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Abstract: In fields with high science linkage, such as the nanocarbon field, trends in academic papers
are particularly important for identifying future technological trends. The use of the number of
citations allows us to predict the qualitative trends on a paper-by-paper basis. At the same time,
it is necessary to be able to comprehensively discuss both qualitative and quantitative aspects in the
subject area. This study aimed to detect emerging areas in the nanocarbon field using network models
and topic models. It was possible to not only construct a model that exceeded an 86.2% F1 measure but
also to focus on an area that could not be detected by the prediction model. This was accomplished by
focusing on paper units, such as the research on the chemical synthesis of zigzag single-walled carbon
nanotubes. Thus, it is possible to obtain knowledge that contributes to diversified R&D strategies
and innovation policies by considering the emergence of new fields from multiple perspectives.

Keywords: nanocarbon; emerging research; citation network; topic model; machine learning;
innovation management; science and technology policy

1. Introduction

Academic research trends often help companies formulate research and development (R&D) strategies.
Specialized knowledge is becoming more individualistic and, in highly fragmented fields, the results may
change depending on the selection of participants [1]. In many academic fields, the number of publications
is growing exponentially and it is becoming increasingly difficult to obtain comprehensive perspectives of
such fields [2]. As the amount of science and technology data are increasing, attempts are being made to
contribute to innovation policies and R&D strategies by considering entire fields [3–9]. While endeavoring
to obtain the overall perspectives of such fields, efforts have also been directed toward investigations
of what kinds of research will attract attention in the future [10–14]. In fields such as the nanocarbon
field where the linkage representing the distance between technology and science is high, the trends
of academic papers are important for identifying future technological trends. There are many review
papers on nanocarbons, including ones on exudation in carbon nanotube (CNT) polymer composites [15],
chemical vapor deposition (CVD) of CNTs [16], and the application of CNTs as electrode materials in
lithium-ion batteries [17]. It is possible to provide certain guidelines for overviewing work in this area
from the past to the present. However, few studies have adequately discussed future projections.

Extensive research has been conducted on the prediction or identification of emerging science
and technology fields. The prediction of emerging research areas has traditionally been studied in
bibliometrics or library and information science. It is known to be useful to focus on the citation
relationships of papers as a method for extracting the essence of a field. The number of citations is a
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useful indicator for evaluating the quality of research. The use of regression of the number of citations
allows us to downsize the number of papers and to avoid selection bias [18–20]. Due to the current
advancement of prediction algorithms, such as machine learning algorithms and the improvement
of computing capabilities, it has become possible to extract patterns that contribute to predicting
future trends.

This research-based forecasting of the future of science is needed when companies and governments
discuss innovation policy, but a paper-by-paper perspective alone is insufficient information for actual
decision-making. A semimacro perspective on what new areas are emerging is needed, not just a
paper-by-paper view. This study focuses on the field of nanocarbons, not only in terms of papers but
also in terms of emerging areas. A combination of micro and semimacro perspectives will enable us to
understand the trends in the field in terms of both quality and quantity.

1.1. Literature Review

There has been discussion regarding the definition of an emerging paper based on indicators of
emergence using similarity and entropy between papers [21]. This includes an increase in terms of the
abstracts [22] and the cumulative number of scientific and technological documents in basic and applied
research. Dong et al. [23] predicted the h-index of a book five years after publication. They defined the
impact of a paper based on six factors—author, content, publisher, citation, coauthorship, and time
series—and applied their approach to 200,000 computer science papers [23]. Chakraborty et al. [24]
used data from 1.5 million computer science papers to categorize the time series of citation counts
for several years after publication into six types. By combining the characteristics of the authors,
academic societies, and keywords, Chakraborty et al. predicted the citation counts within five years.
Wang et al. [25] focused on the power law describing the citation numbers of papers and formulated
a citation number prediction method for future papers from the time series information of citation
numbers five years after publication. Adams [26] showed that the number of citations 3–10 years after
publication is correlated with the number of citations 1–2 years after publication in the fields of life
science and physics. Li and Tong [27] formulated the paper citation prediction as an optimization
problem. The authors studied 50,000 computer science papers and estimated the number of citations
10 years after publication based on the information obtained 3 years after publication.

Reports that discuss emerging research using citation analysis can be broadly divided into those
that involve cocitations [10,28], bibliographic coupling [29], and direct citations [30,31]. In many of these
investigations, knowledge structures were abstracted as networks. Davletov et al. [32] estimated the
number of citations 5 or 10 years after publication by using the time series information of citations
several years after publication and the structure information of citation networks. This was accomplished
by employing data from 27,000 arXiv energy physics papers [32], 150,000 computer science papers
(Arnet Miner), and 200,000 papers (CiteSeerX). According to Davletov et al. [33], the time series of citations
during the first two years after publication are important for prediction. Meanwhile, Mori et al. [34]
focused on academic papers related to artificial intelligence to predict the emergence of papers from the
perspective of increasing the citation count by using network, text, and cluster information, among other
aspects. Sasaki et al. [35] attempted to extract emerging papers in the photovoltaic (PV) power generation
field. Chen et al. [36] used cocitation networks and collaborative research networks in academic papers to
focus on research across structural gaps in networks. Citation networks are connections of knowledge, at
least based on the premise that knowledge is built on knowledge in academia.

Topic models are often used to predict trends in academic research. In recent years, Latent Dirichlet
Allocation (LDA) has been used in numerous studies for scientific and technological bibliographic
information [37–39]. For example, Jiang et al. [40] extracted common terms such as “fish,” “species,”
“emission,” “lake,” “sediment,” and “climate” using topic models from 1726 papers related to hydroelectric
fields. These facilitate understanding of the topic of interest, using all the papers published in a particular
year as a parameter. However, the topic model is a model that evaluates a topic based on the many terms
that have appeared up to that point. In other words, they can capture a large trend in a topic, but they
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do not guarantee the quality of the research. In addition, topic models do not contribute to the future
prediction of a field, because they evaluate the emergence of many terms as a posteriori.

1.2. Purpose and Contribution

As described above, it is possible to evaluate individual papers by using quality indexes such
as the number of citations, but it is not sufficient to evaluate quantitatively the emerging fields of
research. In addition, it is not sufficient to evaluate qualitatively and predict the future of research if
we only evaluate topics that are emerging in large numbers at a given time, as in the case of the topic
model. In forecasting the emergence of a field where both scientific and technological applications
are mixed, such as nanocarbons, there are scientific and commercial perspectives. In such a complex
field, there is a limit to the ability to predict and discuss the emerging technologies using only one
forecasting method. However, not enough research exists to predict the emergence of the field from
this perspective. In this study, we propose a prediction method that takes into account both the quality
and quantity of emerging fields, by discussing them from both a micro perspective, which has not been
sufficiently discussed in the past, and a semimacro perspective, which has focused on the cluster units.

The contribution of this study is to provide knowledge that will help companies and governments
to predict the future from multiple perspectives when implementing innovation plans in highly
uncertain fields, such as nanocarbons.

2. Method Development

2.1. Overview

Figure 1 provides an overview of the method. As shown, the citation network was converted into
an unweighted network with papers as nodes and citation relationships as links (Step 1 in Figure 1).
Because core papers always constitute the largest component, direct citation is the most effective
means of detecting research frontiers. In fact, not all papers are closely related to the target fields
of nanocarbons. Papers having no citations as the largest component were considered digressional
and were ignored in this study (Step 2 in Figure 1). The network was then divided into several
clusters [41,42] using the topological clustering method [42] (Step 3 in Figure 1). Topological clustering
is a clustering method based on the graph structure of a network, and here we use a modularity
maximization. Here, a cluster is a module in a citation network and is a group of papers in which the
citation relations are divided using a modularity (Q value) maximization method and are densely
aggregated [42]. The modularity maximization method appreciates network partitioning such that the
intracluster is dense and the intercluster is sparse. The modularity maximization method determines
an optimal partitioning pattern by extracting the partitioning pattern that maximizes the modularity
by a greedy algorithm. Q is an evaluation function of the degree of coupling within a cluster and
between clusters and is given below.

Q =
∑

i

(
eii − a2

i

)
(1)

Here, eii is the ratio between the number of links connected to nodes belonging to the same cluster
i and the number of links in the entire network. Additionally, a2

i is the expected value of the ratio
between the number of links of eii and the total number of links.

Next, an emerging paper was defined, features were extracted from the cited networks, and the
constructed machine learning model was evaluated (Step 4). Emerging papers were defined as papers
that were ranked in the top 5% of the dataset each year and whose citations increased for three years
after publication. Step 4 will be described in detail after the following task definition. Using the
predicted emerging paper results, the topics of the clusters were further analyzed to address the
emergence by area and paper (Step 5 in Figure 1).
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2.2. Feature Extraction

The features of each paper were extracted from the bibliographic information and citation network
of the obtained paper. The features referred to here were learning data for predicting emerging
papers. These were used as explanatory variables. The features in this study can be classified into
four categories: network macro features; cluster features; network centrality features; citing paper
features. A network macro feature is a typical feature of the target citation network. These include:
the maximum value (NW MAXQ) of the number of papers (NW NODES); the total number of citations
(NW EDGES); the modularity (Q value) of the clusters in the network. Cluster features describe
the cluster to which the target paper belongs to and includes the maximum Q value of the cluster
(CL QMAX), the number of nodes in the cluster (CL NODES), and the order of the cluster (CL RANK)
to which the subject paper belongs. The network centrality features indicate the central position of a
given paper in a cited network. Specifically, these include: the centrality degree (CNT DEGRE) [43];
the betweenness centrality (CNT BETWE) [43]; the closeness centrality (CNT CLOSE) [43]; the eigenvector
centrality (CNT EIGEN) [44]; the network constraint (CNT NETWO) [45]; the clustering coefficient
(CNT CLUST) [46]; the page rank (CNT PAGER) [47]; the hub score (CNT HUBSC) [48]; the authority
score (CNT AUTHOR) [48]. Reference paper feature values were calculated for the cited papers,
and representative statistical values such as the maximum, minimum, average, and total were used
as the feature values. For each of the papers, 15 features (network, cluster, and centrality) can be
calculated directly. In addition, three cluster features and nine centrality features were calculated for
each reference in the paper, and the maximum, minimum, average, and total values were considered to
be the features. Thus, the number of reference paper features was 48 (=12 * 4). The number of all features
was 63 (=15 + 48) for all papers. Table 1 summarizes all 63 types of features in the four abovementioned
categories. These features calculated the maximum connected components among the cited networks in
the target field, which were used as explanatory variables in the prediction model.
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Table 1. Features used in the emergence prediction model.

Class of Feature Name of Feature Description

Network Dataset in question and feature of network in the year in question.

NW_NODES Number of papers in a network.

NW_EDGES Number of citation links in a network.

NW_MAXQ Maximum of Q-values of clusters in a network.

Cluster Feature of the cluster to which a paper belongs.

CL_QMAX Maximum of Q-values of clusters to which a paper belongs.

CL_NODES Number of nodes in the cluster to which a paper belongs.

CL_RANK Rank of the cluster to which a paper belongs.

Centrality Network centrality of a paper.

CNT_DEGRE Degree centrality.

CNT_BETWE Betweenness centrality.

CNT_CLOSE Closeness centrality.

CNT_EIGEN Eigenvector centrality.

CNT_NETWO Network constraint.

CNT_CLUST Clustering coefficient.

CNT_PAGER Page rank.

CNT_HUBSC Hub score.

CNT_AUTHOR Authority score.

Property of reference The sum of the features of paper sets that a paper cites.

CITING_MAX-[feature] Maximum of features in questions in cited paper sets that a paper cites.

CITING_MIN-[feature] Minimum of features in questions in cited paper sets that a paper cites.

CITING_AVG-[feature] Average of features in questions in cited paper sets that a paper cites.

CITING_SUM-[feature] Sum of features in questions in cited paper sets that a paper cites.

2.3. Task Definition

In this study, all the features were calculated for the papers included in the largest connected
component of the cited network and were treated as explanatory variables. The explained variable was
whether the paper was an emerging paper. Emerging papers were defined as papers that were ranked
in the top 5% of the dataset each year and whose citations increased for three years after publication.
In fact, in the case of emerging papers included in the top 5% of the increase in the number of citations,
a positive example was given a flag, and 50% or less was treated as a negative example, or as an
explained variable. In other words, the emergence prediction problem in this study was considered
to be a two-class classification problem, involving the identification of whether a paper satisfied the
requirements for emergence within three years of publication. A logistic regression, which is a linear
classifier, was adopted as the classifier, and LIBLINEAR was used for implementation. Among the
data included in the negative example, the same amount of data as in the positive example were
randomly extracted eight times, and eight kinds of datasets were constructed for each year. In addition,
by performing a five-fold cross validation on each model, overlearning was avoided. The prediction
model used learning data regarding whether a paper had become an emerging paper three years after
publication and was actually applied to a group of papers published four years after the publication of
the learning data as a prediction object. That is, when t1 (=t0 + 4) was set as the publication year of the
prediction target paper, the learning data of t0 + 3, which was the learning window, were applied to
the paper from t1 (=t0 + 4). The model could also be evaluated three years after the publication of the
model (t1 + 3). This period was defined as the evaluation window. A schematic of the relationship
between the learning and evaluation windows is provided in Figure 2.
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Figure 2. Model training and prediction.

For example, if a paper published in 2012 (t1) is the subject of prediction, the prediction model is
constructed using the citation growth rate of papers published in 2008 (t0) as of 2011 (t0 + 3). This model
is called the 2008 model for convenience. By applying the 2008 model to the set of papers published in
2012 (t1 = t0 + 4), a forecast for 2012 was obtained. A further three years later, in 2015 (t1 + 3), it is
possible to evaluate the results of applying the 2008 model to the 2012 publication data. Table 2 shows
the correspondence between the learning and evaluation years for each model.

Table 2. Combination of learning and evaluation years for each model.

Model Training Year t0
Training Citation Data

Confirmation Year t0 + 3 Prediction Target Year t1
Prediction Model

Evaluation Year t1 + 3

2003 2006 2007 2010
2004 2007 2008 2011
2005 2008 2009 2012
2006 2009 2010 2013
2007 2010 2011 2014
2008 2011 2012 2015

2.4. Evaluation

The F1 measure which is defined as the harmonic mean of the Precision and Recall, was used to
evaluate the analytical model. The Precision is the ratio between the number of actually emerging
papers and the number predicted as emerging. The Recall is the ratio between the number of papers
predicted as emerging and the number actually emerging. The F1 measure was extensively used to
evaluate the prediction models. The definitions of precision and recall, which are commonly used in
machine learning classification models, are shown below.

The precision is the fraction of positive data that is actually positive:

Precision =
True Positive

(True Positive + False Positive)
(2)

The recall is the fraction of data that is actually positive relative to the data that were predicted to
be positive:

Recall =
True Positive

(True Positive + False Negative)
(3)

The F1 measure is the harmonic mean of the precision and recall:

F1measure =
2Precision·Recall

(Precision + Recall)
(4)
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2.5. Topic Extraction from Each Cluster

The topics of the papers belonging to each cluster were estimated using latent dirichlet allocation
(LDA) [49]. LDA is a topic model—a probabilistic language model for estimating the contents of a target
document (group). Since the LDA model assumes that a document (group) consists of multiple topics,
it serves the purpose of analyzing the object as a cluster unit in a quoting network. For example, suppose
a group of papers has silicon-based solar PV (photovoltaics), thin-film solar PV, and dye-sensitized
solar PV as topics. The probability distribution is determined as the probability of generating (silicon,
membrane, dye-sensitized) = (0.1, 0.3, 0.6) which is 0.3 for each topic and that of (silicon, membrane,
dye-sensitized) = (0.6, 0.2, 0.2) is 0.6. The graphical model is shown in Figure 3. Here, αis a parameter
for obtaining the topic selection probability. Additionally, βis a parameter for obtaining the terms
generation probability in accordance with the topic. These parameters are estimated with N terms in
each document and M document sets [49].
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LDAvis is used to visualize LDA [50]. The saliency of term w in any topic t is defined by Equation (5).
In addition, the number of topics included in each cluster is estimated [51].

Saliencytermw = f recuency(w)

[
sumtp(t|w) log

(
p(t|w)

p(t)

)]
(5)

3. Dataset

In this study, the analysis will focus on the field of nanocarbons. A nanocarbon material is a material
made from graphite composed of carbon nanotubes (CNTs), graphene, and fullerenes. Nanocarbon
materials are employed in various devices, such as semiconductors, fuel cells, optical devices,
and structural materials. This can be attributed to their excellent mechanical, electrical, and thermal
properties. For example, the potential use of nanocarbon materials in energy fields [52–56] and space
elevators has been discussed [57–59].

The Science Citation Index (SCI) and Social Science Citation Index (SSCI) database indexed by
Web of Science were used to extract papers with “((carbon and (nano* OR micro*)) or fullerene or
Buckminsterfullerene or Buckminster-fullerene or C60 or C-60 or graphene or (filament* and carbon))”
in the titles or keyword lists of papers published between 1 January 1970 and 31 November 2015. As a
result, 411,084 papers satisfying these criteria were extracted.

4. Results

Figure 4 presents the number of scientific papers published in each year since 1970. The number of
papers published increases rapidly starting in 1991 and there were more than 45,000 papers published
in 2015.
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4.1. Result of the Network Model

After constructing a citation network based on direct citations, 379,044 papers belonged to the
largest connected component. The features listed in Table 2 were calculated for all papers belonging to
the largest connected component. The negative cases were randomly selected from the papers published
in the same year in which the citation number increase was within the bottom 50%. Random sampling
was conducted eight times. In other words, eight models were constructed in each experiment, and the
averages of these values were evaluated. The evaluation results are listed in Table 3.

Table 3. Evaluation results for each year.

Prediction Target Year t1 Model Year t0 Number of Target Papers Number of Predicted Papers F1 Measure (Average)

2006 2002 2990 1495 67.5
2007 2003 3598 1779 63.8
2008 2004 3990 1995 74.3
2009 2005 4664 2332 55.5
2010 2006 4994 2497 86.2
2011 2007 5830 2915 85.3

Table 4 lists the features with high predictive contributions for the model constructed for each year.
Table 5 lists the numbers of citations for the top 10 papers published in 2014, three years after 2011.
Of the 10 predicted papers, nine papers satisfied the conditions of emerging papers in 2014. In other
words, 90% of the 10 papers listed in Table 5 were in the top 5% in terms of citation increases in 2014.
These papers were sorted by calculated probabilities the predicted paper will be an emerging paper.

Table 4. Top five features contributing in the model for each year.

2002 Model for 2006 2003 Model for 2007 2004 Model for 2008

CNT_PAGER 20.5 CNT_PAGER 22.3 CNT_PAGER 27.1
CNT_AUTHO 9.4 CNT_AUTHO 10.3 CNT_AUTHO 11.2

CITING_MAX-CNT_DEGRE 5.3 CNT_DEGRE 8.0 CNT_DEGRE 9.0
CNT_DEGRE 5.3 CITING_MAX-CNT_DEGRE 5.4 CNT_CLOSE 5.5

CITING_SUM-CL_RANK 4.2 CNT_CLOSE 4.3 CITING_AVG-CNT_CLOSE 4.5

2005 Model for 2009 2006 Model for 2010 2007 Model for 2011

CNT_PAGER 23.3 CNT_PAGER 25.8 CNT_PAGER 33.1
CNT_AUTHO 9.7 CNT_AUTHO 18.3 CNT_AUTHO 14.9
CNT_DEGRE 6.1 CNT_DEGRE 8.2 CNT_CLOSE 9.3

CITING_SUM-CL_RANK 3.6 CNT_CLOSE 5.7 CNT_DEGRE 8.9
CITING_SUM-CL_QMAX 3.5 CITING_SUM-CL_RANK 4.6 CITING_AVG-CNT_CLOSE 5.2
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Table 5. Top ten papers published in 2011 that were predicted to be most likely to be emerging.

Rank Prob. Title Journal Number of
Citations (2011)

Number of
Citations (2014) Ref.

1 1
Carbon nanotube mass
production: Principles
and processes

ChemSusChem 0 84 Zhang et al.
[60]

2 1 Physics and applications of
aligned carbon nanotubes Advances in Physics 0 35 Lan et al.

[61]

3 0.99 Tailored assembly of carbon
nanotubes and graphene Advanced Functional Materials 6 82 Lee et al.

[62]

4 0.99 Electronic transport in
two-dimensional graphene Reviews of Modern Physics 51 664 Sarma et al.

[63]

5 0.99
Graphene-based materials:
Synthesis, characterization,
properties, and applications

Small 26 587 Hwang et al.
[64]

6 0.99
Raman spectroscopy
of graphene and
carbon nanotubes

Advances in Physics 0 98 Saito et al.
[65]

7 0.99

Methane decomposition to
COx-free hydrogen and
nanocarbon material on group
8–10 base metal catalysts:
A review

Catalysis Today 5 46 Li et al. [66]

8 0.99

Low-toxic and safe
nanomaterials by
surface-chemical design,
carbon nanotubes, fullerenes,
metallofullerenes,
and graphenes

Nanoscale 5 67 Yan et al.
[67]

9 0.99 Graphene-based materials:
Past, present, and future Progress in Materials Science 7 506 Singh et al.

[68]

10 0.99
Carbonaceous nanomaterials
for enhancement of TiO2
photocatalysis

Carbon 11 223
Leary and
Westwood

[69]

4.2. Result of Topic Model

Figure 5 shows the results of the aggregation by clustering up the third layer for the top 1000 papers
as the emerging score. Note that the first and second layers targeted only the upper three clusters, while the
third layer targeted all the clusters. This figure shows that papers with the highest degrees of emergence
in the cluster unit are concentrated in subcluster 1-3-3. This report focuses on subcluster 1-3-3, which has
a small number of papers.
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The results of the topic model by LDA analysis for the emerging papers in subcluster 1-3-3 are
shown in Figure 6. Figure 6 provides an overview of the topic classification in subcluster 1-3-3. The image
on the right shows the frequency distribution of the top 20 prominent terms extracted from the abstracts
of papers belonging to subcluster 1-3-3. The chart on the left is a visualization of the principal component
analysis obtained by classifying subcluster 1-3-3 into eight topics. In this figure light blue represents
the frequencies of terms corresponding to the highlighted topic, and red represents the estimated
frequencies of those corresponding to unhighlighted topics. In this figure, some attention is paid to
terms with high estimated frequencies such as “electronic,” “armchair,” “band,” “zigzag,” “gap,” and so
on that are conspicuous. These considerations are addressed in greater detail in the discussion section.
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5. Discussion

In this study, the model was applied to the nanocarbon field to predict whether a novel paper
would be published three years later. Nine out of the top ten predicted papers published in 2011
were confirmed to be emerging papers by definition. The F1 measure remained stable at around 0.8
throughout the year, and the model was believed to be built with a balance between precision and
recall. Table 4 indicates that the feature having the highest contribution in each case is the page rank
(CNT PAGER). Page ranking is a proposed method for evaluating the importance of web pages based on
citation relationships, although it was used to evaluate scientific papers in this study. This characteristic
can be interpreted as an index that increases when a paper with several citations is cited. Simultaneously,
this indicator decreases the relative importance of papers with citations between local communities,
such as cross-references. In this study, from the perspective of calculation cost, the feature, centrality,
etc., are calculated with the quotation-related network as an undirected network. Strictly speaking, it is



Appl. Syst. Innov. 2020, 3, 40 11 of 17

the sum of the number of citing papers and cited papers. However, the number of citing papers in the
year of publication is extremely small and it can be considered that most citations are based on the
number of cited papers. The next important feature is the centrality degree (CNT DEGRE). This means
that the more papers an article cites, the more likely it is to be ranked at the top of the list. The centrality
degree is a characteristic feature. Based on the fact that these two features are higher, the papers that are
to be expected to earn citation counts in the future (i.e., the emerging papers mentioned in this report)
are those that have been appropriately researched in the subject field.

The top 10 papers predicted to be emerging will be discussed here. Zhang et al. [60] focused on the
mass production of CNTs. Initially, the arc discharge and laser evaporation methods were used for this
purpose. The arc discharge method can produce high-quality CNTs with few defects; however, it cannot
produce large quantities of them. Although laser evaporation can produce CNTs with relatively high
purity, it is also considered to be unsuitable as an industrial manufacturing technique [64]. Against this
background, CVD, which is said to be suitable for mass synthesis, has attracted attention. Based on
proposals made by Professor Endo of Shinshu University, such as those entitled, “Carbon multiwall
nanotubes” and “CoMoCATProcess at SWeNT” by the University of Oklahoma, several manufacturing
technologies have been pioneered and are already being employed for practical purposes. Zhang et al. [60]
comprehensively introduced and discussed research on not only CVD but also CNT mass production.
Zhang et al. received 84 citations in three years, which demonstrates that the paper is drawing attention.

The article [61] ranked second in Table 5 is a review article on the current situation and physical
properties of oriented CNTs and their application areas. Among the CNT production technologies,
CVD is also expected to provide a high orientation. Diverse application areas, such as light emission,
optical antenna, subwavelength light transmission, and PV power generation with nanocoaxial
structure, are expected for such aligned CNTs [61]. Although this paper did not satisfy the conditions
for the emerging papers in the definition of this study, a certain number of citations was obtained.

The paper ranked third focuses on mass production techniques for the three-dimensional assembly
of CNTs and graphene [62]. For studies related to three-dimensional networks of CNTs and graphene,
see Dasgupta et al. [70]. Research on porous films with three-dimensional structures is still in the
initial stage, and a material that contributes to the practical application from hereon is necessary [70].
Graphene is a single atomic plane of graphite crystal. In 2004, Novoselov et al. succeeded in extracting
a thin piece of graphene by peeling off the surface of highly oriented anhydrous graphite with adhesive
tape and then further peeling off the peeled surface. Since this report was published, the electrical,
electronic, mechanical, and scientific properties of graphene have become clear [71].

In particular, the high electron mobility in graphene has been clarified, where electron mobility is
a measure of the speed of electrons in a solid. The paper ranked fourth is a review article that focuses
on the high electron mobility of graphene and discusses its electrical properties and applications [63].
A theoretical value of 2,000,000 cm2/Vs was predicted [64], and an experimental value of 200,000 cm2/Vs
was obtained [72]. Considering that the electron mobility in silicon is 1000 cm2/Vs, the electron mobility
of graphene is more than 100 times than in silicon. High electron mobility is an important factor to
achieve high-speed transistors, for example. The paper ranked fourth was confirmed to have received
664 citations in 2014.

The paper ranked fifth is a comprehensive discussion of the physical properties of graphene.
Graphene has a high electron mobility, high thermal stability, and excellent strength. In addition,
this paper comprehensively describes the graphene-based applications in field-effect transistors,
memory, solar devices, and sensing platforms. This paper had 587 citations in 2014.

The sixth article in Table 5 focuses on the methods of structural analysis of nanomaterials.
Raman spectroscopy is one of the most effective methods for this purpose. In particular, the Raman
spectra of carbon materials shows the G-band peaks derived from graphite structures and the D-band
peaks derived from the defects. The ratios of these peaks can be used to evaluate the crystalline
purity and defect concentration of nanocarbon materials. This is a review paper focusing on Raman
spectroscopy in CNTs and graphene while summarizing related studies.
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The paper ranked seventh in Table 5 is a review that comprehensively summarizes the prior
literature related to the reaction principle of methane catalytic decomposition, the shape of the resulting
nanocarbon material, and the formation principle. It is possible to produce hydrogen and carbon using
steam reforming methane and a catalyst in a high-temperature section. The hydrogen produced can be
used as fuel for fuel cells and has been attracting attention mainly as a means of producing hydrogen.
In contrast, because the generated carbon can also be used in direct carbon fuel cells, it is one of the
methods attracting attention from the perspective of nanocarbon material production.

CNTs are said to be toxic to humans because of their structural similarity to asbestos. Hence,
toxicity reduction in other nanocarbons is a popular research topic for the use of nanocarbon materials.
This paper [67], ranked eighth in Table 5, is an attempt to provide systematic knowledge in this field,
called nanotoxicology. The authors also identified specific challenges for achieving low toxicity. The paper
discusses techniques that lead to the biological and toxicological transformation of carbon nanomaterials
through chemical changes.

The paper by Singh et al. [68] is an exhaustive summary of the history of graphene and its properties,
means of production, and impacts on applications in various fields. This includes: electrical devices;
optronics devices; scientific sensor nanocomposites; energy storage. As of 2014, there were 506 citations.

The paper ranked tenth is entitled “Carbonaceous nanomaterials for enhancement of TiO2

photocatalysis” [69]. Titanium oxide (TiO2) is generally used as a photocatalyst material. However,
problems have been noted due to its efficiency and narrow response range. The properties can be
changed considerably by combining TiO2 with nanocarbon materials. As a paper on photocatalysis
using nanocarbon-TiO2, this paper presents guidelines on generation methods, features, and future
directions. As of 2014, the paper had 232 citations.

Figure 6 shows that “electronic,” “band,” “zigzag,” “gap,” “armchair,” etc., stand out when
focusing on terms with high estimated frequencies. It is known that the structure of a single-wall CNT
(SWCNT) has varying conductivity that depends on the degree of the helix (i.e., chirality). For example,
a zigzag-type structure has the characteristics of being one-third metal and two-thirds semiconductor.
Meanwhile, a chiral-type structure has the characteristics of a semiconductor and an armchair-type
structure has the characteristics of a metal. In 2010, they had problems synthesizing chemicals; however,
in October 2011, they succeeded in synthesizing chiral and armchair forms. The remaining zigzag
CNTs were also presented in a paper by Hitosugi et al. [73] in the Journal of the American Chemical
Society, entitled “Bottom-up synthesis and thread-in-bead structures of finite (n,0)-zigzag SWCNTs.”
Thus, around 2011, chemical syntheses of chiral, armchair, and zigzag single-phase CNTs were
increasing. The terms “armchair,” “zigzag,” “gap,” and “band,” in Figure 6 exhibit the expected
tendencies. Hitosugi et al. [74] also published a paper in 2011 related to Hitosugi et al. [73]. In fact,
the number of citations reached 44 after three years, and the paper satisfies the definition of an emerging
paper in this model. However, the emerging score was ranked at 11,932. This means that the article
could not be identified only by the emerging prediction model focusing on the number of papers.
Accordingly, it can be considered effective to a certain extent to specify research fields that will become
popular in the future based on the granularity of emerging research in units of not only papers but
also terms.

The validity of the proposed method was tested in the field of nanocarbons in this study. We found
that papers falling into the emerging research areas obtained by a combination of network analysis and
topic models were not necessarily at the top of the predictive rankings obtained by network analysis
alone. In other words, the paper-by-paper method for predicting emerging research was inadequate to
capture the trends in quantitative fields. In this study, the dataset on nanocarbons was extracted from
Web of Science (WoS) as a case study, but the dataset on other fields can be applied as it is. An important
aspect of this is the need to confirm the accuracy of the predictions of emerging papers obtained from
the citation network analysis. In particular, it is important to ensure that the accuracy is stable even if we
change the time window. As a preliminary experiment, we confirmed that the F1 measure was more than
70% accurate for several different regions, although the accuracy varied. Therefore, we demonstrated
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that the validity of our method is not specific to the nanocarbon field. The applicability of the method to
various fields, which identify issues of interest in terms of quality and quantity, both in terms of papers
and topics, may help companies and countries that are sensitive to science and technology trends make
decisions. For example, this method may be useful for companies to consider the future direction of
their areas of strength. By analyzing several related areas (e.g., any subdiscipline related to the material
area), the country can obtain papers and topics that will contribute to the development of national
innovation policies.

6. Conclusions

This study applied a model that predicts promising papers based on the vast amount of information
on 411,084 scientific papers in the nanocarbon field. The purpose of this research was to predict the
increase in the number of citations of a paper three years after its publication, based only on
information available less than one year after its publication, in order to identify emerging areas earlier.
Unlike the existing research, this investigation involved the use of various features, network indicators,
and clustering results to predict the increase in the number of citations of a paper several years in
advance based on the features immediately after its publication. The features used in the prediction
model mainly fall into four categories (network, cluster, centrality, and citation relationship features),
and all of them can be constructed by observing a network. This investigation attempted to identify
emerging research areas based on not only the micro (i.e., papers) but also the semimacro perspectives
(i.e., research fields). This was achieved by employing the topic model while focusing on the terms used
in the papers in the cluster with a high percentage of emerging papers, after identifying the emerging
papers by using the aforementioned network indices. The predictive model of emerging papers itself
achieved a certain level of accuracy in both the nanocarbon field and the PV power generation field,
and a highly useful model was developed. The feature with the highest degree of contributions was the
page rank. This means that the number of citations of a paper is likely to increase if it is cited in a paper
that has a large number of citations. In addition, the contribution of the proximity centrality means
that the papers are close to many papers; hence, they are the focal papers in the field. These findings
demonstrate that emerging papers are those that have been thoroughly researched in the field and
address issues that are evaluated by the community. The capabilities of the authors can be considered
to be among the indices to quantify. By examining the characteristic terms of subclusters with high
proportions of emerging papers expected, it was possible to focus on research on the chemical synthesis
of zigzag SWCNTs in the nanocarbon field. The emerging fields were successfully examined, not in
units of papers, but rather as research areas.

The limitations of this study along with future research need to be addressed. This study defined
emerging papers as papers that have been cited the most—within the top 5%—three years after
publication. However, the interpretation of citation counts depends on the field and training period.
This can be rephrased depending on the process of formation of knowledge in scientific fields. Therefore,
the robustness of the model against variations in these parameters is assumed to vary from field to
field. Similarly, challenges remain regarding robustness in databases. In this study, the SCI and SSCI
indexes in Web of Science (WoS) were used as the database. Until the creation of Scopus and Google
Scholar in 2004, WoS had been the sole tool for citation analysis [75]. Even today, WoS is still one of the
most effective databases in the historical field, as it is known to have a longer recording period than
Scopus. However, both WoS and Scopus are now known as leading databases, and the robustness of
the method remains to be evaluated in a future study.

Only the top 5% of papers is considered as a sprout and the number of positive examples is small;
this will have an impact on the limit of prediction performance because there are few patterns to train.
In the future, the application of this method to multiple fields is being examined and it is necessary to
discuss robustness against parameters and appropriate parameter settings. It is necessary to devise a
unique interpretation of a subcluster in which a group of papers expected to be sprouting papers is
concentrated. From the relevant terms extracted, certain domain knowledge is essential to imagine
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what type of field it is. It is necessary to devise and enable a semantic interpretation using multiple
terms. In the future, more sophisticated and stable models will be developed that can contribute to
policy formulation and future trends in multiple fields.

As the amount of information increases and the structure of knowledge becomes more complex
in the future, it will become extremely difficult for companies to make R&D investment decisions
and for the government to make decisions regarding resource allocation for science and technology
policy. The outlook for trends in science and technology should be developed independently. The role
of predictive models such as those investigated in this study can facilitate decision-making. It is
considered that the methods supporting the extraction of future useful papers based on enormous
amounts of information will increase in the future.
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