
Article

Case-Based Reasoning with an Artificial Neural Network for
Decision Support in Situations at Complex Technological
Objects of Urban Infrastructure

Igor Glukhikh and Dmitry Glukhikh *

����������
�������

Citation: Glukhikh, I.; Glukhikh, D.

Case-Based Reasoning with an

Artificial Neural Network for

Decision Support in Situations at

Complex Technological Objects of

Urban Infrastructure. Appl. Syst.

Innov. 2021, 4, 73. https://doi.org/

10.3390/asi4040073

Academic Editor: Luís Bragança

Received: 4 August 2021

Accepted: 17 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Information Systems Department, University of Tyumen, 6 Volodarskogo Street, 625003 Tyumen, Russia;
igluhih@utmn.ru
* Correspondence: gluhihdmitry@gmail.com; Tel.: +79-3232-000-36

Abstract: The article considers the tasks of intellectual support for decision support in relation
to a complex technological object. The relevance is determined by a high level of responsibility,
together with a variety of possible situations at a complex technological facility. The authors consider
case-based reasoning (CBR) as a method for decision support. For a complex technological object,
the problem defined is the uniqueness of the situations, which is determined by a variety of elements
and the possible environmental influence. This problem complicates the implementation of CBR,
especially the stages of comparing situations and a further selection of the most similar situation
from the database. As a solution to this problem, the authors consider the use of neural networks.
The work examines two neural network architectures. The first part of the research presents a
neural network model that builds upon the multilayer perceptron. The second part considers the
“Comparator-Adder” architecture. Experiments have shown that the proposed neural network
architecture “Comparator-Adder” showed higher accuracy than the multilayer perceptron for the
considered tasks of comparing situations. The results have a high level of generalization and can
be used for decision support in various subject areas and systems where complex technological
objects arise.

Keywords: case-based reasoning; decision making; neural network; neural network architecture;
perceptron; comparator; adder; control of complex systems

1. Introduction
1.1. The Relevance of Research

Modern systems of urban infrastructure (power supply systems, gas, water, and
heat supply systems) are complex technological objects (CTO). Their safety and stability
processes are important not only for to enable city systems, but also for the protection of
the ecology, people’s lives, and health. The emergency situation has dangerous and fatal
consequences. The prevention of such situations and their removal represent a relevant
task in managing complex technological objects.

The dangerous situation prevention relates to monitoring and recognition and to
retrieving solutions for neutralizing an incident. The implementation of both tasks in one
software–hardware complex leads to the modern concept of intelligence monitoring and
decision-making systems (IMDS) [1]. The decision-making process to neutralize (prevent)
an arising dangerous situation is aimed at finding an action program (for personnel of
operating, service organizations, operational dispatch service, and support services), which
should convert the current emergency situation into a target, standard situation.

Two approaches are possible. One assumes the development “from scratch” of an
effective action program (AP) based on the existing criteria, limitations, and standards.
The second assumes a choice from the ready-made versions of the AP that will most fully
correspond to the current situation. The second approach is good in that it does not require

Appl. Syst. Innov. 2021, 4, 73. https://doi.org/10.3390/asi4040073 https://www.mdpi.com/journal/asi

https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0002-0683-6138
https://orcid.org/0000-0002-4839-3064
https://doi.org/10.3390/asi4040073
https://doi.org/10.3390/asi4040073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/asi4040073
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi4040073?type=check_update&version=1


Appl. Syst. Innov. 2021, 4, 73 2 of 12

a lengthy development process (this is important in conditions of time pressure) and is
applicable in cases where there is no formalization of target functions and selection criteria.

The approach in which the solution is retrieved from the already available database of
ready-made solutions examples is called case-based reasoning (CBR) in artificial intelligence
systems [2,3]. The CBR method proves to be effective in many applied tasks, including in
the tasks of making decisions in emergency or undesirable situations [2–5].

The main idea of CBR is to find the same or a similar situation from past experience in
the IMDS knowledge base in a hazardous situation case at CTO, and to apply the solution
that was used previously.

To implement CBR inference in each specific subject area, it is necessary to solve a
number of problems, where the key is the task to compare and retrieve similar situations.
Decision-making in situations at urban infrastructure facilities must take into account many
different conditions, not only the state of this or that technological equipment, but also
many other factors, e.g., the environment, the state and availability of support systems and
personal, the availability of resources, climatic conditions, etc. All these aspects give rise to
a wide variety of possible situations, as well as difficulties in their formalized description
and comparison for the solution retrieval.

Under such conditions, classical comparison methods based on the distance metrics
in the parameter space do not achieve the required accuracy of the results. Therefore,
one of the modern directions of research in CBR systems development and application
has become the solution search for the problem of comparing and retrieving situations in
complex areas [6–9].

1.2. Problem Description and Proposed Method

An important role in CBR is played by the procedure for evaluating the similarity of a
situation with another, that is, determining Sim (.).

A sign of similarity between situations can be their belonging to the same class, i.e.,
Sim (.) ∈ {0, 1}, with the value 1 when two situations belong to the same class, and the
value 0 otherwise.

However, for a detailed classification, especially at the beginning of the system opera-
tion, there may not be a sufficient amount of information. In addition, during operation,
new situations may appear that go beyond the previously created classification, which
will require retraining of the system. Therefore, in CBR, the classification is used only at a
sufficiently high level to separate typical situations.

More detailing within types is performed using a set of practical cases that may
appear during the system operation. This is what makes it possible, if necessary, to
find in the knowledge base those cases that will most closely correspond to the current
problem situation.

As a consequence, some special similarity function [10] becomes more important
than their belonging to one or another class for evaluating the similarity of the situa-
tions among themselves in CBR. The function value will show the similarity of situations
among themselves.

Calculation of the similarity function can be performed based on metrics (weighted
Euclidean, Manhattan metrics, etc.), by calculating the distance ρ between situations in the
attribute space that describe these situations [6]. Then, Sim (.) = − ρ or Sim (.) = (1 − ρ) in
the case of normalization of distance values.

This method has shown its effectiveness in many machine learning problems and in case-
based inference problems when relatively simple and homogeneous objects are considered.

On a complex object case, it is necessary to take into account the states of its various
elements and the connections between them, which are described by many quantitative
and categorical parameters.

An attempt to compare situations in the multidimensional attributive space of a
complex object faces some problems:

• The need to create local similarity metrics and their aggregation into global metrics.



Appl. Syst. Innov. 2021, 4, 73 3 of 12

• The need for expert judgment when ranking the importance of attributes.
• The need to identify collisions, i.e., cases where the difference in situations in one

attribute or local metrics can be compensated for by their similarity in other attributes.

The problems described are associated with time-consuming tasks that require expert
intervention. At the same time, the more complex the object, the higher the labor intensity,
and the higher the probability of error and collisions.

This set of problems requires new ways to assess the proximity of situations where
expert intervention is minimized, and thereby the accuracy and speed of decision support
processes is increased.

As a solution to the described problems, we consider the use of neural networks. Artificial
intelligence will speed up the decision-making process, which is especially important in critical
situations, eliminate the human factor, and reduce the labor intensity of processes.

The purpose of this work is to develop and research neural network architecture to
evaluate the similarity of situations on a complex technological object of urban infrastructure.

The work is based on previous studies, where we define the situation on a complex
object through a set of elements states and connections between them [11,12].

The article is organized as follows.
Section 2 provides a brief overview of studies on the possibility of using neural

networks to evaluate the proximity of the situation. Further, a formalized concept of
a complex technological object is introduced, with a definition and formal presentation
of situations arising at a complex object. Then, the process of forming a training data
set is described. To do this, many situations in the building’s heat supply point are
used, on the basis of which two data-set are formed, namely training and validation.
Section 3 considers neural network architectures for the situation comparison problem.
Two developed architectures are proposed, namely multilayer perceptron and a complex
architecture, Comparator-Adder. Section 4 discusses the results obtained and presents some
conclusions. In particular, the developed neural network architecture “Comparator-Adder”
showed higher accuracy than the multilayer perceptron for the considered problems of
situation comparison.

2. Materials and Methods
2.1. Background and Related Work

Methods for learning similarity measures have been a topic of research in the CBR
community for many years [13,14]. The possibilities of using neural networks for evaluating
the proximity of situations are actively studied. Recent studies show positive results [7,8,15].

Thus, work [7] describes an experiment evaluating the quality of a car by determining
its “similarity” in the space of the considered parameters with other known cars. The
model under consideration is described by vectors. Those vectors concatenation is fed to
the input of the multilayer perceptron, and the output is a signal, the value of which is
projected onto the scale of quality classes. With a sufficiently large volume of the training
sample, the model showed higher accuracy compared to the classical K-nearest neighbors
method based on weighted local metrics.

The work [8] uses Siamese neural networks to compare cases. First, the input vectors
are converted into the embeddings, namely vectors reflecting important features of the
situations being compared. Next, on the output neuro-classifier, the value of the similarity
function between embeddings is calculated. This study considered cases from the field of
decision-making in the aquaculture industry, and the experiments showed a sufficiently
high accuracy of the results for comparing and retrieving these cases when deriving
decisions in the CBR system.

The study [10] proposes a typology of models for evaluating similarity functions,
taking into account the ways of forming two components of the evaluation process, namely
identifying important features and forming the embeddings, and comparing the embed-
dings to evaluate the similarity of situations.



Appl. Syst. Innov. 2021, 4, 73 4 of 12

Our proposed work is the continuation of applicability studies concerning neural
network architectures for solving the problem of comparison and retrieval of situations in
CBR systems as applied to complex technological objects of urban infrastructure.

This paper considers two versions of the architectures: the multilayer perceptron
and the Comparator-Adder architecture. Software implementation and experiments were
carried out in the Google Colaboratory environment in Python using the Keras and Tensor-
flow libraries. The error function MeanSquaredError was selected as one of the standard
functions of the Keras library, with an estimate of the calculation accuracy using the Mape
metric (mean absolute percentage error).

2.2. Formation of a Training Dataset
2.2.1. Representation of the Situation at the CTO

For research, a complex technological object was considered, namely a house heat
point. The technological scheme is an independent two-circuit heating system, where an
external coolant through a heat exchanger transfers thermal energy to the coolant of the
home heating system.

Elements of a complex object are formed into groups:

• technological (input pipe, pump, heat exchanger, interior pipe);
• providing (IT, electricity, other equipment);
• personnel (electrician, plumber, emergency service);
• environment (premises, neighbor house, nature event, nature object).

The elements of the “personnel” and “environment” groups are not directly related to
the object but are considered part of it since they can influence it. For example, snowfall
can make it difficult for personnel to access the facility and affect the composition of the
solution to a problem situation.

In order to take into account the peculiarities of a complex technological object, we [11]
introduce a formal representation of a complex object O through its elements and relations
between them:

O = {Oi|i = 1, 2, . . . , N}, (1)

where Oi with i ∈ I1 denotes complex object elements, and Oi with i ∈ I2 denotes relations
between complex object elements; I1 ∩ I2 = ∅ denotes sets of indices of elements and
relationships between them; N denotes the number of considered elements and connections
in a complex object.

Let each of Oi ∈ O corresponds to its set of possible states Si = {Sij|j = 1, 2, . . . , Mj}
and at any time moment, the elements Oi can be in one of these states.

Definition 1. The situation at a complex technological object is a set of those states in
which the elements Oi are at a given time.

The situation can be formally represented through the matrix of states, where one in
the column corresponds to the state of the element (Table 1).

Table 1. State matrix that reflects the situation at the CTO.

Sitact Workable Broken Working Stopped Not Available Available Influence Not Influence

Input pipe 1 - - - - - - -
Interior pipe 1 - - - - - - -

Heat exchanger 1 - - - - - - -
Pump - - 1 - - - - -

Other equipment - - 1 - - - - -
IT - - 1 - - - - -

Electricity - - - - - 1 - -
Emergency service - - - - - 1 - -

Plumber - - - - - 1 - -
Electrician - - - - - 1 - -

Neighbor house - - - - - - - 1
Nature object - - - - - - - 1
Nature event - - - - - - - 1

Premises - - - - - - - 1



Appl. Syst. Innov. 2021, 4, 73 5 of 12

2.2.2. Forming a Dataset for Experiments

For the experiment, the dataset has been prepared with 150 pairs of situations in the
state matrix view at the object “house heat point” with known values of Sim. At the same
time, 50% has been formed by similar situations and another 50% by dissimilar situations.

The situation’s similarity Sim was determined by an expert review using the method
previously described in our study [12]:

Sim (Sitz, Sitact) = ∑βi × (1− di), (2)

where βi is the normalized element importance factor; di is the distance between the states
in which the i-th element of a complex object is in the compared situations.

The distance between the states of an element is determined by the following formula:

di = ‖Si,act − Si,z‖, (3)

where Si,act, Si,z is the state of the i-th element in the current situation and the z-th situation,
respectively.

For example, the possible states for the pump are ordered in the interval [0,1] in such
a way that S1 is at point 0, S3 is at point 1, and the rest of the states take values between
them. It is visualized in Figure 1.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 5 of 12 
 

 

Table 1. State matrix that reflects the situation at the CTO. 

Sitact Workable Broken Working Stopped Not Available Available Influence Not Influence 

Input pipe 1 - - - - - - - 

Interior pipe 1 - - - - - - - 

Heat exchanger 1 - - - - - - - 

Pump - - 1 - - - - - 

Other equipment - - 1 - - - - - 

IT - - 1 - - - - - 

Electricity - - - - - 1 - - 

Emergency service - - - - - 1 - - 

Plumber - - - - - 1 - - 

Electrician - - - - - 1 - - 

Neighbor house - - - - - - - 1 

Nature object - - - - - - - 1 

Nature event - - - - - - - 1 

Premises - - - - - - - 1 

2.2.2. Forming a Dataset for Experiments 

For the experiment, the dataset has been prepared with 150 pairs of situations in the 

state matrix view at the object “house heat point” with known values of Sim. At the same 

time, 50% has been formed by similar situations and another 50% by dissimilar situations. 

The situation’s similarity Sim was determined by an expert review using the method 

previously described in our study [12]: 

Sim (Sitz, Sitact) = ∑ β
𝑖

× (1 − 𝑑𝑖), (2) 

where βi is the normalized element importance factor; di is the distance between the states 

in which the i-th element of a complex object is in the compared situations. 

The distance between the states of an element is determined by the following for-

mula: 

𝑑𝑖 = ‖S𝑖,𝑎𝑐𝑡 − S𝑖,𝑧‖, (3) 

where Si,act, Si,z is the state of the i-th element in the current situation and the z-th situation, 

respectively. 

For example, the possible states for the pump are ordered in the interval [0,1] in such 

a way that S1 is at point 0, S3 is at point 1, and the rest of the states take values between 

them. It is visualized in Figure 1. 

 

Figure 1. Streamlined states of the element “pump”. 

Moreover, this method implies an expert evaluation of the importance of an element 

in each situation. 

A set of matrix pairs has been converted to the embeddings in order to bring the 

required form for the functioning of neural networks. Namely, the matrices have been 

transformed in each pair into vectors x and y, respectively. 

Vector x = (xij|i = 1, 2, …, N, j = 1, 2, …, Mi), whose elements take the value 0 or 1, and 

xij = 1, if i-th element of Oi is in a state Sij, and 0—otherwise. A single set of 8 states was 

Figure 1. Streamlined states of the element “pump”.

Moreover, this method implies an expert evaluation of the importance of an element
in each situation.

A set of matrix pairs has been converted to the embeddings in order to bring the
required form for the functioning of neural networks. Namely, the matrices have been
transformed in each pair into vectors x and y, respectively.

Vector x = (xij|i = 1, 2, . . . , N, j = 1, 2, . . . , Mi), whose elements take the value 0 or 1,
and xij = 1, if i-th element of Oi is in a state Sij, and 0—otherwise. A single set of 8 states was
formed for each of the 14 elements of a complex object, when preparing the data set. The
situation presented in the matrix of states (Table 1) will have the vector form formalized, in
which the length is 112 positions:

|1000000010000000100000000010000000100000 . . . 000000010000000100000001|

Thus, a training dataset (TDS) is obtained for further experiments through pass to
formalization in the form of the embeddings. TDS contains 150 pairs of situations, i.e.,
pairs of vectors (x, y) with known Sim values.

3. Results
3.1. Multilayer Perceptron

The first part of the study considered the neural network model based on a multilayer
perceptron, which was used in [7]. There have been changing parameters, i.e., the number
of input neurons. The optimal architecture and the number of hidden layers have been
selected during experiments. A source code snippet illustrating the multilayer perceptron
model is shown below (Listing 1).



Appl. Syst. Innov. 2021, 4, 73 6 of 12

In the course of the experiments, the concatenation of two vectors (x, y) with a total
length of 224 positions was fed to the input of the neural network. The value Sim (x, y) was
calculated at the output.

Next, the neural network trained on the TDS operation was checked using a validation
dataset (VDS). This contained a vector representation of 40 pairs of situations that were
absent in the TDS.

Listing 1. Defining and compiling a multilayer perceptron to compare situations defined by vectors
in state space

model = Sequential()
model.add(Dense(448, input_dim = 224, activation = ‘relu’))
model.add(Dense(224, activation = ‘swish’))
model.add(Dropout(0.3, seed = 2))
model.add(Dense(112, activation = ‘relu’))
model.add(Dense(56, activation = ‘swish’))
model.add(Dense(28, activation = ‘relu’))
model.add(Dropout(0.5))
model.add(Dense(14, activation = ‘swish’))
model.add(Dense(1, activation = ‘relu’))
# Compile model
model.compile(loss = ‘MeanSquaredError’, optimizer = ‘RMSprop’, metrics = [‘mape’]).

Figure 2 shows the graphs of the change in the error and the value of the loss function
during training of the neural network on the training dataset.

As a result, the following results were obtained:

• On TDS: Mape absolute error indicator 5.57% with the minimum value of the loss
function 0.0032.

• On VDS: The absolute error of Mape 17.96% with the minimum value of the loss
function 0.026.

It can be seen that fairly high calculation accuracy is achieved on the training data set.
However, the results on the validation set were significantly worse than on the TDS.

Attempts to improve the quality of Sim prediction by increasing the number of net-
work layers and introducing regularization layers did not lead to noticeable improvements
in the quality of the results.

The most likely reason for this difference in computational accuracy is the small
amount of training data. However, it is important to note that there may not be a large
number of situation examples in a real system, especially at the beginning of the operation
of a CBR system. We propose a more complex architecture, namely Comparator-Adder for
application in a small amount of training data case.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 2. Change in MAPE error on training and control samples when training a multilayer per-

ceptron. 

3.2. Comparator-Adder Architecture 

The proposed architecture Comparator-Adder is shown in Figure 3. We compare sep-

arately the vectors (xi, yi), the concatenation of which with a length of 16 positions entered 

the input of its i-th comparator. The comparator is implemented as a multilayer fully con-

nected neural network that determines the similarity between these vectors. N = 14 com-

parators were trained on their part of the TDS, with each comparator giving a prediction 

regarding the similarity of the elements in two compared situations. 

Comparator outputs as rounded values of Sigmoid activation functions 0 or 1 come 

to the input of the adder, the purpose of which is to calculate the final evaluation Sim (x, 

y) ⇔ Sim (Sitact, Sit). 

The optimal parameters of each component of architecture have been selected during 

experiments. A source code snippet illustrating the comparator model is shown below 

(Listing 2). 

Listing 2: The defining and compiling a comparator 

model1 = Sequential() 

model1.add(Dense(32, input_dim = 16, activation = ‘relu’)) 

model1.add(Dense(8, activation = ‘relu’)) 

model1.add(Dropout(0.5)) 

model1.add(Dense(1, activation = ‘sigmoid’)) 

# Compile model 

model1.compile(loss = ‘binary_crossentropy’, optimizer = ‘adam’, metrics = [‘accu-

racy’]). 

Figure 2. Change in MAPE error on training and control samples when training a multilayer perceptron.



Appl. Syst. Innov. 2021, 4, 73 7 of 12

3.2. Comparator-Adder Architecture

The proposed architecture Comparator-Adder is shown in Figure 3. We compare
separately the vectors (xi, yi), the concatenation of which with a length of 16 positions
entered the input of its i-th comparator. The comparator is implemented as a multilayer
fully connected neural network that determines the similarity between these vectors. N
= 14 comparators were trained on their part of the TDS, with each comparator giving a
prediction regarding the similarity of the elements in two compared situations.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 3. The neural network architecture “Comparator-Adder” for calculation Sim (Sitact, Sit). 

The following is the source code snippet for the adder model (Listing 3). 

Listing 3: The defining and compiling an adder 

model_summ = Sequential() 

model_summ.add (Dense (28, input_dim = 14, activation = ‘relu’)) 

model_summ.add (Dense (28, activation = ‘swish’)) 

#model_summ.add (Dropout (0.3, seed = 2)) 

model_summ.add (Dense (14, activation = ‘relu’)) 

#model_summ.add (Dropout (0.5)) 

model_summ.add (Dense (7, activation = ‘swish’)) 

model_summ.add (Dense (1, activation = ‘linear’)) 

# Compile model 

model_summ.compile (loss = ‘MeanSquaredError’, optimizer = ‘RMSprop’, metrics = 

[‘mape’]). 

Figure 4 shows the graphs of the change in the error and the value of the loss function 

during training of the neural network on the training dataset. During the experiments, the 

following final results were obtained at the output of the adder: 

• On TDS: Mape absolute error indicator—5.29% with the minimum value of the loss 

function 0.0022; 

• On VDS: The absolute error of Mape is 9.55% with the minimum value of the loss 

function 0.0084. 

It can be seen data the Comparator-Adder architecture on the validation dataset 

showed results closer to the data on the TDS than in the study of the perceptron. 

The next stage of the study is the analysis of the results of calculations according to 

the methodology presented in work [8] compliance with the requirements for similarity 

metrics: 

• Sim (Sitk, Sitk) = 1 

• Sim (Sitk, Sitz) = Sim (Sitz, Sitk), 

• Sim (Sitk, Sitk) ≥ Sim (Sitk, Sitz), 

where k, z denote some indices of situations with different values. 

In conditions of uncertainty and a lack of training information, the first two require-

ments are formulated less rigorously: Sim (Sitk, Sitk) → 1, Sim (Sitk, Sitz) ≈ Sim (Sitz, Sitk). 

For this, a subset of various situations in the validation dataset has been selected. 

Next, the similarity function between them has been calculated using the trained neural 

network Comparator-Adder. Table 2 shows the calculation results. 

Figure 3. The neural network architecture “Comparator-Adder” for calculation Sim (Sitact, Sit).

Comparator outputs as rounded values of Sigmoid activation functions 0 or 1 come to
the input of the adder, the purpose of which is to calculate the final evaluation Sim (x, y)
⇔ Sim (Sitact, Sit).

The optimal parameters of each component of architecture have been selected during
experiments. A source code snippet illustrating the comparator model is shown below
(Listing 2).

Listing 2. The defining and compiling a comparator

model1 = Sequential()
model1.add(Dense(32, input_dim = 16, activation = ‘relu’))
model1.add(Dense(8, activation = ‘relu’))
model1.add(Dropout(0.5))
model1.add(Dense(1, activation = ‘sigmoid’))
# Compile model
model1.compile(loss = ‘binary_crossentropy’, optimizer = ‘adam’, metrics = [‘accuracy’]).

The following is the source code snippet for the adder model (Listing 3).

Listing 3. The defining and compiling an adder

model_summ = Sequential()
model_summ.add (Dense (28, input_dim = 14, activation = ‘relu’))
model_summ.add (Dense (28, activation = ‘swish’))
#model_summ.add (Dropout (0.3, seed = 2))
model_summ.add (Dense (14, activation = ‘relu’))
#model_summ.add (Dropout (0.5))
model_summ.add (Dense (7, activation = ‘swish’))
model_summ.add (Dense (1, activation = ‘linear’))
# Compile model
model_summ.compile (loss = ‘MeanSquaredError’, optimizer = ‘RMSprop’, metrics =
[‘mape’]).



Appl. Syst. Innov. 2021, 4, 73 8 of 12

Figure 4 shows the graphs of the change in the error and the value of the loss function
during training of the neural network on the training dataset. During the experiments, the
following final results were obtained at the output of the adder:

• On TDS: Mape absolute error indicator—5.29% with the minimum value of the loss
function 0.0022;

• On VDS: The absolute error of Mape is 9.55% with the minimum value of the loss
function 0.0084.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 4. Change in the MAPE error on the training and control sample (on the TDS) when train-

ing the adder, to the input of which signals from the comparators are received. 

Table 2. Sim (.) Calculation data using the Comparator-Adder architecture on examples of situations 

in the validation file. 

Sim(.) Sit1 Sit2 Sit3 Sit4 Sit5 

Sit1 0.947 0.691 0.536 0.624 0.492 

Sit2 0.687 0.96 0.38 0.471 0.359 

Sit3 0.59 0.496 0.912 0.442 0.802 

Sit4 0.624 0.472 0.338 0.894 0.402 

Sit5 0.58 0.454 0.807 0.539 0.907 

As can be seen from the table, the results obtained correspond to the requirements in 

their not strict formulation, which approves the most similarities gets with comparison 

the situation with itself. It does say about sufficient precision to work under conditions of 

uncertainty and a lack of training data. 

Thus, the experiments have shown that the proposed neural network architecture 

“Comparator-Adder” for the considered problems of comparison of situations showed: a) 

higher accuracy on the same validation file than a multilayer perceptron; b) the computed 

evaluation of the similarity of situations meets the requirements for the similarity metric. 

4. Discussion 

In this work, we considered the key problem of case-based reasoning. At issue is sit-

uation similarity evaluation with regard to preventing dangerous situations that arise at 

complex technological objects of urban infrastructure. 

The variety of elements and their states at the complex object lead to high labor in-

tensity or make it impossible to apply classical metrics of situation comparison and re-

trieval when elements are represented in attribute space and it is necessary to estimate 

distance in this space. 

To improve the selection processes, we suggested using neural networks. Their use 

will speed up the decision-making process, which is especially important in critical situa-

tions, eliminate the human factor, and reduce the labor intensity of the processes. 

Figure 4. Change in the MAPE error on the training and control sample (on the TDS) when training
the adder, to the input of which signals from the comparators are received.

It can be seen data the Comparator-Adder architecture on the validation dataset
showed results closer to the data on the TDS than in the study of the perceptron.

The next stage of the study is the analysis of the results of calculations accord-
ing to the methodology presented in work [8] compliance with the requirements for
similarity metrics:

• Sim (Sitk, Sitk) = 1
• Sim (Sitk, Sitz) = Sim (Sitz, Sitk),
• Sim (Sitk, Sitk) ≥ Sim (Sitk, Sitz),

where k, z denote some indices of situations with different values.
In conditions of uncertainty and a lack of training information, the first two requirements

are formulated less rigorously: Sim (Sitk, Sitk)→ 1, Sim (Sitk, Sitz) ≈ Sim (Sitz, Sitk).
For this, a subset of various situations in the validation dataset has been selected.

Next, the similarity function between them has been calculated using the trained neural
network Comparator-Adder. Table 2 shows the calculation results.

Table 2. Sim (.) Calculation data using the Comparator-Adder architecture on examples of situations
in the validation file.

Sim(.) Sit1 Sit2 Sit3 Sit4 Sit5

Sit1 0.947 0.691 0.536 0.624 0.492
Sit2 0.687 0.96 0.38 0.471 0.359
Sit3 0.59 0.496 0.912 0.442 0.802
Sit4 0.624 0.472 0.338 0.894 0.402
Sit5 0.58 0.454 0.807 0.539 0.907

As can be seen from the table, the results obtained correspond to the requirements
in their not strict formulation, which approves the most similarities gets with comparison



Appl. Syst. Innov. 2021, 4, 73 9 of 12

the situation with itself. It does say about sufficient precision to work under conditions of
uncertainty and a lack of training data.

Thus, the experiments have shown that the proposed neural network architecture
“Comparator-Adder” for the considered problems of comparison of situations showed:
(a) higher accuracy on the same validation file than a multilayer perceptron; (b) the computed
evaluation of the similarity of situations meets the requirements for the similarity metric.

4. Discussion

In this work, we considered the key problem of case-based reasoning. At issue is
situation similarity evaluation with regard to preventing dangerous situations that arise at
complex technological objects of urban infrastructure.

The variety of elements and their states at the complex object lead to high labor
intensity or make it impossible to apply classical metrics of situation comparison and
retrieval when elements are represented in attribute space and it is necessary to estimate
distance in this space.

To improve the selection processes, we suggested using neural networks. Their
use will speed up the decision-making process, which is especially important in critical
situations, eliminate the human factor, and reduce the labor intensity of the processes.

To solve similar problems in similar difficult conditions, a number of studies [7,8,10,16]
have also shown the promise of using the method of neural networks. Neural networks
make it possible to determine the similarity of situations through machine learning using
examples of pairs of similar or dissimilar situations.

Our proposed architecture Comparator-Adder neural network is based on the idea of
Siamese neural networks [8,17–19], which are used to compare images or other signals. The
architecture may be an example of the further development of such networks in relation to
working with tabular data. In Siamese networks, two channels of neural network computa-
tions are organized to encode input images (signals) with their subsequent comparison at
the output, decision element, which defines the class “similar” or “dissimilar”.

The developed architecture compares separate parts of the input vectors of two
situations. Each part corresponds to its own element of a complex technological object.
Thus, N-comparison channels are organized in the form of N-trained neural network
comparators. The outputs of comparators are fed to the “Adder” neural network. The
adder at its output calculates the value of the similarity function, by which one can estimate
the degree of similarity of two situations in their general representation.

The experiments showed that a trained neural network demonstrates sufficiently
high accuracy under the conditions of a minimal training sample (we used a training
date of 150 operations) when evaluating similar actions on the validation file (MAPE
less than 10%).

The accuracy estimate obtained when processing the validation data set is a test of
the neural network’s reliability, while the reliability is digitized and estimated by the
MAPE error.

The work [8] compares the results of studies on the application of various models
of Siamese networks to assess the similarity function. Experiments carried out in the
study showed that after 1000 epochs of training, the retrieval performance (measured
as described in the [8]) is 90% (±0.7%) for esnn, 85.57% (±3.4%) for chopra, and 82.32%
(±8.7%) for gabel.

Thus, we can say that the efficiency of the neural network presented in our work is
sufficient in comparison with similar studies.

The basic idea of our approach to comparing and selecting situations at a complex
technological object is to divide tasks into two large stages. At first, the states of the
elements of a complex object and the connections between them independently of each
other are recognized. As a result, the embeddings that represent situations in the state
space are formed. In a second step, the embeddings for the quantitative evaluation of such
situations are applied using a neural network. The practical significance of this approach



Appl. Syst. Innov. 2021, 4, 73 10 of 12

is due to the different methods and technologies that can be used to recognize the states
of dissimilar and diverse elements. So, machine classification methods, and in particular
neural network classifiers, can be used in the case of a good description of elements with
quantitative data with a sufficient amount of training examples for recognizing states. In
cases where there are not enough training examples, it is advisable to use expert knowledge
bases and inference systems to recognize the states of elements, including in conditions
of uncertainty.

Thus, our approach offers a new opportunity for creating hybrid case-based reasoning
models [20–24] and contributes to solving the actual problem of integrating two concepts
of artificial intelligence, namely knowledge-based systems and machine learning [25,26].

However, the proposed neural network has some limitations. Namely, it is associated
with uncertainty regarding the states of the elements. In such situations, an element with
some probability can assume one of several states, which must be taken into account when
selecting a similar situation from the base. The implementation of one-hot encoding is
impossible in such a situation. Changes in the architecture of the neural network to add
the ability to handle situations with uncertainty are the goal of further research.

5. Conclusions and Further Work

In this work, we continued to study the problem of intelligence monitoring and
decision-making in emergencies at complex technological objects. Such facilities are present
in various urban infrastructure systems (power supply systems, gas, water, and heat supply
systems) and in large production, mining, or processing enterprises.

The system reaction speed is important for prompt decision-making and the choice of
action programs to eliminate hazardous situations from the system, operational dispatch
services, and maintenance personnel. The case-based reasoning method has a high potential
to address this need, since it uses ready-made options for action and does not require the
development of new solutions when a problem situation arises. At the same time, it
is necessary to solve the problem of comparing situations and selecting the one in the
knowledge base that is most similar to the current situation.

We have proposed a solution to this problem using trained neural networks. In the
course of our research, we relied on the ontological model of a complex technological object
proposed earlier [11] and the representation of situations on such an object through the
states of its elements and connections between them. In this work, the following main
results are obtained:

• The formalization of the representation of the situation with the help of embeddings
is proposed, which represent situations in the state space.

• A neural network architecture, Comparator-Adder, is developed to assess the similar-
ity of situations.

• Using the example of the house heat point system, a training and validation dataset
was prepared to test the efficiency of the proposed solutions.

• Experiments were carried out to assess the accuracy in predicting the similarity of
situations using the proposed neural network architecture. Experiments have shown
the applicability of this model for problems of comparison and selection of situations
by means of their representation in the state space.

This work does not study the issues of classifying the states of elements and their con-
nections. We consider that various methods and tools will be used to solve these problems,
including machine learning methods and knowledge-based systems methods. A further
research plan includes the detailing of these methods for different conditions and cases, as
well as the development of a general architecture for a hybrid case-based reasoning.

The results have a high level of generalization and can be used for decision support in
various subject areas and systems where complex technological objects arise.

Author Contributions: Conceptualization, I.G. and D.G.; methodology, I.G.; formal analysis, I.G.;
writing—original draft preparation, I.G. and D.G.; writing—review and editing, I.G. and D.G.;



Appl. Syst. Innov. 2021, 4, 73 11 of 12

visualization, D.G.; funding acquisition, I.G. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was funded by RFBR and Tyumen Region, project number 20-47-720004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary

CTO complex technological objects
IMDS intelligence monitoring and decision-making systems
AP action program
CBR case-based reasoning
TDS training data-set
VDS validation data-set

References
1. Juraev, Z.S.; Muhamediyeva, D.T.; Sotvoldiev, D.M. Construction of hybrid intellectual monitoring and decision-making systems.

J. Phys. Conf. Ser. 2020, 1546, 012083. [CrossRef]
2. Aamodt, A.; Plaza, E. Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun.

1994, 7, 39–59. [CrossRef]
3. Eremeev, A.; Varshavskiy, P.; Alekhin, R. Case-Based Reasoning Module for Intelligent Decision Support Systems. In Proceedings

of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16), Rostov-on-Don—
Sochi, Russia, 16–21 May 2016; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; Volume 450,
pp. 207–216.

4. Huang, K.; Nie, W.; Luo, N. Scenario-based marine oil spill emergency response using hybrid deep reinforcement learning and
case-based reasoning. Appl. Sci. 2020, 10, 5269. [CrossRef]

5. Jiang, X.; Wang, S.; Wang, J.; Lyu, S.; Skitmore, M. A decision method for construction safety risk management based on ontology
and improved CBR: Example of a subway project. Int. J. Environ. Res. Public Health 2020, 17, 3928. [CrossRef] [PubMed]

6. Perner, P. Case-Based Reasoning—Methods, Techniques, and Applications. In Transactions on Petri Nets and Other Models of
Concurrency XV; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 16–30.

7. Case-based reasoning research and development. In Proceedings of the Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 149–164.

8. Mathisen, B.M.; Bach, K.; Aamodt, A. Using extended siamese networks to provide decision support in aquaculture operations.
Appl. Intell. 2021, 1–12. [CrossRef]

9. Nikpour, H.; Aamodt, A. Inference and reasoning in a Bayesian knowledge-intensive CBR system. Prog. Artif. Intell. 2021,
10, 49–63. [CrossRef]

10. Mathisen, B.M.; Aamodt, A.; Bach, K.; Langseth, H. Learning similarity measures from data. Prog. Artif. Intell. 2020, 9, 129–143.
[CrossRef]

11. Glukhikh, I.; Glukhikh, D. Case based reasoning for managing urban infrastructure complex technological objects. In Proceedings
of the CEUR Workshop 2021, Online. 28–29 May 2021; Volume 2843, p. 038.

12. Glukhikh, I.; Glukhikh, D. Situations representation and retrieve in the case-based reasoning system for managing a complex
technological object. In Proceedings of the CEUR Workshop 2021, Online. 28–29 May 2021; Volume 2922, p. 017.

13. Aha, D.W. Case-based learning algorithms. In Proceedings of the 1991 DARPA Case-Based Reasoning Workshop, Washington,
DC, USA, 31 May 1991; Volume 1, pp. 147–158.

14. Chen, D.; Burrell, P. Case-based reasoning system networks: A review. Neural. Comput. Applic. 2001, 10, 264–276. [CrossRef]
15. Kenny, E.M.; Keane, M.T. Twin-systems to explain artificial neural networks using case-based reasoning: Comparative tests of

feature-weighting methods in ANN-CBR twins for XAI. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence; International Joint Conferences on Artificial Intelligence Organization, Macau, China, 10–16 August 2019;
pp. 2708–2715.

16. Hoffmann, M.; Bergmann, R. Informed machine learning for improved similarity assessment in process-oriented case-based
reasoning. arXiv 2021, arXiv:2106.15931.

17. Acconcjaioco, M.; Ntalampiras, S. One-shot learning for acoustic identification of bird species in non-stationary environments//
Cornel University. arXiv 2021, arXiv:2105.00202.

http://doi.org/10.1088/1742-6596/1546/1/012083
http://doi.org/10.3233/AIC-1994-7104
http://doi.org/10.3390/app10155269
http://doi.org/10.3390/ijerph17113928
http://www.ncbi.nlm.nih.gov/pubmed/32492976
http://doi.org/10.1007/s10489-021-02251-3
http://doi.org/10.1007/s13748-020-00223-1
http://doi.org/10.1007/s13748-019-00201-2
http://doi.org/10.1007/PL00009897


Appl. Syst. Innov. 2021, 4, 73 12 of 12

18. Deshpande, A.M.; Minai, A.A.; Kumar, M. One-shot recognition of manufacturing defects in steel surfaces. Procedia Manuf. 2020,
48, 1064–1071. [CrossRef]

19. Hsiao, S.-C.; Kao, D.-Y.; Liu, Z.-Y.; Tso, R. Malware image classification using one-shot learning with siamese networks. Procedia
Comput. Sci. 2019, 159, 1863–1871. [CrossRef]

20. Abdelwahed, M.F.; Mohamed, A.E.; Saleh, M.A. Solving the motion planning problem using learning experience through
case-based reasoning and machine learning algorithms. Ain Shams Eng. J. 2020, 11, 133–142. [CrossRef]

21. Guo, Y.; Zhang, B.; Sun, Y.; Jiang, K.; Wu, K. Machine learning based feature selection and knowledge reasoning for CBR system
under big data. Pattern Recognit. 2021, 112, 107805. [CrossRef]

22. Zhai, Z.; Martínez, J.F.; Martínez, N.L.; Díaz, V.H. Applying case-based reasoning and a learning-based adaptation strategy to
irrigation scheduling in grape farming. Comput. Electron. Agric. 2020, 178, 105741. [CrossRef]

23. Guo, Y.; Chen, W.; Zhu, Y.-X.; Guo, Y.-Q. Research on the integrated system of case-based reasoning and Bayesian network. ISA
Trans. 2019, 90, 213–225. [CrossRef] [PubMed]

24. Leake, D.; Ye, X.; Crandall, D. Supporting case-based reasoning with neural networks: An illustration for case adaptation. In
Proceedings of the CEUR Workshop 2021, Online. 28–29 May 2021; Volume 2846, p. 1.

25. Bhatia, A.; Pinto, A. Supporting automated construction of knowledge-bases for safety critical applications: Challenges and
opportunities. In Proceedings of the CEUR Workshop 2021, Online. 28–29 May 2021; Volume 2846, p. 37.

26. Saker, M.K.; Zhou, L.; Eberhart, A.; Hitzler, P. Neuro-symbolic artificial intelligence: Current trends. arXiv 2021, arXiv:2105.05330
[cs.AI].

http://doi.org/10.1016/j.promfg.2020.05.146
http://doi.org/10.1016/j.procs.2019.09.358
http://doi.org/10.1016/j.asej.2019.10.007
http://doi.org/10.1016/j.patcog.2020.107805
http://doi.org/10.1016/j.compag.2020.105741
http://doi.org/10.1016/j.isatra.2018.12.049
http://www.ncbi.nlm.nih.gov/pubmed/30686590

	Introduction 
	The Relevance of Research 
	Problem Description and Proposed Method 

	Materials and Methods 
	Background and Related Work 
	Formation of a Training Dataset 
	Representation of the Situation at the CTO 
	Forming a Dataset for Experiments 


	Results 
	Multilayer Perceptron 
	Comparator-Adder Architecture 

	Discussion 
	Conclusions and Further Work 
	References

