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Abstract: We describe imputation strategies resistant to outliers, through modifications of the simple
imputation method proposed by Krzanowski and assess their performance. The strategies use a
robust singular value decomposition, do not depend on distributional or structural assumptions
and have no restrictions as to the pattern or missing data mechanisms. They are tested through the
simulation of contamination and unbalance, both in artificially generated matrices and in a matrix
of real data from an experiment with genotype-by-environment interaction. Their performance is
assessed by means of prediction errors, the squared cosine between matrices, and a quality coefficient
of fit between imputations and true values. For small matrices, the best results are obtained by
applying robust decomposition directly, while for larger matrices the highest quality is obtained by
eliminating the singular values of the imputation equation.

Keywords: imputation; missing values; singular value decomposition; genotype-by-environment interaction

1. Introduction

Complete data matrices are required for some statistical analysis techniques, making
the imputation of missing values necessary in certain circumstances. For example, the
biplot analysis used widely in multivariate exploratory analysis [1] and the additive main
effects and multiplicative interaction models–AMMI [2]–used to describe the interaction
between genotypes and environments, have as main tool the singular value decomposition–
SVD [3]. However, this SVD is not directly calculable if there are missing values [4], and
it is necessary to pre-process the information by first replacing the missing data with
plausible values.

Modern literature on incomplete information analysis recommends completing ma-
trices using methods that employ either maximum likelihood or multiple imputation [5].
However, these procedures can depend heavily not only on probability distributions (for
example, multivariate normal), but also on the missing data mechanisms [6].

There are currently four missing data mechanisms [7]: Missing Completely at Random
(MCAR), where the missing data does not depend on the feature variable being considered
or any of the other feature variables in the dataset; Missing at Random (MAR), where
the missing data in the feature variable is conditional on any other feature variable in
the dataset but not on the one being considered; Missing not at Random (MNAR); when
the possibility of a feature variable having a missing data entry depends on the value of
the feature variable itself (irrespective of any alteration or modification to the values of
other feature variables in the dataset); and Missing by Natural Design (MBND), where the
missing data occurs because it cannot be measured physically but is relevant in the data
analysis procedure [7].

To take into account both dependence on probability distributions and missing
data mechanisms, a very useful option is non-parametric imputation [8,9]. A general
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method free of structural and distributional assumptions was originally proposed by
Krzanowski [10] and recently generalized by Arciniegas-Alarcón et al. [11] to complete
matrices from multi-environmental experiments. The method depends on the SVD, which
is a least squares technique, but a disadvantage of these types of techniques is that they are
highly influenced by untypical values or outliers [12].

To the best of our knowledge, this method has not yet been subjected to a robustness
study, so our purpose here is to evaluate its performance in the face of outlier observations
and to propose some strategies for robust imputations. We therefore first present an
updated version of the SVD method, then consider robust alternatives for imputation, and
finally describe numerical studies for the corresponding performance analysis.

2. Material and Methods
2.1. Missing Value Imputation Using the SVD–Method SVD88

The method consists of an updated version of the imputation system of Krzanowski [10]
with some minor changes reported in the literature that improve its performance [11]. Con-
sider a matrix Y (n× p) with elements yij (i = 1, . . . n; j = 1, . . . p) and p > n (if p < n the
matrix should be first transposed). First, suppose there is just one missing value yij in Y.
Then, the i-th row from Y is deleted and the SVD for the ((n− 1)× p) resulting matrix
Y(−i) is calculated as Y(−i) = UDVT , U = (ush), V = (vsh), D =

(
d1, . . . , dp

)
. The next step

is to delete the j-th column from Y and obtain the SVD for the (n× (p− 1)) matrix Y(−j) as

Y(−j) = ŨD̃Ṽ
T

, Ũ = (ũsh), Ṽ = (ṽsh), D̃ =
(

d̃1, . . . , d̃p−1

)
. The matrices U, V, Ũ and Ṽ are

orthonormal, while D̃ and D are diagonal. Now, combining the two SVDs, Y(−i) and Y(−j),
the imputed value is given by:

ŷij =
H

∑
h=1

ũih

(
d̃h

√
p/(p− 1)

) 1
2
vjh

(
dh

√
n/(n− 1)

) 1
2

(1)

where H is the optimal number of components of the SVD that can be found by cross-
validation methods adapted for matrices with missing data and available in the R statistical
environment [13]. In this work, the “bcv” package was used, which has implemented cross-
validation for incomplete matrices using an EM algorithm ([13]; available from CRAN; see
https://cran.r-project.org/web/packages/bcv/index.html, accessed on 25 June 2021).

When there is more than one missing value, an iterative scheme is required as fol-
lows. Initially, all missing values are replaced by their respective column means, giving
a completed matrix Y and then the columns are standardized by subtracting mj and di-
viding the result by sj (where mj and sj represent the mean and the standard deviation
of the j-th column calculated only from the observed values). Using the standardized
matrix, the imputation for each missing value is recalculated using the Equation (1). Fi-
nally, the matrix Y is returned to its original scale, yij = mj + sjŷij. Then, the process
is iterated until stability is achieved in the imputations (i.e., when the values in two
successive iterations agree to within a desired level of accuracy). In order to avoid con-
vergence problems, a parity check should be done in each iteration by matching the sign

of
(

ũih

(
d̃h
√

p/(p− 1)
) 1

2
)(

vjh

(
dh
√

n/(n− 1)
) 1

2
)

in Equation (1) to the sign of uihdhvjh

obtained from the SVD of the Y matrix for each h = 1, . . . , H [11].
Pseudocode

i. Y <- incomplete matrix.
ii. Y* <- initial completed matrix (columns mean and standarisation).
iii. ŷij <- Imputation update (Equation (1)), ∀(i, j) with missing values.
iv. Return to step ii. until stability is achieved in the imputations.

https://cran.r-project.org/web/packages/bcv/index.html
https://cran.r-project.org/web/packages/bcv/index.html
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2.2. Robust Singular Value Decomposition

The presence of outliers in a data set can reduce the effectiveness of least squares
techniques [12], which in this case is the standard SVD. To avoid this behavior, robust
lower-rank approximations or equivalent robust SVD could be used. Fortunately, the
literature provides several alternatives that can be considered.

Recently, [14] presented a review of four options for producing robust SVD. The first
is an approximation of alternating regressions based on a mixture of M estimators and
trimmed least squares estimators. For more details on these types of regressions, see [15].
The second consists of a sub-sampling method whose objective is to find a sub-matrix
of rows without outliers with high probability and from this sub-matrix to estimate the
effects of rows and columns by means of a robust function. For more details see [16].
The third option is to use iterative reweighted least square algorithms to obtain robust
estimators in principal component analysis (PCA). A complete description of this approach
and extensions can be found in [17] and a computational implementation is available in
the R RobRSVD package [13]. The last option is an optimization with restrictions in which
the data matrix is assumed to be a sum of three matrices, one of low rank, a sparse matrix
to represent the outliers, and a random noise matrix. Algorithms for such optimization
and additional details can be found in [14].

Other very useful work on robust SVD has been carried out by [18], who used
alternating robust fittings with trimmed least squares to find the SVD and apply it in
microarray data analysis; Maronna and Yohai [19] who used alternating M regressions
to obtain robust low-rank approximations; and Rodrigues et al. [20,21], who used the
SVD proposed by Hawkins et al. [22] for robust singular spectral analysis and for a ro-
bust version of AMMI models. The computational implementation of this SVD can be
found in the R pcaMethods package ([13]; pcaMethods available from Bioconductor;
https://bioconductor.org/packages/release/bioc/html/pcaMethods.html, accessed on 25
June 2021).

Given this literature review and taking our objectives into account, we delimit the
research and choose an option to produce a robust SVD that can use the SVD88 method. To
focus specifically on matrices with genotype-by-environment interaction, we adopt the sug-
gestion of [20]. Thus, we use the Hawkins et al. [22] SVD which is based on an alternating
L1 regression algorithm (rSVD01), and the generalization proposed by [23] using weighted
least absolute deviation regression (rSVD10). The frequent use of alternating regressions in
the literature cited above obliged us to also consider the classic reference of Gabriel and
Odoroff [24], whose main objective was to produce resistant low-rank matrices (rSVD84).

We thus initially focused on comparing the performances of rSVD01, rSVD10, and
rSVD84 when they are introduced into the SVD88 imputation system. However, their
individual performance was also considered, i.e., without introducing them into the im-
putation system. This is because the SVD from alternating regressions does not need
any data imputation as it uses only the observed information. Moreover, a robust low-
rank approximation can provide estimates of the missing positions of an incomplete
matrix [18] without any additional calculations. The three SVDs were tested, and in
the case of rSVD01 and rSVD10, we also tested replacing L1 regressions with M re-
gressions using the rlm function of R ([13]; RobRSVD available from CRAN; see https:
//cran.r-project.org/web/packages/RobRSVD/index.html, accessed on 25 June 2021).
These preliminary tests used contaminated and incomplete matrices of different dimen-
sions, starting with matrices of dimension 20 × 5 and continuing to matrices with many
more elements, for example, dimension 100 × 8. In these initial experiments, the method
that was statistically simplest, computationally most efficient, and with the best results
when introduced into the SVD88 was always rSVD84, so it is the method described below.

2.3. rSVD84 (Procedure Based on García-Peña et al., 2021 and Gabriel and Odoroff 1984)

Consider a dimension Y matrix (n× p) with possible missing entries. (i) Using the
observed information, calculate the vectors of trimmed means (i.e., the means when a

https://bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://bioconductor.org/packages/release/bioc/html/pcaMethods.html
https://cran.r-project.org/web/packages/RobRSVD/index.html
https://cran.r-project.org/web/packages/RobRSVD/index.html
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certain percentage of the most extreme observations are ignored; we use 10% or 20%
following [25]) by columns and by rows, b(1× p) and a(n× 1) respectively. (ii) Determine
the presence of outliers in vector a by any technique that is preferred for univariate outliers
(for example, the quartile method) and if there is any discrepant data replace it with
a trimmed mean of the elements of a. (iii) Update the elements of b and a as follows:
bc = med{|yr,c/ar|; r = 1, . . . , n } and ar = med{|yr,c/bc|; c = 1, . . . , p }. Repeat steps (ii)
and (iii) with the updated vectors b and a until some convergence criteria are attained.
Once the stability of vectors b and a has been achieved, a robust low-rank approximation
of Y is obtained by means of the abT product whose element signals must be the same as
those of Y. To obtain the first singular value and the first right and left singular vector of
the robust SVD, the standard SVD over abT is applied and both the first singular value and
the first right and left singular vector are recorded. To obtain the second singular value and
the second right and left vector, the same procedure described in this section is done, but
replacing the matrix Y with Y-abT. This cyclic strategy deflating the matrix continues until
the desired number of robust SVD components-rSVD84 is obtained. In the Appendix A of
this manuscript a function is provided in R [13] that calculates the rSVD84 for any complete
or incomplete matrix.

Pseudocode

i. Y <- incomplete matrix
ii. Y* <- initial completed matrix (columns mean)
iii. Calculate a robust singular value decomposition on Y* Section 2.3 (rSVD).
iv. The rSVD contains the require imputations.

2.4. Alternatives to Obtain Robust Imputation

The SVD88 algorithm depends directly on the standard SVD, so the presence of
outliers can affect the performance and decrease the quality of the imputations. To avoid
this behavior, we have three possible strategies: (i) Substitute in the SVD88 iterations the
classic robust standardization, in which the column standardization is done by subtracting
the median Mj and dividing the result by the median absolute deviation-MADj. Having
thus standardized the matrix, use rSVD84 until stability in the imputations is obtained and
then return the matrix to the original scale; (ii) Find a robust low-rank approximation to the
incomplete matrix using rSVD84 and then take the values obtained in that approximation
as imputations for those matrix positions that were not originally obtained. (iii) Perform the
imputation in two stages, first obtaining a robust low-rank approximation of the incomplete
matrix and then applying the SVD88 method to refine the imputations.

Some additional implementation details for these options are as follows. In option
(i) we tried to obtain a robust version of SVD88 but using the robust standardization
and rSVD84 together did not perform well and in preliminary tests it never achieved
convergence. However, if we eliminated the singular values of Equation (1) of imputation
then convergence was achieved. This robust version of the SVD88 is called M5RobSVD.
Option (ii) or rSVD84 has always shown in preliminary tests to be the fastest but for both
this and M5RobSVD an appropriate number of components to be used in the imputation
must be specified. To do this, the robust SVD was calculated on the incomplete matrix
and k was chosen such that the sum of the first k ordered singular squared values divided
by the sum of all singular squared values was greater than 0.75 [11]. Finally, option
(iii) depends on the sequential application of two procedures, rSVD84 and SVD88. This
sequence of procedures in the preliminary tests has always reached convergence. In view
of the original authors of the procedures, we call the imputation methods GOKimputation
and M5GOKimputation when the singular values were disregarded.

Pseudocode for M5RobSVD

i. Y <- incomplete matrix
ii. Y* <- completed matrix (columns means and divide by MADj).
iii. ŷij <- Imputation update (Equation (1)), eliminate d̃h and dh, ∀(i, j) with missing values.
iv. Return to step ii. until stability is achieved in the imputations,
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2.5. Numerical Example 1: Simulation Study

To evaluate the performance of the five imputation systems (SVD88, M5RobSVD,
rSVD84, GOKimputation, and M5GOKimputation), we simulated eight incomplete and
contaminated 100 × 8 size matrices (Table 1) that had the structure of an AMMI model,
using the steps given by [20,26] as follows:

1. Create a matrix X with n = 100 rows and p = 8 columns with observations drawn
from a uniform distribution [−0.5; 0.5].

2. Compute the SVD of X to obtain the matrices U, V and D, containing, respectively,
the left and right singular vectors and the singular values of X.

3. Simulate the grand mean (µ), the row (α) and column (β) main effects, where µ ∼
N(15, 3), α ∼ N(5, 1) and β ∼ N(8, 2).

4. Simulate a matrix Y with AMMI2 structure (i.e., AMMI with the first two singular
values/vectors):

Y = 1n1T
p µ +αn1T

p + 1nβT
p + 28×U[, 1]D[1, 1]V[, 1]T + 15×U[, 2]D[2, 2]V[, 2]T

where A[, i] represents i-th column of the matrix A (i = 1, 2), A[i, i] represents the element
in the row i and column i of the matrix A, 1n1T

p µ is a matrix (n× p) with the grand mean µ

in all positions, αn1T
p is a matrix (n× p) of rows main effects (all matrix rows equal), 1nβT

p
is a matrix (n× p) of columns main effects (all matrix columns equal).

Table 1. Characteristics of the simulated matrices.

Matrices % of Missing % of Outliers

Matrix1 10 0
Matrix2 20 0
Matrix3 10 5
Matrix4 10 10
Matrix5 10 15
Matrix6 20 5
Matrix7 20 10
Matrix8 20 15

For each complete Y matrix, observations were then randomly deleted at the specified
percentages shown in Table 1 and outliers were produced in the remaining data at the
companion percentages in Table 1. The positions of the outliers were chosen randomly, and
the outliers were generated from N

(
µj + 5σ2

j , σ2
j

)
, where µj and σ2

j represent the mean
and variance of the j-th column (or j-th environment) of the non-missing values. The five
imputation procedures were applied to the eight incomplete and contaminated matrices,
the five imputation procedures were applied, having previously recorded the true data
that had been randomly removed. This made it possible to assess the performance of the
imputations by calculating the prediction error Pe defined by [4] as the square root of the
mean squared error (MSE) between the true values and the corresponding imputations.

2.6. Numerical Example 2: Cross-Validation on Real Data from Experiments with
Genotype-by-Environment Interaction

The Ontario winter wheat dataset with 18 genotypes in nine environments was pub-
lished by [27] to show an application of biplot analysis, and recently these data were used
to illustrate new proposals for distribution-free multiple imputation [9] and new boot-
strap methods to determine the optimal number of multiplicative components in AMMI
models [28].

A difficulty in evaluating the behavior of robust imputation systems in complete real
data is the lack of a priori knowledge of what “good behavior” should be. For this reason
and following the recommendation of [19], we consider adding a small contamination of
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the matrix elements and removing some elements. Initially, 10% of the elements of each
environment were removed, but unlike the previous simulation study, we used an MNAR
mechanism. To obtain non-random deletions, we obtained the 10th percentile of each
column

(
P10j; j = 1, . . . , 9

)
and any observation that was less than P10j was eliminated to

obtain an incomplete matrix. On the resulting matrix, 10% of positions chosen at random
were contaminated following the same contamination process used in the simulation study
mentioned above.

When the “Ontario” matrix was incomplete and contaminated, each of the values
present in the matrix was eliminated and imputed with the robust strategies presented
from the remaining elements. Thus, a complete matrix of imputations for each method
was obtained by cross-validation and could be compared with the original matrix us-
ing Pe [4]. In addition to the prediction error, we added two more statistics proposed
by Gabriel [29] to identify the best method. One of these statistics was the coefficient
GF1 = 1− ‖O− I‖2/‖O‖2, where O is the true “Ontario” matrix and I is the imputa-
tion matrix obtained by cross-validation. The other statistic was GF2 = cos2(O, I) =

tr2(OT I)
tr(OTO)tr(IT I)

. The GF2 statistic will always be in the range [0, 1] and the closer it is to 1,

the better are the imputations. On the other hand, GF1 cannot be greater than GF2, but it
can take negative values which indicate that the imputations are of lower quality than if
matrix I were the zero matrix.

This second numerical study was also used to compare our new robust proposals with
a method that has had good results in data science, the missForest method [8]. missForest
is an imputation method based on random forests (predictors that consist of a collection
of randomized regression trees) that has a high versatility as it is nonparametric, it can be
applied to continuous, categorized or mixed data (categorized and continuous) and it has
a computational implementation in the statistical language R [30,31].

3. Results and Discussion

Table 2 shows the results of the first numerical example. When data were incomplete
(10% and 20% of missing values), but without contamination, the SVD88 algorithm always
obtained the smallest prediction errors. This behavior is as expected, since without outliers
the procedures based on least squares generally perform well [12]. This situation changes
completely when there is contamination of the data with 5, 10 and 15% of outliers. In these
cases, it can be seen that as the number of outliers increases, the SVD88 prediction errors
also increase. Thus, SVD88 is highly affected by contamination, producing low quality
imputations. It can also be seen that in these contaminated scenarios the four proposed
strategies of robust imputation always surpass SVD88 in terms of Pe. It remains, then, to
analyze in detail the performance of the robust imputations.

In general, using the mean and median of the prediction errors, M5RobSVD provides
the best quality of imputations when there are outliers because it minimizes the values
of such statistics. However, at the highest imputation and contamination percentages,
(20% and 15%, respectively) the M5GOKimputation strategy marginally outperforms
M5RobSVD. Moreover, the remaining two strategies, rSVD84 and GOKimputation, are
also effective in the presence of outliers because they had lower Pe values than SVD88, but
in no case were they able to improve on M5RobSVD or M5GOKimputation. These results
show that the elimination of the singular values of the imputation equation within a robust
procedure favors convergence and improves the quality of the imputations.

Table 3 shows the results of the second numerical example based on the “Ontario”
matrix. It is noteworthy that the four strategies proposed in this article outperformed
both the SVD88 and the missForest method, obtaining GF1 and GF2 values close to 1
and minimizing Pe. In this cross-validation exercise on real data, SVD88 presented the
worst performance with very poor-quality imputations, which can be concluded from
the negative value in the GF1 statistic. This situation can be explained by the lack of
convergence in the imputation of some observations.
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Table 2. Results of numerical example 1.

Percentage of Missing Values and Outliers

Imputation Method

SVD88 M5RobSVD rSVD84 GOK
Imputation

M5GOK
Imputation

Matrix %miss %out Pe Pe Pe Pe Pe

1 10 0 0.9721 4.4655 4.5945 4.5903 4.4889
2 20 0 0.7570 3.9584 4.4752 4.4670 4.0461
3 10 5 17.5018 3.2894 3.8948 3.8883 3.3602
4 10 10 36.1932 3.2856 3.6275 3.6235 3.4482
5 10 15 46.3526 4.3479 4.4465 4.4396 4.3283
6 20 5 24.0821 4.5323 5.1784 5.1639 4.5994
7 20 10 36.8853 4.0614 4.7675 4.7563 4.1501
8 20 15 59.2625 4.6295 4.8285 4.8033 4.4290

Mean 27.7508 4.0713 4.4766 4.4665 4.1063
Median 30.1377 4.2047 4.5349 4.5286 4.2392

Standard deviation 20.9011 0.5342 0.5036 0.4993 0.4688
Interquartile distance 25.8827 0.6911 0.4742 0.4663 0.5473

Table 3. Results of numerical example 2.

Method GF2 GF1 Pe

SVD88 0.3202 −2.0001 7.4491
M5RobSVD 0.9836 0.9812 0.5891

rSVD84 0.9843 0.9821 0.5756
GOKimputation 0.9842 0.9819 0.5788

M5GOKimputation 0.9833 0.9808 0.5958
missForest 0.8730 0.3719 3.4083

On considering the GF2 and GF1 statistics, the four methods M5RobSVD, rSVD84,
GOKimputation M5GOKimputation showed values of approximately 0.98 with very small
differences only in the third and fourth decimal places. This indicates that the imputations
are all high quality and the performance difference among these methods is very small. On
the other hand, the prediction error was minimized using rSVD84, so taking into account
the values of all three statistics then rSVD84 can be chosen in this case, because it is the
fastest computationally robust method.

The numerical results presented so far show that our four robust imputation alter-
natives (M5RobSVD, rSVD84, GOKimputation and M5GOKimputation) work very well
and in the case of data contamination the SVD88 algorithm should be replaced by one
of them. The reader may therefore be left with the question: which method to choose
according to the results obtained in this study? answer this question, outliers must first be
detected and for this reason the “cellWise” package from R ([13]; cellWise available from
CRAN; https://cran.r-project.org/web/packages/cellWise/index.html, accessed on 25
June 2021) is recommended. Once outliers are detected [32], the dimension of the matrix
under analysis must be taken into account. If the matrix is small (for example 18 × 9)
rSVD84 can be applied, but if the matrix is larger (for example 100 × 8), the M5RobSVD
and M5GOKimputation systems can be considered. In the latter case, if the imputation
and contamination percentages were greater than 20 and 10% respectively, it is suggested
to test both algorithms. From a computational point of view, in large matrices (100 × 8)
M5GOKimputation presents greater speed if compared to M5RobSVD. All the proposals in
this article are based on a robust SVD, for that reason in the Appendix A function of R is
presented to calculate the rSVD84.

Finally, it is worth answering one more question that may arise for the applied
researcher when analyzing contaminated and unbalanced data: what is the maximum
percentage of contamination that can be tolerated if an effective imputation of missing
values is to be made? There is a lot of literature on the two problems and very useful

https://cran.r-project.org/web/packages/cellWise/index.html
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references can be found in the recent study by [32]. However, we suggest following a
rationale derived from a simulation study described by [33] and from the results obtained
by [4]. In a real situation, algorithms based on SVD can work with up to 60% of missing
values [4], but if there is a high proportion of outliers in the remaining data, imputations
will necessarily be affected by them and will produce low quality of results [33]. Taking
this into account, we recommend only considering imputation on incomplete matrices
that still have at least half of the observed data without outliers. For example, one rule of
thumb might be to add the percentages of missing data and outliers, and only proceed if
that sum is not greater than 40%. This will ensure that at least 60% of “clean” data can be
effectively used for the purpose of completing the matrix. With less than 60% of “clean”
data any imputation results should be treated with caution.

4. Conclusions

In this paper, we have focused on nonparametric imputation based on the singular
value (SVD) decomposition [10,11]. SVD is a least-squares technique, and in the presence
of outliers it is known that least-squares imputation methods can produce low quality
imputations [12]. The main aims of our study were therefore:

1. To consider robust versions of the method that will allow for outliers.
2. To investigate the robustness of all the proposed methods, in what we believe to be

the first extensive such robustness study.
3. To provide advice as to which specific method to use in a given practical application

requiring imputation.

Our conclusions regarding these aims can be summarized as follows. The basic
method, denoted SVD88 in the text, performs well in the absence of outliers but perfor-
mance deteriorates markedly as the number of outliers increases. Imputations in all cases
are indeed of low quality. Four possible robust versions of SVD88 were identified and
studied. All improved substantially on SVD88 so in the case of contaminated data one of
them should be used instead of SVD88. In a practical application, if the matrix is small then
rSVD84 is recommended, but for larger matrices either of M5RobSVD or M5GOK would
be preferable. If computational speed is needed, then the latter should be chosen. As for
the maximum number of missing or contaminated observations to allow, a suggested rule
of thumb is to add the percentages of missing and outlier observations and to proceed only
if the sum is not greater than 40%.

Finally, it is worth stressing that the robust singular value decomposition is a flexi-
ble tool that allows us to generate imputations resistant to outliers, and strategies have
been proposed here that perform well without the use of any structural or distributional
assumptions. The proposed imputation schemes can be safely applied in experiments with
genotype-by-environment interaction and, being very general, they can be widely used in
any research area that has an incomplete two-way or multivariate matrix.
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Appendix A. R Functions to Calculate Robust SVD (Procedure Based on
García-Peña et al., 2021)

###rm(list=ls(all=TRUE)) # Deletes all content from memory
###install.packages(“StatMeasures”)
library(DescTools)
rSVD84SAM<-function(WojtekOrig){
indicamissing<-is.na(WojtekOrig)# Indicates the occurrence of missing in the matrix
posicobservados<-which(indicamissing != 1, TRUE) # Matrix of positions with observed
totalobservados<-nrow(posicobservados)
library(StatMeasures)
### Creation of trimmed means for rows and columns with missing and complete
TrimmedColMeansWojtekOrig <- apply(WojtekOrig, 2, mean, trim=0.1, na.rm=T)
TrimmedRowMeansWojtekOrig<-apply(WojtekOrig, 1, mean, trim=0.2, na.rm=T)
trimmedmean<-mean(WojtekOrig, trim=0.2, na.rm=T)
TrimmedRowMeansWojtekOrig[is.na(TrimmedRowMeansWojtekOrig)] <- trimmedmean
if(outliers(TrimmedRowMeansWojtekOrig)$numOutliers>0){

trimmedmean.out2<-mean(TrimmedRowMeansWojtekOrig, trim=0.2, na.rm=T)
num.outliers2<-outliers(TrimmedRowMeansWojtekOrig)$numOutliers
pos.outliers2<-outliers(TrimmedRowMeansWojtekOrig)$idxOutliers
for(o in 1:num.outliers2){
TrimmedRowMeansWojtekOrig[pos.outliers2[o]]<-trimmedmean.out2
#print(o)
}### End of for(o in 1:num.outliers){

}### End of if(outliers(TrimmedColMeansWojtekOrig)$numOutliers>0){
###Inicial vector a SVD84
epsilon<-1*10**(-5)
stabilitycrit<-1
iter<-0
RSS_A0<-0
RSS_B0<-0
oldB<-TrimmedColMeansWojtekOrig
oldA<-TrimmedRowMeansWojtekOrig

while (stabilitycrit>epsilon & iter<=100){
a_s1_matrix<-matrix(1,nrow(WojtekOrig),ncol(WojtekOrig))*TrimmedRowMeansWojtekOrig
as_1_inverso<-1/a_s1_matrix
Y<-abs(WojtekOrig*as_1_inverso)
b_sj<-apply(Y, 2, quantile, probs=0.5, na.rm=T)
b_sj_matrix<-t(b_sj*matrix(1,ncol(WojtekOrig),nrow(WojtekOrig)))
b_sj_inverso<-1/b_sj_matrix
Z<-abs(WojtekOrig*b_sj_inverso)
RSS_B<-sum((b_sj-oldB)**2)
stabilitycritB<-abs(RSS_B-RSS_B0)
TrimmedRowMeansWojtekOrig<-apply(Z, 1, quantile, probs=0.5, na.rm=T)
trimmedmean2<-mean(Z, trim=0.2, na.rm=T)
TrimmedRowMeansWojtekOrig[is.na(TrimmedRowMeansWojtekOrig)] <- trimmedmean2
RSS_A<-sum((oldA-TrimmedRowMeansWojtekOrig)**2)
stabilitycritA<-abs(RSS_A-RSS_A0)
stabilitycrit<-max(stabilitycritA,stabilitycritB)
if(outliers(TrimmedRowMeansWojtekOrig)$numOutliers>0){

trimmedmean.out2<-mean(TrimmedRowMeansWojtekOrig, trim=0.2, na.rm=T)
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num.outliers2<-outliers(TrimmedRowMeansWojtekOrig)$numOutliers
pos.outliers2<-outliers(TrimmedRowMeansWojtekOrig)$idxOutliers
for(o in 1:num.outliers2){
TrimmedRowMeansWojtekOrig[pos.outliers2[o]]<-trimmedmean.out2
#print(o)
}### End of for(o in 1:num.outliers){

}### End of if(outliers(TrimmedColMeansWojtekOrig)$numOutliers>0){
oldA<-TrimmedRowMeansWojtekOrig
oldB<-b_sj
RSS_B0<-RSS_B
RSS_A0<-RSS_A
iter<-iter+1

} ### End of while
lower.rank.approx<-oldA%*%t(oldB)
for (k in 1:totalobservados){

if(WojtekOrig[posicobservados[k,1],posicobservados[k,2]]<0
& lower.rank.approx[posicobservados[k,1],posicobservados[k,2]]>0){
lower.rank.approx[posicobservados[k,1],posicobservados[k,2]]<

-lower.rank.approx[posicobservados[k,1],posicobservados[k,2]] * (-1)}
if(WojtekOrig[posicobservados[k,1],posicobservados[k,2]]>0
& lower.rank.approx[posicobservados[k,1],posicobservados[k,2]]<0){
lower.rank.approx[posicobservados[k,1],posicobservados[k,2]]<

-lower.rank.approx[posicobservados[k,1],posicobservados[k,2]] * (-1)}
} ### End of for (k in 1:totalobservados){
list(rSVD84.iter=iter,

rSVD84.converA=stabilitycritA,
rSVD84.converB=stabilitycritB,
rSVD84.approx=lower.rank.approx,
rSVD84.A=oldA,
rSVD84.B=oldB

)
} ### End of rSVD84SAM<-function(WojtekOrig){
robustSvdGO<-function(X){
svdu <- matrix(NA, nrow=nrow(X), ncol=ncol(X))
svdv <- matrix(NA, nrow=ncol(X), ncol=ncol(X))
svdd <- rep(NA, ncol(X))

for(k in 1:ncol(X)) {
rob.approx<-rSVD84SAM(X)
rsvd<-svd(rob.approx$rSVD84.approx)
## Deflate the X matrix
X <- (X - rob.approx$rSVD84.approx)
svdu[,k] <- rsvd$u[,1]
svdv[,k] <- rsvd$v[,1]
svdd[k] <- rsvd$d[1 ]
#print(k)
#print(rsvd$iter)
#print(rsvd$stabilization)
}###End of for(k in 1:ncol(X))

total.variability<-sum(svddˆ2)
cumuled.variability<-cumsum((svddˆ2)/total.variability)
Calinski.crit1<-which(cumuled.variability > 0.70)[1]
cumuled.variability2<-cumsum((sort(svddˆ2, decreasing=T))/total.variability)
Calinski.crit2<-which(cumuled.variability2 > 0.70)[1]
Calinski.crit<-min(Calinski.crit1,Calinski.crit2)
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## Create the result object
ret2 <- list()
ret2$d <- svdd
ret2$u <- svdu
ret2$v <- svdv
ret2$Calinski99<-Calinski.crit
return(ret2)
}###End of robustSvdGO<-function(X){
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