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Abstract: A new technique is developed to extend the convergence ball of Newton’s algorithm with
projections for solving generalized equations with constraints on the multidimensional Euclidean
space. This goal is achieved by locating a more precise region than in earlier studies containing
the solution on which the Lipschitz constants are smaller than the ones used in previous studies.
These advances are obtained without additional conditions. This technique can be used to extend the
usage of other iterative algorithms. Numerical experiments are used to demonstrate the superiority
of the new results.
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1. Introduction

Let F : D −→ Ri be a continuously differentiable operator; D ⊆ Ri an open set, K ⊂ D, K a
closed convex set, and H : D ⇒ Ri be a set-valued operator equipped with a nonempty closed graph.
We shall study the generalized equation

x ∈ K, 0 ∈ F(x) + H(x). (1)

We are interested in finding a solution x∗ of the generalized equation, since many problems in nonlinear
programming and other disciplines can be reduced to this equation using mathematical modeling.

Wy utilize the Newton Inexact Projection Algorithm (NIPA) formally defined in [1] by:

Step a. Choose x0 ∈ K and let {τm} ⊂ [0, ∞) be given, and set n = 0.
Step b. If 0 ∈ F(xn) + H(xn), then terminate; otherwise, compute vn ∈ Ri so that

0 ∈ F(xn) + F′(xn)(vn − xn) + H(vn).

Step c. If vn ∈ K, let xn+1 = vn; otherwise choose any xn+1 ∈ K so that

xn+1 ∈ PK(vn, xn; τn).

Step d. Let n← n + 1, and repeat Step a.
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Here PK(., x, τ) : Ri ⇒ K is the operator given as

P := PK(y1, x, τ) := {y2 ∈ K : 〈y1 − y2, y3 − y2〉 ≤ τ‖y1 − x‖2 for all y3 ∈ K}.

Operator P is called a feasible inexact projection.
The study of generalized equations was inaugurated by S. M. Robinson back in the 1970s [1,2].

A plethora of results was produced ever since utilizing iterative algorithms since solutions in closed
form are rarely attainable [1–8]. It is known that if H ≡ {0}, then (1) reduces to a constrained
generalized equation [2–4,7–9]. In these studies the superlinear and/or quadratic local convergence
has been established under the condition of the metric regularity or strong metric regularity of the
partial linearization of the function that defines a generalized equation. There is a surge in studies of
this type since they provide an abstract model for several applications such as equilibrium, linear and
nonlinear complementary problems, and variational inequality problems [1,2,5,9]. A common feature
in these studies is the realization that region of accessibility or more commonly called convergence
ball is not large in general. Hence, the choice of initial points for the iterative algorithm that guarantee
its convergence is limited. Moreover, the upper error estimations on the distances are pessimistic
in most cases, so more than necessary iterations are carried out to achieve a certain error tolerance.
Extending the uniqueness of the solution ball is also an important issue. Motivated by the elegant work
by Oliveira et al. [6], which generalized the earlier ones [2–4,7], as well as the aforementioned problems,
we develop a technique leading to smaller Lipschitz constants than before [6–8], and consequently to a
finer ball convergence. It is important to notice that these extensions are obtained without additional
conditions. In particular, our technique is given for the NIPA. But it can be used with the same
advantages on other iterative algorithms.

In Section 2 the ball convergence of NIPA is given, whereas the examples appears in Section 3.

2. Ball Convergence

The concept of metric regularity that follows plays a role in the ball convergence of NIPA.

Definition 1 ([1]). We say that a set valued operator Q : D ⇒ Ri is metrically regular at y2 ∈ D for y1 ∈ Ri,
if for y1 ∈ Q(y2), the graph of Q is closed (locally) at (y1, y2). Moreover, there exist constants λ, α, β > 0
such that

U(y2, α) ⊂ D and d(w, Q−1(z)) ≤ λd(z, Q(w)) for all (w, z) ∈ U(y1, α)×U(y2, β).

To avoid repetitions more details and properties of the standard concepts developed can be found
in [1,2,5,6] and the references therein. Let x∗ ∈ K be such that 0 ∈ F(x∗) + H(x∗). The following
Lipschitz-type conditions are useful.

Definition 2. Suppose: there exists `0 > 0 such that

‖F′(x)− F′(x∗)‖ ≤ `0‖x− x∗‖ for each x ∈ D. (2)

Then, we say operator F′ is center-Lipschitz on D.

Consider D0 := D ∩U(x∗, 1
`0
).

Definition 3. Suppose: there exists ` > 0 such that

‖F′(x)− F′(y)‖ ≤ `‖x− y‖ for each x, y ∈ D0. (3)

Then, we say operator F′ is restricted-Lipschitz on D0.
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Definition 4. Suppose: there exists `1 > 0 such that

‖F′(x)− F′(y)‖ ≤ `1‖x− y‖ for each x, y ∈ D. (4)

Then, we say operator F′ is Lipschitz on D.

Consider the partial linearization of F + H at some x ∈ D [6], TF+H(x, .) : D ⇒ Ri to be given as

TF+H(x, z) := F(x) + F′(x)(z− x) + H(z).

Let ρ := sup{s ≥ 0 : U(x∗, s) ⊆ D}.

Remark 1. Condition (4) was used in the proof of the main result ([6], Theorem 2). But it turns out that (2)
and (3) can be used instead. We have that

D0 ⊆ D, (5)

resulting
`0 ≤ `1 (6)

and
` ≤ `1, (7)

where `0
`1

can be small (arbitrarily) [9–11]. The iterates {xn} belong in D0 which is a more accurate region
than D used in [6] (see also the numerical section). That is why we obtain smaller Lipschitz constants. Then,
we also suppose

`0 ≤ `; (8)

otherwise our results hold with `0 replacing `.
If one uses (2) where it is needed and (3) everywhere else instead of `1, in the proof of Theorem 2 in [6],

we can prove our main ball convergence result for NIPA:

Theorem 1. Suppose: there exist x∗ ∈ K, `0 > 0, ` > 0 such that 0 ∈ F(x∗) + H(x∗).
Conditions (2) and (3) hold;

D 3 z −→ TF+H(x∗, z)

is metrically regular at x∗ for 0, with parameters λ > 0, α > 0 and β > 0;

ρ∗ := min{ρ, α,

√
2β

2`0 + `
,

2(1−
√

2τ̄)

λ(`+ 2`0 + (`− 2`0)
√

2τ̄
},

where
τ̄ := sup

n
τn <

1
2

.

Then, sequence {xn} starting at x0 ∈ K ∩U(x∗, ρ∗)− {x∗} and generated by NIPA that solves (1), related to
{τn} belongs in U(x∗, ρ∗) ∩ K, and converges to x∗ so that for each n = 0, 1, 2, . . .

en+1 := ‖xn+1 − x∗‖ ≤ rnen, (9)

where
rn = (1 +

√
2τ̄n)

λ`en

2(1− λ`0en)
+
√

2τ̄. (10)

Moreover, if 0 = limn−→∞ τn, then, the convergence is superlinear, and if τn = 0 then,

en+1 ≤
(2`0 + `)λ

2
e2

n. (11)
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Furthermore, x∗ is the only solution of (1) in U(x∗, ρ∗) provided that operator TF+H is metrically strongly
regular at x∗ for 0.

Remark 2.

(a) If we further specialize K or lim supn−→∞ τn, then we obtain an improved version of the results in [4].
(b) If `0 = ` = `1, our results reduce to the ones in [6]. Otherwise, (i.e., if `0 < `1 or ` < `1), then our

results give a larger ball of convergence (so more initial points x0 become available); the error bounds are
tighter (i.e., less iterates to be computed to achieve a desired error tolerance), and the uniqueness of the
solution ball is enlarged. More precisely, we have

ρ̄∗ ≤ ρ∗, (12)

and
en ≤ ēn, (13)

where ρ̄∗, ēn stand for corresponding radius and error bounds found in [6] (using only `1). If `0, ` are
replaced by `1 (see also (5)–(8)) it is noticeable that these extensions are not obtained using additional
conditions because `0 and ` are specializations of parameter `1. Notice that the results in [6] specialize to
the results in [2–4,7,8]. Hence, by extending the results in [6], we have also extended the results in these
references too. Examples where (6)–(8), (12) and (13) are strict follow in Section 3. Other examples can be
found in [9–11].

3. Numerical Examples

We present a simple example to show estimates (5)–(8), (12) and (13) can be strict, so the advantages
we obtained apply. For simplicity, we set H = {0}, λ = 1, τn = 0, i = 3 and D = Ū(0, 1).

Example 1. Let us consider a system of differential equations governing the motion of an object and given by

G′1(v) = ev1 , G′2(v2) = (e− 1)v2 + 1, G′3(v3) = 1

with initial conditions G1(0) = G2(0) = G3(0) = 0. Let G = (G1, G2, G3)
T = (ev1 , e−1

2 v2
2 + v2, v3)

T .
Let D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function G on D for v = (v1, v2, v3)

T by

G(v) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)
T .

Then, the derivative is given as

G′(v) =

 ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

 .

Notice that conditions (2)–(4) hold if, we set `0 = e− 1 < ` = e
1

e−1 < `1 = e. Then, the results in [6] are
extended, since

ρ̄∗ =
2

3`1
= 0.2453 < ρ∗ =

2
2`0 + `

= 0.3827.

Moreover, for the error bounds, we have

`

2(1− `0en)
<

`1

2(1− `1en)
,

so
en < ēn.
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Finally, in view of ρ̄∗ < ρ∗ the uniqueness of the solution x∗ is extended.

Example 2. Let C[0, 1], the space of continuous functions defined on [0, 1] be equipped with the max norm.
Let D = U(0, 1). Define function F on D by

F(ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ. (14)

We have that

F′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

We have λ = 1, so `0 = 7.5 < ` = `1 = 15. Then, the results in [6] are extended, since

ρ̄∗ =
2

3`1
= 0.0444 < ρ∗ =

2
2`0 + `

= 0.0667.

The same advantages as in Example hold for error bounds and uniquenes results.

4. Conclusions

We have extended the applicability of NIPA without additional conditions. The novelty of our
study lies in the observation that our new technique generates a subset D0 of D also containing the
iterates xn. But on D0 the Lipschitz constants `0, ` are tighter (see (5)–(7)) than `1 used in [4–8]. Hence,
the aforementioned advantages are obtained. It is also worth noticing that no additional conditions are
used and that `0, ` are specializations of `1. So, no additional computation is needed.

Our technique can be used to do the same on other algorithms [1,3,4,9].
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