models of growing items in 
a crisp environment. None of them considered fuzziness in their models. In this article, 
we describe the parabolic dense fuzzy number with its some basic arithmetic operations. 
Then, we define a parabolic dense fuzzy lock set. In this study, we also consider an EOQ 
model of growing items. Here, we mainly study the fishery culture using an EOQ model. 
We solve the EOQ model in a crisp sense first. Then, we consider the demand rate as a 
parabolic dense fuzzy lock number and solve the corresponding fuzzy model. A compar-
ative study with some existing fuzzy environments is also presented, taking the numerical 
result from LINGO 18.0 software. Lastly, a sensitivity analysis and graphical illustration 
are included for better justification of the model.  

This paper is arranged as follows: in Section 2, some preliminary definitions are 
given. In Section 3, some basic arithmetic definitions of PDFN are presented. The crisp 
mathematical model is developed in Section 4. In Section 5, the corresponding fuzzy math-
ematical model is solved. A real case study with the numerical result and sensitivity anal-
ysis of the proposed problem is given in Section 6. Section 7 contains the graphical illus-
tration of the proposed model. Lastly, an embracing conclusion is given in Section 8. 
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Fuzzy (PDFS
and PDFLS) Fishery

New solution algorithm
via new defuzzification

methods

From the above literature review of fuzzy sets, we can see that none of the researchers
defined the parabolic dense fuzzy lock set concept. To avoid complexity, most researchers
considered linear membership function. However, in real life, this does not always happen.
In PDFLS, we incorporate the learning experience and the nonlinearity concept. The PDFLS
concept may be used for not only inventory problems but also any research problem where
we use a fuzzy environment. Table 1 shows that many researchers studied growing items
but none of them considered the demand rate or any other parameters as a fuzzy number.
However, we all know that fuzziness plays a vital role in any inventory management
problem. Recently, Choudhury and Mahata [37] developed a two-echelon supply chain
model of growing items. De-la-Cruz-Márquez et al. [38] studied an inventory model for
growing items. Here, the demand rate was price-sensitive under carbon emissions. After
that, several researchers (Gharaei and Almehdawe [39], Mittal and Sharma [40], and Alfares
and Afzal [35]) discussed inventory models of growing items in a crisp environment. None
of them considered fuzziness in their models. In this article, we describe the parabolic
dense fuzzy number with its some basic arithmetic operations. Then, we define a parabolic
dense fuzzy lock set. In this study, we also consider an EOQ model of growing items. Here,
we mainly study the fishery culture using an EOQ model. We solve the EOQ model in a
crisp sense first. Then, we consider the demand rate as a parabolic dense fuzzy lock number
and solve the corresponding fuzzy model. A comparative study with some existing fuzzy
environments is also presented, taking the numerical result from LINGO 18.0 software.
Lastly, a sensitivity analysis and graphical illustration are included for better justification
of the model.

This paper is arranged as follows: in Section 2, some preliminary definitions are
given. In Section 3, some basic arithmetic definitions of PDFN are presented. The crisp
mathematical model is developed in Section 4. In Section 5, the corresponding fuzzy
mathematical model is solved. A real case study with the numerical result and sensitivity
analysis of the proposed problem is given in Section 6. Section 7 contains the graphical
illustration of the proposed model. Lastly, an embracing conclusion is given in Section 8.
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2. Preliminaries

Definition 1. Dense fuzzy number (De and Beg [7]). Let B̃ = bn, bn−1, . . . , b1, b, b′1, . . . , b′n−1, b′n
be a 2n + 1 tuple fuzzy number whose components are bn = bgn, bn−1 = bgn−1, . . . , b1 =
bg1, b′1 = b f1, . . . , b′n−1 = b fn−1, b′n = b fn, where fi and gi are Cauchy sequences. If the
components fi and gi converge to 1 as n→ ∞ , then the fuzzy number B̃ will also converge
to b. Then, the fuzzy number B̃ = bn, bn−1, . . . , b1, b, b′1, . . . , b′n−1, b′n will be called a dense
fuzzy number.

Example 1. If B̃ = 〈b
(
1− ρ

1+n
)
, b, b

(
1 + σ

1+n
)
〉 is a triangular dense fuzzy number. Then, the

membership function of B̃ is given by

µ(y, n) =


y−b(1− ρ

1+n )
d1ρ
1+n

, f or b
(
1− ρ

1+n
)
≤ y ≤ b

b(1+ σ
1+n )−y
d1σ
1+n

, f or b ≤ y ≤ b
(
1 + σ

1+n
)

0 , f or y < b
(
1− ρ

1+n
)

or b
(
1 + σ

1+n
)
< y

(1)

Here, ρ and σ are fuzzy deviation parameters. The values of ρ and σ lie within (0, 1). When
the values of ρ and σ become zero, then the triangular fuzzy number is converted to a crisp number.
Two-dimensional and three-dimensional graphs of the membership function of a triangular dense
fuzzy number are given in Figure 1a,b, respectively. In Figure 1b, the arrow sign indicates the
convergence of triangular dense fuzzy numbers.
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Figure 1. (a). Graph of membership function of triangular dense fuzzy number against learning frequency; (b) graph of
membership function of triangular dense fuzzy number against learning frequency.

Definition 2. Parabolic fuzzy number (PFN). Garg and Ansha [11] first defined arithmetic
operations on parabolic fuzzy numbers. Let B̃ = b(1− ρ), b, b(1 + σ) be a parabolic fuzzy number
whose membership function is given by

µB(y) =


{

y−b(1−ρ)
bρ

}2
, f or b(1− ρ) ≤ y ≤ b{

b(1+σ)−y
bσ

}2
, f or b ≤ y ≤ b(1 + σ)

0 , f or y < b(1− ρ) or b(1 + σ) < y

(2)

Here, ρ and σ are fuzzy deviation parameters. The values of ρ and σ lie within (0, 1).
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Definition 3. Parabolic dense fuzzy number (PDFN). The general form of a triangular parabolic
dense fuzzy number is defined as Ã = 〈a

(
1− ρ

1+n
)
, a, a

(
1 + σ

1+n
)
〉 associated with the member-

ship function

µ
(

Ã
)
=



{
x−a(1− ρ

1+n )
aρ

1+n

}2
, f or a

(
1− ρ

1+n
)
≤ x ≤ a{

a(1+ σ
1+n )−x
aσ

1+n

}2
, f or a ≤ x ≤ a

(
1 + σ

1+n
)

0, f or x < a
(
1− ρ

1+n
)

or a
(
1 + σ

1+n
)
< x

(3)

Here, the values of fuzzy deviation parameters ρ and σ lie within (0, 1). The plot of a triangular
parabolic dense fuzzy number is given in Figure 2. This figure shows the variation in membership
function with respect to learning experience.
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Definition 4. Parabolic dense fuzzy lock set (PDFLS). Let B̃ = 〈b(1− ρun), b, b(1 + σvn)〉 f or
0 < ρ, σ < 1 be a fuzzy set, where un and vn are Cauchy sequences. If the sequences un and vn
converge to 1

l1
and 1

l2
; 0 6= l1, l2 ∈ R, respectively, then the fuzzy set is called PDFLS and its

membership function is given by

µ
(

B̃
)
=


{

x−b(1−ρun)
bρun

}2
, f or b(1− ρun) ≤ x ≤ b{

b(1+σvn)−x
bσvn

}2
, f or b ≤ x ≤ b(1 + σvn)

0, f or x < b(1− ρun) or b(1 + σvn) < x

(4)

Defuzzification formula of PDFLS. Let Ã = 〈a
(
1− ρ

1+n
)
, a, a

(
1 + σ

1+n
)
〉 be a PDFLS with

the membership function given in Equation (4). Then, utilizing the left and right α-cuts of the
PDFLS, we define the new defuzzified index value as follows:

I
(

Ã
)
=

1
2N

N

∑
n=1

1∫
α=0

(
µA

L + µA
R

)
dα, (5)

where µA
L and µA

R are left and right α-cuts, respectively.

3. Arithmetic Operation over Parabolic Dense Fuzzy Numbers

Let Ã = 〈a
(
1− ρ

1+n
)
, a, a

(
1 + σ

1+n
)
〉 and B̃ = 〈b

(
1− ρ′

1+n

)
, b, b

(
1 + σ′

1+n

)
〉 be two

parabolic dense fuzzy numbers whose membership functions are given by
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µÃ(x) =



{
x−a(1− ρ

1+n )
aρ

1+n

}2
, f or a

(
1− ρ

1+n
)
≤ x ≤ a{

a(1+ σ
1+n )−x
aσ

1+n

}2
, f or a ≤ x ≤ a

(
1 + σ

1+n
)

0, f or x < a
(
1− ρ

1+n
)

or a
(
1 + σ

1+n
)
< x

(6)

and

µB̃(y) =



 y−b
(

1− ρ′
1+n

)
bρ′

1+n


2

, f or b
(

1− ρ′

1+n

)
≤ y ≤ b{

b
(

1+ σ′
1+n

)
−y

bσ′
1+n

}2

, f or b ≤ y ≤ b
(

1 + σ′
1+n

)
0, f or y < b

(
1− ρ′

1+n

)
or b

(
1 + σ′

1+n

)
< y

(7)

Here , σ, ρ′, and σ′ are fuzzy deviation parameters. The values of all the fuzzy
deviation parameters lie within (0, 1). Now, we define some basic arithmetic operations
over parabolic dense fuzzy numbers according to the extension of Garg and Ansha [11], as
given below.

(i) Addition of Two Parabolic Dense Fuzzy Numbers

Let us consider two parabolic dense fuzzy numbers Ã and B̃ whose membership
functions are given in Equations (6) and (7). Then, the addition of these two fuzzy numbers,
i.e., the fuzzy variable C̃ = Ã + B̃, is also a parabolic dense fuzzy number, and the
corresponding membership function is given by

µC̃(z) =



 z−a(1− ρ
1+n )−b

(
1− ρ′

1+n

)
aρ

1+n +
bρ′

1+n


2

, f or a
(
1− ρ

1+n
)
+ b
(

1− ρ′

1+n

)
≤ z ≤ a + b{

a(1+ σ
1+n )+b

(
1+ σ′

1+n

)
−z

aσ
1+n +

bσ′
1+n

}2

, f or a + b ≤ z ≤ a
(
1 + σ

1+n
)
+ b
(

1 + σ′
1+n

)
0 , f or z< a

(
1− ρ

1+n
)
+ b
(

1− ρ′

1+n

)
or z >a

(
1 + σ

1+n
)
+ b
(

1 + σ′
1+n

)
(8)

Graphically, the addition of two PDFNs is given in Figure 3.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 7 of 22 
 

 

𝜇஼ ෩ (𝑧) =
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧൞𝑧 − 𝑎 ቀ1 − 𝜌1 + 𝑛ቁ − 𝑏 ൬1 − 𝜌ᇱ1 + 𝑛൰𝑎𝜌1 + 𝑛 + 𝑏𝜌ᇱ1 + 𝑛 ൢଶ , 𝑓𝑜𝑟 𝑎 ቀ1 − 𝜌1 + 𝑛ቁ + 𝑏 ቆ1 − 𝜌ᇱ1 + 𝑛ቇ ≤ 𝑧 ≤ 𝑎 + 𝑏

൞𝑎 ቀ1 + 𝜎1 + 𝑛ቁ + 𝑏 ൬1 + 𝜎ᇱ1 + 𝑛൰ − 𝑧𝑎𝜎1 + 𝑛 + 𝑏𝜎ᇱ1 + 𝑛 ൢଶ , 𝑓𝑜𝑟 𝑎 + 𝑏 ≤ 𝑧 ≤ 𝑎 ቀ1 + 𝜎1 + 𝑛ቁ + 𝑏 ቆ1 + 𝜎ᇱ1 + 𝑛ቇ
0 , 𝑓𝑜𝑟 𝑧 <  𝑎 ቀ1 − 𝜌1 + 𝑛ቁ + 𝑏 ቆ1 − 𝜌ᇱ1 + 𝑛ቇ  𝑜𝑟 𝑧 > 𝑎 ቀ1 + 𝜎1 + 𝑛ቁ + 𝑏 ቆ1 + 𝜎ᇱ1 + 𝑛ቇ

  (8)

Graphically, the addition of two PDFNs is given in Figure 3. 

 
Figure 3. Addition of two parabolic dense fuzzy numbers. 

(ii) Subtraction of Two Parabolic Dense Fuzzy Numbers 
Let us consider two parabolic dense fuzzy numbers 𝐴 ෩  and 𝐵෨  whose membership 

functions are given in Equations (6) and (7). Then, the subtraction of these two fuzzy num-
bers, i.e., the fuzzy variable 𝐶ሚ = 𝐴 ෩ − 𝐵෨, is also a parabolic dense fuzzy number, and the 
corresponding membership function is given by  

𝜇஼ ෩ (𝑧) =
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧ ൞𝑧 − 𝑎 ቀ1 − 𝜌1 + 𝑛ቁ + 𝑏 ൬1 + 𝜎ᇱ1 + 𝑛൰𝑎𝜌1 + 𝑛 + 𝑏𝜎ᇱ1 + 𝑛 ൢଶ , 𝑓𝑜𝑟 𝑎 ቀ1 − 𝜌1 + 𝑛ቁ − 𝑏 ቆ1 + 𝜎ᇱ1 + 𝑛ቇ ≤ 𝑧 ≤ 𝑎 − 𝑏

൞𝑎 ቀ1 + 𝜎1 + 𝑛ቁ − 𝑏 ൬1 − 𝜌ᇱ1 + 𝑛൰ − 𝑧𝑎𝜎1 + 𝑛 + 𝑏𝜌ᇱ1 + 𝑛 ൢଶ , 𝑓𝑜𝑟 𝑎 − 𝑏 ≤ 𝑧 ≤ 𝑎 ቀ1 + 𝜎1 + 𝑛ቁ − 𝑏 ቆ1 − 𝜌ᇱ1 + 𝑛ቇ
0, 𝑓𝑜𝑟 𝑧 < 𝑎 ቀ1 − 𝜌1 + 𝑛ቁ − 𝑏 ቆ1 + 𝜎ᇱ1 + 𝑛ቇ  𝑜𝑟 𝑧 > 𝑎 ቀ1 + 𝜎1 + 𝑛ቁ − 𝑏 ቆ1 − 𝜌ᇱ1 + 𝑛ቇ

.  (9)

Graphically, the subtraction of two PDFNs is given in Figure 4. 

Figure 3. Addition of two parabolic dense fuzzy numbers.

(ii) Subtraction of Two Parabolic Dense Fuzzy Numbers

Let us consider two parabolic dense fuzzy numbers Ã and B̃ whose membership
functions are given in Equations (6) and (7). Then, the subtraction of these two fuzzy
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numbers, i.e., the fuzzy variable C̃ = Ã − B̃, is also a parabolic dense fuzzy number, and
the corresponding membership function is given by

µC̃(z) =



{
z−a(1− ρ

1+n )+b
(

1+ σ′
1+n

)
aρ

1+n +
bσ′
1+n

}2

, f or a
(
1− ρ

1+n
)
− b
(

1 + σ′
1+n

)
≤ z ≤ a− b a(1+ σ

1+n )−b
(

1− ρ′
1+n

)
−z

aσ
1+n +

bρ′
1+n


2

, f or a− b ≤ z ≤ a
(
1 + σ

1+n
)
− b
(

1− ρ′

1+n

)
0, f or z< a

(
1− ρ

1+n
)
− b
(

1 + σ′
1+n

)
or z >a

(
1 + σ

1+n
)
− b
(

1− ρ′

1+n

)
(9)

Graphically, the subtraction of two PDFNs is given in Figure 4.
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(iii) Scalar multiplication of Parabolic Dense Fuzzy Numbers

Let Ã = a
(
1− ρ

1+n
)
, a, a

(
1 + σ

1+n
)

be a PDFN with the membership function given in
Equation (6) and z = kx be the transformation; then, kÃ is also a PDFN given by

kÃ =

{
〈ka
(
1− ρ

1+n
)
, ka, ka

(
1 + σ

1+n
)
〉 i f k > 0

〈ka
(
1 + σ

1+n
)
, ka, ka

(
1− ρ

1+n
)
〉 i f k < 0

(10)

Graphically, the scalar multiplication of two PDFNs is given in Figure 5.
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(iv) Multiplication of Two Parabolic Dense Fuzzy Numbers

Let us consider two parabolic dense fuzzy numbers Ã and B̃ whose membership
functions are given in Equations (6) and (7). Then, the multiplication of these two fuzzy
numbers, i.e., the fuzzy variable C̃ = Ã ·B̃, is also a PDFN and the corresponding member-
ship function is given by

µÃ .B̃ (z) =



{
−Q1+

√
Q2

1−4P1(R1−z)
2P1

}2
, f or a

(
1− ρ

1+n
)
b
(

1− ρ′

1+n

)
≤ z ≤ ab{

−Q2+
√

Q2
2−4P2(R2−z)
2P2

}2
, f or ab ≤ z ≤ a

(
1 + σ

1+n
)
b
(

1 + σ′
1+n

)
0, f or z< a

(
1− ρ

1+n
)
b
(

1− ρ′

1+n

)
or z >a

(
1 + σ

1+n
)
b
(

1 + σ′
1+n

) (11)

where P1 = abρρ1

(1+n)2 , Q1 = ab
1+n

[(
1− ρ

1+n
)
ρ′ +

(
1− ρ′

1+n

)
ρ
]
, R1 = ab

(
1− ρ

1+n
)(

1− ρ′

1+n

)
,

P2 = abσσ1

(1+n)2 , Q2 = − ab
1+n

[(
1 + σ

1+n
)
σ′ +

(
1 + σ′

1+n

)
σ
]
, and R2 = ab

(
1 + σ

1+n
)(

1 + σ′
1+n

)
.

Graphically, the multiplication of two PDFNs is given in Figure 6.
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(v) Inverse of a Parabolic Dense Fuzzy Number

Let Ã be a parabolic dense fuzzy number whose membership function is given in
Equation (6). Then, the inverse of Ã , i.e., Ã−1 = 〈a−1(1 + σ

1+n
)−1, a−1, a−1(1− ρ

1+n
)−1〉,

is also a parabolic dense fuzzy number whose membership function is

µÃ−1(z) =



{
za(1+ σ

1+n )−1
zaσ
1+n

}2
, f or a−1(1− σ

1+n
)−1 ≤ z ≤ a−1{

1−a(1+ ρ
1+n )z

zaρ
1+n

}2
, f or a−1 ≤ z ≤ a−1(1 + ρ

1+n
)−1

0 , f or z< a−1(1− σ
1+n

)−1 or z >a−1(1 + ρ
1+n

)−1

(12)

4. Formulation of Crisp Model

Here, we considered an inventory system of fishery culture. The fishery culture in a
lake was mainly assumed for our proposed model. Here, for simplification of our study, all
stages of fishery culture were not considered. We considered only from the stage where
the fingerlings are brought from the market and fed to reach the ideal size for customer
demand. Additional assumptions of the proposed model are given below.
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(i) We considered an additional cost for feeding the growing items.
(ii) Feeding cost depended on the weight of the items.
(iii) The growth function was approximated by a linear function.
(iv) We considered an idle cost for the growth period and cleaning period.

A schematic overview of the proposed model is given in Figure 7.
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In Figure 8, y is the number of purchased items and g is the growth rate per fish per
unit time. The initial approximate weight of each fingerling is v0 and final approximate
weight (at the time of selling) of each fish is v1. At the beginning, t1 is the time required to
clean the pond, and then the fingerlings are grown up during the time t2. After that, the
fish are sold on the market during time t3. According to this consideration, the following
equations are obtained:

The total initial weight of fingerlings is q0 = yv0. (13)

The total final weight of the fishes isq1 = yv1. (14)

t2 =
q1 − q0

yg
=

v1 − v0

g
. (15)

t3 =
q1

d
=

yv1

d
. (16)

Cycle time T = t1 + t2 + t3. (17)
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The main objective of this proposed model is to minimize the total cost (Z) per cycle,
which includes the purchasing cost, holding cost, food procurement cost (FPC), operational
cost (OC), and natural idle cost (NIC).

Z = purchasing cos t + holding cos t + food procurement cos t + operational cos t + natural idle cos t, (18)

where purchasing cost = syv0 = sv0dt3
v1

, holding cost = c2T, food procurement cost =
f t2(q1−q0)

2 = f dt3(v1−v0)
2

2gv1
, natural idle cos t = nc(t1 + t2), and operational cos t = B.

Putting these cost values into Equation (18) yields the total inventory cost per cycle
as follows:

Z = sv0dt3
v1

+ c2T + f dt3(v1−v0)
2

2gv1
+ nc(t1 + t2) + B,

= d
{

sv0t3
v1

+ f t3(v1−v0)
2

2gv1

}
+ {c2T + nc(t1 + t2) + B},

= dϕ + ψ,

(19)

where, {
ϕ = sv0t3

v1
+ f t3(v1−v0)

2

2gv1

ψ = c2T + nc(t1 + t2) + B
(20)

Thus, the crisp problem is given by

Minimize Z = dϕ + ψ, (21)

subject to the conditions in Equations (13)–(17) and (20).

5. Fuzzy Mathematical Model

We know that the demand rate is a crucial part of any inventory problem, and it
does not remain constant every time. Thus, we considered the demand rate as flexible
throughout the proposed model, where it could be assumed as a parabolic dense fuzzy set.
Hence, the objective function of the crisp model becomes

Z̃ = d̃ϕ + ψ, (22)

where ϕ and ψ are given in Equation (20).
The membership functions of the parabolic dense fuzzy demand rate with n learning

frequency are given by
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µ
(

d̃
)
=



{
x−d(1− ρ

1+n )
dρ

1+n

}2
, f or d

(
1− ρ

1+n
)
≤ x ≤ d{

d(1+ σ
1+n )−x
dσ

1+n

}2
, f or d ≤ x ≤ d

(
1 + σ

1+n
)

0, f or x< d
(
1− ρ

1+n
)

or x >d
(
1 + σ

1+n
) (23)

The left and right α-cuts of the above membership function are given by

[
µd

L, µd
R

]
=

[
d +

dρ
(√

α− 1
)

1 + n
, d +

dσ
(
1−
√

α
)

1 + n

]
. (24)

Then, the index value of the demand rate is given by

I
(

d̃
)

= 1
2N

N
∑

n=1

1∫
α=0

{
d +

dρ(
√

α−1)
1+n + d +

dσ(1−
√

α)
1+n

}
dα,

= 1
2N

N
∑

n=1

{
2d + 2d(ρ−σ)

3(1+n) + d(σ−ρ)
1+n

}
,

= d + d(σ−ρ)
6N

{
1
2 + 1

3 + . . . + 1
N

}
.

(25)

Again, the equation
Z = dϕ + ψ can be rewritten as

d =
Z− ψ

ϕ
. (26)

Substituting Equation (26) into Equation (23), we obtain the membership function of
the objective function as follows:

µ
(

Z̃
)
=



{ Z−ψ
ϕ −d(1− ρ

1+n )
dρ

1+n

}2

, f or dϕ
(
1− ρ

1+n
)
+ ψ ≤ x ≤ dϕ + ψ{

d(1+ σ
1+n )−

Z−ψ
ϕ

dσ
1+n

}2

, f or dϕ + ψ ≤ x ≤ dϕ
(
1 + σ

1+n
)
+ ψ

0, f or x< dϕ
(
1− ρ

1+n
)
+ ψ or x >dϕ

(
1 + σ

1+n
)
+ ψ

(27)

The left and right α-cuts of the above membership function are given by

[
µd

L, µd
R

]
=

[
dϕ + ψ +

dρϕ
(√

α− 1
)

1 + n
, dϕ + ψ +

dσϕ
(
1−
√

α
)

1 + n

]
. (28)

Then, the index value of the fuzzy objective function is given by

I
(

Z̃
)
= 1

2N

N
∑

n=1

1∫
α=0

{
dϕ + ψ +

dρϕ(
√

α−1)
1+n + dϕ + ψ +

dσϕ(1−
√

α)
1+n

}
dα,

= 1
2N

N
∑

n=1

{
2(dϕ + ψ) +

2dϕ(ρ−σ)
3(1+n) + dϕ(σ−ρ)

1+n

}
,

= dϕ + ψ + dϕ(σ−ρ)
6N

{
1
2 + 1

3 + . . . + 1
N

}
.

(29)

Thus, the problem under a parabolic dense fuzzy approach becomes
Maximize I

(
Z̃
)
= dϕ + ψ + dϕ(σ−ρ)

6N

{
1
2 + 1

3 + . . . + 1
N

}
I
(

d̃
)
= d + d(σ−ρ)

6N

{
1
2 + 1

3 + . . . + 1
N

}
Subject to condition (13)–(17) and (20)

(30)
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Next, we considered the demand rate as a parabolic dense fuzzy lock set, where the
membership function of the demand rate becomes

µ
(

d̃
)
=



{
x−d

(
1−ρ

(
1
l1
− 1

1+n

))
dρ
(

1
l1
− 1

1+n

)
}2

, f or d
(

1− ρ
(

1
l1
− 1

1+n

))
≤ x ≤ d{

d
(

1+σ
(

1
l2
− 1

1+n

))
−x

dσ
(

1
l2
− 1

1+n

)
}2

, f or d ≤ x ≤ d
(

1 + σ
(

1
l2
− 1

1+n

))
0, f or x< d

(
1− ρ

(
1
l1
− 1

1+n

))
or x >d

(
1 + σ

(
1
l2
− 1

1+n

))
(31)

The left and right α-cuts of the above membership function are given by[
µd

L, µd
R

]
=

[
d + dρ

(√
α− 1

)( 1
l1
− 1

1 + n

)
, d + dσ

(
1−
√

α
)( 1

l2
− 1

1 + n

)]
. (32)

Thus, the index value of demand rate is given by

I
(

d̃
)

= 1
2N

N
∑

n=1

1∫
α=0

{
µd

L + µd
R

}
dα,

= 1
2N

N
∑

n=1

1∫
α=0

{
d + dρ

(√
α− 1

)( 1
l1
− 1

1+n

)
+ d + dσ

(
1−
√

α
)( 1

l2
− 1

1+n

)}
dα,

= 1
2N

N
∑

n=1

{
2d + 2dσ

3

(
1
l2
− 1

1+n

)
− 2dρ

3

(
1
l1
− 1

1+n

)}
,

= d + d
3

(
σ
l2
− ρ

l1

)
+ d(ρ−σ)

3N

{
1
2 + 1

3 + . . . + 1
N

}
.

(33)

Then, substituting Equation (26) into Equation (31), we obtain the membership func-
tion of the fuzzy objective function as given below.

µ
(

Z̃
)
=



{
z−ψ

ϕ −d
(

1−ρ
(

1
l1
− 1

1+n

))
dρ
(

1
l1
− 1

1+n

)
}2

, f or dϕ
(

1− ρ
(

1
l1
− 1

1+n

))
+ ψ ≤ z ≤ dϕ + ψ{

d
(

1+σ
(

1
l2
− 1

1+n

))
− z−ψ

ϕ

dσ
(

1
l2
− 1

1+n

)
}2

, f or dϕ + ψ ≤ z ≤ dϕ
(

1 + σ
(

1
l2
− 1

1+n

))
+ ψ

0, f or x< dϕ
(

1− ρ
(

1
l1
− 1

1+n

))
+ ψ or x >dϕ

(
1 + σ

(
1
l2
− 1

1+n

))
+ ψ

(34)

The left and right α-cuts of the above membership function are given by[
µd

L, µd
R

]
=

[
dϕ + ψ + dϕρ

(√
α− 1

)( 1
l1
− 1

1 + n

)
, dϕ + ψ + dϕσ

(
1−
√

α
)( 1

l2
− 1

1 + n

)]
. (35)

Then, the index value of the fuzzy objective function is given by

I
(

Z̃
)

= 1
2N

N
∑

n=1

1∫
α=0

{
dϕ + ψ + dϕρ

(√
α− 1

)( 1
l1
− 1

1+n

)
, dϕ + ψ

+dϕσ
(
1−
√

α
)( 1

l2
− 1

1+n

)}
dα,

= 1
2N

N
∑

n=1

{
2(dϕ + ψ)− 2dϕρ

3

(
1
l1
− 1

1+n

)
+ 2dϕσ

3

(
1
l2
− 1

1+n

)}
,

= dϕ + ψ + dϕ
3

(
σ
l2
− ρ

l1

)
+ dϕ(ρ−σ)

3N

{
1
2 + 1

3 + . . . + 1
N

}
.

(36)

Thus, the problem under a PDFLS approach becomes
Maximize I

(
Z̃
)
= dϕ + ψ + dϕ

3

(
σ
l2
− ρ

l1

)
+ dϕ(ρ−σ)

3N

{
1
2 + 1

3 + . . . + 1
N

}
I
(

d̃
)
= d + d

3

(
σ
l2
− ρ

l1

)
+ d(ρ−σ)

3N

{
1
2 + 1

3 + . . . + 1
N

}
Subject to condition (13)–(17) and (20)

(37)
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If we substitute l1 = l2 = 1 and N → ∞ into Equation (37), then the TDFLS problem
becomes a general fuzzy problem.

Maximize I
(

Z̃
)
= dϕ + ψ + dϕ

3 (σ− ρ) +
dϕ(ρ−σ)

3N

{
1
2 + 1

3 + . . . + 1
N

}
I
(

d̃
)
= d + d

3 (σ− ρ) +
d(ρ−σ)

3N

{
1
2 + 1

3 + . . . + 1
N

}
Subject to condition (13)–(17) and (20)

(38)

5.1. Rules of Finding Key Values of the Fuzzy Locks

Every fuzzy parameter has two bounds, namely, an upper bound (bU , if known) and a
lower bound (bL, if known) or both. For a single key, if the upper bound is known, then
the index value of b̃ is given by I

(
b̃
)
≤ bU , which implies k ≥ b(σ−ρ)

4(bU−b)
. If the lower bound

is given, then I
(

b̃
)
≥ bL implies k ≥ b(ρ−σ)

4(b−bL)
. For double keys, the index value of Ã is

given by

I
(

B̃
)
=

1
2N

N

∑
n=0

1∫
0

{
µB

L + µB
R

}
dα =

b
2

(
1− ρ

2l1

)
+

b
2

(
1 +

σ

2l2

)
. (39)

Thus,

b
2

(
1− ρ

2l1

)
≥ bL ⇒ l1 ≥

bρ

2(b− 2bL)
and

b
2

(
1 +

σ

2l2

)
≤ bU ⇒ l2 ≥

bσ

2(2bU − b)
. (40)

5.2. Solution Algorithm

The solution algorithm of our proposed model is given below.
Input: Values of all parameters (d, g, v0, v1, t1, s, f , c2, nc, B,
l1, l2, ρ and σ).
Output: The optimum inventory cost of the proposed model.
Step 1. Solve the problem in a crisp sense first using Equation (21).
Step 2. Consider demand as a parabolic dense fuzzy number.
Step 3. Find the index value of the inventory cost function in PDFS approach using

Equation (30).
Step 4. Consider demand as a parabolic dense fuzzy lock set.
Step 5. Find the corresponding inventory cost using Equation (37).
Step 6. Compare among crisp, general fuzzy, PDFS, and PDFLS results and obtain the

minimum inventory cost of the proposed model.
Step 7. End.

6. A Real Case Study

We visited the West Bengal fisheries corporation Ltd. situated in Sector V, Salt Lake
City, Kolkata, West Bengal 700091, India ((latitude, longitude) = (22.5691◦ N, 88.4337◦ E))
on 10 December 2020. After a long discussion with the manager Mr. Mukherjee, we knew
that they cleaned the lake properly at the beginning of each cycle. After that, the fingerlings
were stocked and fed in the lake until the fingerlings acquired the ideal size for selling.
We collected some valuable data related to our proposed model: d = 4, 000, 000 g/year,
g = 912.5 g/year, v0 = 100 g,

v1 = 600 g,
t1 = 0.019 year, s = $0.01 g, f = $0.8/g/year, c2 = $100/year, nc = $40/year,

B = $80/year, ρ = 0.4, and σ = 0.2. The upper bound and lower bound of the demand
rate were set to dL

0 = 3, 600, 000 and dU
0 = 4, 000, 000. Utilising the above rule, the key

values of the demand rate were obtained as follows:
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[
l1
l2

]
≥

 dρ

2(d−2dL)
dσ

2(2dU−d)

 =

[ 4,000,000×0.4
2(4,000,000−2×3,600,000)

4,000,000×0.2
2(2×4,400,000−4,000,000)

]
=

[
−0.25
0.083

]
. (41)

Satisfying the above condition, let l1 = 0.38 and l2 = 0.25; accordingly, the optimal
solutions of the crisp model and several fuzzy models are given in Table 2.

Table 2. Numerical result of the proposed model.

Approach N* Time (t*
2) Time (t*

3) Ordered Items (y*) Total Cost (Z*) Z*−Z*
Crisp

Z∗
Crisp

×100

Crisp - 0.5479 0.4330 2887 319,476.8 -

General Fuzzy - 0.5479 0.4330 2790 308,834.3 −3.33

Parabolic dense fuzzy

1 0.5479 0.4327 2838 314,155.5 −1.66

2 0.5479 0.4321 2846 315,042.4 −1.39

3 0.5479 0.4318 2852 315,633.7 −1.20

PDFLS

1 05479 0.4330 2740 303,233.0 −5.08

2 0.5479 0.4331 2724 301,459.3 −5.64

3 0.5479 0.4330 2713 300,276.8 −6.00

Table 2 shows that the total inventory cost of the proposed model is $319,476.8 in the
crisp case. For a general fuzzy environment, the inventory cost is $308,834.3. In a parabolic
dense fuzzy environment, the minimum total inventory cost is $314,155.5 for learning
experience N = 1, whereas, for TDFLS, the minimum total inventory cost is $300,276.8 with
a growing period of 0.5479 years ≈ 200 days, a selling period of 0.4327 years ≈ 158 days,
and 2838 ordered items for learning experience N = 3. From Table 2, it is also clear that, in
the general fuzzy model, the total inventory cost decreases by 3.33%. In the parabolic dense
fuzzy model, the total inventory cost decreases by 1.66%, whereas, in the PDFLS model,
the total inventory cost decreases by 6.00%. Thus, TDFLS gave the minimum inventory
cost of the proposed model.

Sensitivity Analysis

From Table 2, we can see that parabolic dense fuzzy lock set gave the optimum value
of the proposed model. Hence, we conducted a sensitivity analysis over the parabolic
dense fuzzy model. We changed each parameter (v0, v1, s, f , c2, nc, ρ, and σ) from −30% to
+30%, and the results are given in Table 3. Furthermore, a graphical illustration of Table 3
is presented in Section 7.

Table 3. Sensitivity analysis of the parabolic dense fuzzy model.

Parameter % Change Time (t*
2) Time (t*

3) Ordered Items (y*) Total Cost (Z*) Z*−Z*
Crisp

Z*
Crisp

×100

v0

+30 0.5151 0.4659 2919 286,691.8 −10.26
+10 0.5369 0.4440 2782 296,074.7 −7.32
−10 0.5589 0.4220 2644 304,128.4 −4.80
−30 0.5808 0.4002 2507 310,708.3 −2.74

v1

+30 0.7452 0.2358 1136 231,708.0 −27.47
+10 0.6137 0.3673 2092 289,909.2 −9.25
−10 0.4822 0.4988 3472 298,384.2 −6.60
−30 0.3507 0.6303 5642 259,093.1 −18.90

s

+30 0.5479 0.4330 2713 301,090.8 −5.75
+10 0.5479 0.4330 2713 300,548.1 −5.92
−10 0.5479 0.4330 2713 300,005.4 −6.09
−30 0.5479 0.4330 2713 299,462.7 −6.26
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Table 3. Cont.

Parameter % Change Time (t*
2) Time (t*

3) Ordered Items (y*) Total Cost (Z*) Z*−Z*
Crisp

Z*
Crisp

×100

f

+30 0.5479 0.4330 2713 389,485.0 +21.91
+10 0.5479 0.4330 2713 330,012.8 +3.29
−10 0.5479 0.4330 2713 270,540.7 −15.31
−30 0.5479 0.4330 2713 211,068.6 −33.93

c2

+30 0.5479 0.4330 2713 300,306.8 −6.00
+10 0.5479 0.4330 2713 300,286.3 −6.00
−10 0.5479 0.4330 2713 300,266.8 −6.01
−30 0.5479 0.4330 2713 300,246.8 −6.01

nc

+30 0.5479 0.4330 2713 300,283.6 −6.00
+10 0.5479 0.4330 2713 300,279.0 −6.00
−10 0.5479 0.4330 2713 300,274.5 −6.01
−30 0.5479 0.4330 2713 300,270.0 −6.01

ρ

+30 0.5479 0.4330 2451 271,280.7 −15.08
+10 0.5479 0.4330 2626 290,611.4 −9.03
−10 0.5479 0.4330 2800 309,942.1 −2.98
−30 0.5479 0.4330 2975 329,272.8 +3.06

σ

+30 0.5479 0.4330 2923 323,512.8 +1.26
+10 0.5479 0.4330 2783 308,022.1 −3.58
−10 0.5479 0.4330 2643 292,531.4 −8.43
−30 0.5479 0.4330 2503 277,040.7 −13.28

7. Graphical Illustration

In this section, we provide several graphs (Figures 9–13) to illustrate the numerical
results in Table 2 and the sensitivity analysis results in Table 3. The figures are given below.
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Figure 9. Inventory cost vs. methodology.

Figure 9 shows that the inventory cost obtains the minimum value in a PDFLS en-
vironment, whereas it obtains the maximum in a crisp sense. Moreover, the inventory
cost for the general fuzzy approach assumes a lower value than the parabolic dense fuzzy
approach. Thus, by applying the parabolic dense fuzzy lock set approach, the inventory
practitioner can minimize the total inventory cost.
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Figure 10. Sensitivity analysis of parameters.

Figure 10 shows that the approximated weight of fingerlings (v0) and deviation
parameter (ρ, σ) were not very sensitive, whereas the price of fingerlings (s), holding cost
(c2), and natural idle cost (nc) were insensitive within this variation. However, the feeding
cost ( f ) and approximated weight of fish at the time of selling (v1) were highly sensitive
parameters for this system. Thus, to minimize the inventory cost, these two parameters
( f , v1) should be handled carefully.
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Figure 11 shows how the total inventory cost depends on time t1 and time t2. From
this surface figure, it is clear that, when feeding time t1 increases and selling period t2
decreases, the inventory cost obtains the minimum value. Moreover, when feeding time t1
decreases and selling period t2 increases, the inventory cost decreases. On the other hand,
when both (t1, t2) increase or decrease together, the inventory cost also increases.



Appl. Syst. Innov. 2021, 4, 81 17 of 20

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 18 of 22 
 

 

ing cost (𝑓) and approximated weight of fish at the time of selling (𝑣ଵ) were highly sen-
sitive parameters for this system. Thus, to minimize the inventory cost, these two param-
eters (𝑓, 𝑣ଵ) should be handled carefully. 

 
Figure 11. Total inventory cost vs. time t1 and time t2. 

Figure 11 shows how the total inventory cost depends on time t1 and time t2. From 
this surface figure, it is clear that, when feeding time 𝑡ଵ increases and selling period 𝑡ଶ 
decreases, the inventory cost obtains the minimum value. Moreover, when feeding time 𝑡ଵ decreases and selling period 𝑡ଶ increases, the inventory cost decreases. On the other 
hand, when both (𝑡ଵ, 𝑡ଶ) increase or decrease together, the inventory cost also increases. 

 
Figure 12. Ordered items vs. time 𝑡ଵ and time 𝑡ଶ. 

Figure 12 represents the relationship among ordered items, feeding time (𝑡ଵ), and 
selling period (𝑡ଶ). From this figure, it is clear that ordered items obtain the maximum 
value when the feeding time is minimum and the selling period is maximum. Further-
more, ordered items obtain the minimum value when the feeding time is maximum and 
the selling period is minimum.  

Figure 12. Ordered items vs. time t1 and time t2.

Figure 12 represents the relationship among ordered items, feeding time (t1), and
selling period (t2). From this figure, it is clear that ordered items obtain the maximum
value when the feeding time is minimum and the selling period is maximum. Furthermore,
ordered items obtain the minimum value when the feeding time is maximum and the
selling period is minimum.
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Figure 13. Total inventory cost vs. ordered items.

Figure 13 illustrates the relationship between total inventory cost and ordered items.
In this figure, a smooth spline curve was drawn using the data of y∗ and Z∗ from Table 3.
From the above figure, it is clear that total inventory cost does not monotonically increase
with respect to ordered items. Therefore, from this graphical illustration, we can easily
predict the value of ordered items when the total inventory cost is supposed to obtain a
minimum value.
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8. Managerial Insights

In this article, we studied some basic arithmetic operations over parabolic dense
fuzzy numbers. We also defined the parabolic dense fuzzy lock set and its application in
inventory management. An EOQ model of fishery culture was considered as a case study.
We evaluated several decision variables such as the growing period (year), selling period
(year), and the number of items ordered in each period. A decision maker can solve/tackle
any complex situation of an entire industry with proper insight. The basic managerial
insights of our proposed model are given below.

(i) Learning experience is a crucial part of any inventory problem to optimize the inven-
tory cost.

(ii) The decision maker can optimize the inventory cost by utilizing proper key values.
(iii) The less qualified decision maker can also minimize the cost using the PDFLS ap-

proach.
(iv) The PDFLS approach gives a finer optimum than the parabolic dense set approach.

9. Conclusions

In this paper, we defined the parabolic dense fuzzy number with some basic arithmetic
operations. Here, we developed an EOQ model for fishery culture using a real case study.
We assumed that a linear function could estimate the growth rate of fish. The proposed
EOQ inventory model studied the fishery culture that fed fingerlings until they were ready
for sale with an ideal weight for the customer. Here, natural idle cost was considered
during feeding and cleaning time. The main aim of this work was to find the number of
ordering items such that the total inventory cost was minimized. In the fuzzy mathematical
model, the demand rate was considered as a parabolic dense fuzzy lock set. The numerical
result revealed that the parabolic dense fuzzy lock model obtained the minimum cost
compared with the crisp and other fuzzy models.

This model also had some limitations. This model is not applicable to experience-free
enterprises or newly set up inventory systems. In this approach, adequate manpower is
required to collect more information about the model.

For future research, researchers may use the PDFLS concept in various inventory
problems such as supply chain management problems, transportation problems, and trade
credit problems. The PDFLS concept may be incorporate into a trapezoidal fuzzy number,
pentagonal fuzzy number, hexagonal fuzzy number, heptagonal fuzzy number, etc. for a
more realistic approach.

Author Contributions: Conceptualization, S.K.D., M.P. and S.P.M.; Formal analysis, S.M., S.K.D.
and S.P.M.; Investigation, S.P.M.; Methodology, S.M.; Project administration, M.P.; Resources, S.M.
and M.P.; Software, S.M.; Supervision, S.P.M.; Validation, S.K.D.; Visualization, S.K.D. and M.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Notations
The notations used in this model are given below.
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d Demand rate per unit time (g/year)

g Growing rate per fish per unit time
(

g
carp×year

)
v0 Approximated weight of a fingerling (g)
v1 Approximated weight of a fish at the time of selling (g)
q Total weight of inventory at time t (g)
t1 The time required to clean the pond for starting a new cycle (years)
t2 Growing period (years) (decision variable)
t3 Selling period (years) (decision variable)
T Cycle length (years)
y Total number of fish bought in each period (decision variable)
f Feeding cost per unit item per unit time ( $/g× year)
c2 Holding cost per unit time ($/year)
c3 Setup cost, cost for preparing the environment per period ($)
s Price of fingerlings per gram ($/g)
nc Natural idle cost per unit time ($/year); this cost is considered when the retailer cannot

fulfill the customer’s demand
B Operational cost per cycle ($)
ρ, σ Fuzzy deviation parameters
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