
Article

Automated Detection of Multi-Rotor UAVs Using a
Machine-Learning Approach

Šimon Grác, Peter Beňo, František Duchoň * , Martin Dekan and Michal Tölgyessy

Institute of Robotics and Cybernetics, Slovak University of Technology, 812 19 Bratislava, Slovakia;
samgrac@gmail.com (Š.G.); beno@photoneo.com (P.B.); martin.dekan@stuba.sk (M.D.);
michal.tolgyessy@stuba.sk (M.T.)
* Correspondence: frantisek.duchon@stuba.sk

Received: 17 June 2020; Accepted: 13 July 2020; Published: 14 July 2020
����������
�������

Abstract: The objective of this article is to propose and verify a reliable detection mechanism of
multi-rotor unmanned aerial vehicles (UAVs). Such a task needs to be solved in many areas such
as in the protection of vulnerable buildings or in the protection of privacy. Our system was firstly
realized by standard computer vision methods using the Oriented FAST and Rotated BRIEF (ORB)
feature detector. Due to the low success rate achieved in real-world conditions, the machine-learning
approach was used as an alternative detection mechanism. The “Common Objects in Context
dataset” was used as a predefined dataset and it was extended by 1000 samples of UAVs from
the SafeShore dataset. The effectiveness and the reliability of our system are proven by four basic
experiments—drone in a static image and videos which are displaying a drone in the sky, multiple
drones in one image, and a drone with another flying object in the sky. The successful detection rate
achieved was 97.3% in optimal conditions.

Keywords: UAV; detection; machine learning; TensorFlow; ORB

1. Introduction

Object recognition algorithms and their classification are based on the fact that the considered
objects have common characteristics. This means that features are not defined only by their appearance
but also by the behavior or the way of movement. The issue of unmanned aerial vehicle (UAV)
recognition in the sky is focused on objects that could occur in the sensing area as well as on the
UAVs themselves. One of the basic visual properties of a UAV is its shape. Each type of UAV (from
the tricopter to the octocopter) looks very similar in its category. A tricopter has the shape of an
equilateral triangle, a quadcopter has the shape of a square, etc. Moreover, each UAV is composed of
rigid construction that has its own visual characteristics. This construction usually includes storage
space for the control board in the middle and from three to eight arms depending on the number of
propellers. Each arm is finished by the motor on which the propeller is suspended. This is the basic
UAV appearance pattern which can be used for almost every single UAV. An exception may be the
UAVs from the nano and mini categories, where the propeller and the motors can be mounted directly
on the center panel of the referenced UAV.

One of the main advantages of these machines is their extended battery life which makes this drone
type able to operate for a longer time in the air [1] and also fly higher [2]. Some of the fixed-winged
drones as well as the multi-rotor models can take off from the ground, but most of them can take off

and stay in the air only during movement.
There is also another type of drone that differs from the multi-rotor models in size, weight, and the

maximum achievable speed. These drones are called fixed-winged drones [3]. Due to their properties,
they are often used in applications such as environment and area mapping (with the possibility of

Appl. Syst. Innov. 2020, 3, 29; doi:10.3390/asi3030029 www.mdpi.com/journal/asi

http://www.mdpi.com/journal/asi
http://www.mdpi.com
https://orcid.org/0000-0003-4140-9737
http://dx.doi.org/10.3390/asi3030029
http://www.mdpi.com/journal/asi
https://www.mdpi.com/2571-5577/3/3/29?type=check_update&version=2

Appl. Syst. Innov. 2020, 3, 29 2 of 23

further processing and generation of three-dimensional data [4]), in meteorology [2] or for inspection
of quality (an interesting example is the inspection of electrical wiring described in [5]).

According to [1], fixed-winged UAVs are suitable for the mentioned applications mainly because
of their purchase price, maintenance, and operational time. According to [2], another significant
advantage is their operation range and their flight safety. Using multi-rotor models, according to [1],
there is a better possibility of specific environmental mapping and the main advantages include better
use in civilian applications and simple maneuvering. As stated in [6], the growing trend of using these
machines will require a certain amount of research and regulation in the future, to ensure their safe
usage without restricting airspace, traffic flows, and their efficient management.

UAVs are also characterized by the presence (or absence) of several individual components. Some
UAVs, for example, are covered by a ring located around the entire periphery of the machine. On the
other hand, other UAV types have some parts completely uncovered. Some types of UAV also use an
additional covering ring, which may or may not be located in the vicinity of the machine propellers.
Most UAVs are equipped with a camera. The camera can be located within the body of the UAV, where
it becomes visually less noticeable. However, on UAVs with better-quality cameras, the camera is
located on the bottom of the UAV, where it forms a large visually noticeable part. Several types of
UAV are characterized also by additional devices. For example, in large-scale UAVs, there are often
accessories such as robotic arms or other devices. These aspects, i.e., large additional devices, are not
considered in the proposed detection and identification procedure.

The main purpose of this work is to design and implement an automated detection approach
whose properties and reliability can be compared with the common human observer staring at the
sky. The proposed approach will be able to recognize multi-rotor drones based on their appearance.
We focus our attention on these drone models mainly because of their versatility of use in common
civil applications.

Considering the detection of the UAV itself, the fact that some UAVs have a light device on the
lower part of the body can make the detection more effective especially during unfavorable illumination
conditions. Another feature that characterizes a UAV is the way of movement. The purpose of the
movement is to move the UAV from the stabilized position from the start point to the endpoint at
which the machine is to be stabilized again. The UAV movement itself is characterized by its monotony.
Contrary to the movement of a bird sliding or waving its wings, the UAV does not perform any
such movements.

The basic analysis of a UAV’s movement was performed in our research, and from the results it is
clear that these machines are moving according to certain patterns. The UAV movement is mostly
linear but it can suddenly change direction, speed, or height. The UAV can also stabilize its position
and float in place without moving. These movements are considerably different from those of birds.

There have been several reports of UAV abuse for privacy or terrorist attacks. Some cases are also
known where a UAV has been used for bringing contraband materials into prisons. These, as well as
many other potential misuses of these machines, create the need to identify and track UAVs in an area
where such attacks may occur. Due to the features and versatility of the use of these machines, there are
many possibilities for their misuse. These machines can fly very low to the ground, but also very high.
They can disguise themselves behind various objects and with the help of additional devices, they can
fly in different lighting conditions and overcome various obstacles. However, we assume that these
machines would have a problem operating during adverse conditions such as high wind, rain, snow,
smog, or hail. We do not deny the possibility of using machines that are adapted to such conditions,
but in our work, we assume a significantly reduced ability to maneuver or use additional equipment.

Because the UAVs can move quickly and undetected in many areas they can create significant
risks. The UAV thus becomes an ideal machine for disrupting safety, endangering life, causing damage,
or making an unauthorized entry to private land or tracking people. For these reasons, different
regulations arise. In the Slovak Republic Decision no. 2/2019 from 14 November 2019 refers to the

Appl. Syst. Innov. 2020, 3, 29 3 of 23

precise division of UAVs into groups to which specific regulations apply. It also refers to the precisely
defined conditions under which unmanned aircraft can be used in the airspace of the country.

In general, we can divide the basic approaches of UAV detection into visual and acoustic. Visual
detection is realized by camera systems capable of recording a two-dimensional image (cameras
operating in the dark can be used as well). These approaches could be based on the appearance
or movement of the object, or their combination. Acoustic methods are using microphones [7].
An interesting advantage of acoustic methods is the possibility of detection even when the drone
is not in sight [8]. These two approaches can be also combined to create a hybrid detection system.
An example is an anti-drone system described in [9], which uses a combination of audio, video,
radio-frequency sensors, and a radio-frequency jamming unit.

The article is structured as follows: The second section introduces the existing methods for object
recognition in an image. The basic analysis of several methods is described. The third section describes
the proposed drone detection system that uses standard computer vision methods. The fourth section
describes another detection mechanism that uses TensorFlow. The fifth section introduces several
experiments with the evaluation of the success rate. The sixth section concludes the paper and proposes
future work.

2. Existing Methods for Detection and Identification of Objects in an Image

2.1. Background Subtraction

For ease of operation in particular, the background subtraction method is one of the most basic
methods for detecting objects in an image. As described in [10], this method needs to accurately
identify the background model. After completing this step, the background model is compared to the
current image, and the known background parts are subtracted. Objects that are not subtracted are
with certain probability new objects in the foreground. Normally the background is defined as any
static or periodically moving parts of the scene. The entire scene may have time-varying components,
such as tree leaves that move at some time but are static at another time. A common element of systems
whose purpose is to monitor the objects by a static camera is a module whose task is to subtract a
background to distinguish static objects from dynamic objects. A substantial and complex part of the
background subtraction process is maintaining the background model. According to [11], there are
some situations when it is difficult to read or detect the background: inhomogeneous and variable
illumination of the scene, changing spectral characteristics of the illumination and consequently
different color of the object, overlapping objects, different camera angles, and object variations within
one category. In [12] a detailed comparison of different background subtraction techniques is elaborated.
The purpose of this comparison was to find out which of the techniques could cope best with the
problems mentioned above.

2.2. Contour Searching

The basic idea of using contours in image processing is to produce a curve that encloses the objects
contained in the image. Successful usage of this object bounding method is dependent on applied image
preprocessing methods such as image smoothing and morphological operations. The only condition
for using contour searching is to divide the image into so-called positive and negative regions [10],
whose boundaries can be considered as bounded objects. The correct setting of the parameters in this
method guarantees the correct detection of contours in the image. The term contour is defined as a
list of points that represent a curve in an image. These curves are represented as sequences in which
the record encodes information about the next point on the curve. Due to its structure, the contour
searching function can construct a so-called contour tree. Therefore, it can determine which contour
is a root contour and which contours represent the child contours [10,13]. In the case of detection of
objects in the image, in most cases, it is necessary to delimit only the root contour of the object.

Appl. Syst. Innov. 2020, 3, 29 4 of 23

In Figure 1 the segmented object is shown on the left and the object whose contours are outlined
is shown on the right. It is also possible to see several other contours of different colors that represent
other objects inside of the root contour. This phenomenon can also occur after morphological operations
and image smoothing since the recorded objects are never homogeneous.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 4 of 23

other objects inside of the root contour. This phenomenon can also occur after morphological
operations and image smoothing since the recorded objects are never homogeneous.

Figure 1. Contour searching applied to the edited image with a drone.

2.3. Selective Searching

One of the most effective ways to find subregions containing an object in an image is an
algorithm called selective searching. As reported in [14], this algorithm is based on three main
assumptions:

1. Capturing all possible scales in the image—using a hierarchical algorithm, selective searching
attempts to take into account all possible scales of the objects;

2. Diversification—since objects in the analyzed area are subject to different changes such as
illumination, shadows, and other, selective searching does not use a uniform strategy for a
subregion search;

3. Calculation speed—since the step of subregion searching is only a preparation for the object
recognition itself, this algorithm is designed to not cause any decrease of calculation speed.

An example of subregion searching in a static image using a selective searching algorithm is
shown in Figure 2.

Figure 2. Selective searching in the image with drones.

2.4. Support Vector Machines (SVM)

As mentioned in [10], support vector machines (SVMs) are suitable for assigning objects to N
groups and their functionality is based on projecting data into multidimensional space. SVM search
for and determine the plane through which it splits data into groups. For example, if there is a vector
of features with dimension 2500, SVM would represent this vector as a point in a space with 2500

Figure 1. Contour searching applied to the edited image with a drone.

2.3. Selective Searching

One of the most effective ways to find subregions containing an object in an image is an algorithm
called selective searching. As reported in [14], this algorithm is based on three main assumptions:

1. Capturing all possible scales in the image—using a hierarchical algorithm, selective searching
attempts to take into account all possible scales of the objects;

2. Diversification—since objects in the analyzed area are subject to different changes such as
illumination, shadows, and other, selective searching does not use a uniform strategy for a
subregion search;

3. Calculation speed—since the step of subregion searching is only a preparation for the object
recognition itself, this algorithm is designed to not cause any decrease of calculation speed.

An example of subregion searching in a static image using a selective searching algorithm is
shown in Figure 2.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 4 of 23

other objects inside of the root contour. This phenomenon can also occur after morphological
operations and image smoothing since the recorded objects are never homogeneous.

Figure 1. Contour searching applied to the edited image with a drone.

2.3. Selective Searching

One of the most effective ways to find subregions containing an object in an image is an
algorithm called selective searching. As reported in [14], this algorithm is based on three main
assumptions:

1. Capturing all possible scales in the image—using a hierarchical algorithm, selective searching
attempts to take into account all possible scales of the objects;

2. Diversification—since objects in the analyzed area are subject to different changes such as
illumination, shadows, and other, selective searching does not use a uniform strategy for a
subregion search;

3. Calculation speed—since the step of subregion searching is only a preparation for the object
recognition itself, this algorithm is designed to not cause any decrease of calculation speed.

An example of subregion searching in a static image using a selective searching algorithm is
shown in Figure 2.

Figure 2. Selective searching in the image with drones.

2.4. Support Vector Machines (SVM)

As mentioned in [10], support vector machines (SVMs) are suitable for assigning objects to N
groups and their functionality is based on projecting data into multidimensional space. SVM search
for and determine the plane through which it splits data into groups. For example, if there is a vector
of features with dimension 2500, SVM would represent this vector as a point in a space with 2500

Figure 2. Selective searching in the image with drones.

2.4. Support Vector Machines (SVM)

As mentioned in [10], support vector machines (SVMs) are suitable for assigning objects to N
groups and their functionality is based on projecting data into multidimensional space. SVM search

Appl. Syst. Innov. 2020, 3, 29 5 of 23

for and determine the plane through which it splits data into groups. For example, if there is a
vector of features with dimension 2500, SVM would represent this vector as a point in a space with
2500 dimensions [15]. For the sake of simplicity, let’s imagine the SVM functionality for the vector
of features with 2 dimensions. The visualization of SVM decomposition, in this case, can be seen in
Figure 3.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 5 of 23

dimensions [15]. For the sake of simplicity, let’s imagine the SVM functionality for the vector of
features with 2 dimensions. The visualization of SVM decomposition, in this case, can be seen in
Figure 3.

Figure 3. Support vector machine (SVM) principle.

As can be seen in Figure 3, the line represents a classifier (for example a solid shape can
represent the drone and shape with fill represents the background) and it divides the data
successfully into two classes. Sometimes, when classifying with similar methods, the problem is that
the superposition splitting data is too close to one of the classes. Therefore, SVM seeks a separator to
reach the maximum distance between the data classes. If the classes are non-separable, the so-called
non-linear SVM is used. In this case, the data are projected into a multidimensional space where they
are separable [10].

2.5. Cascade Classifier (Haar-Like Features)

This classifier is primarily intended for the classification of objects that are stable [10]. As an
example, the figure of the human body or human face can be mentioned. The human body and face
in most cases have the same proportions, i.e., there are always hands, legs, head, and so on. The
drone shape analysis showed that the drone does not fall into such a category of objects. As stated in
[16], there are two main reasons why a Haar classifier is used to recognize objects. One is that
Haar-like features can effectively describe a region of interest, which is a challenging task with
limited training data. If Haar features are compared to raw pixels, they can increase or reduce the
variability of data belonging or not into a common class by their properties. Haar features are
capable of recognizing and effectively describing the value of the ratio between light and dark parts
of the scene. As mentioned in [16], they are also successful in classical computer vision problems,
namely scene variability and varying illumination of the scene. The second reason to use this
method of classification is its speed, as working with Haar features is considered highly effective.

2.6. Machine Learning and Neural Networks

The topic of using neural networks for object recognition is very complex. To use a neural
network for this purpose, it is necessary to have a sufficiently large set of data showing the object
that is needed to be recognized. Some of the methods using neural networks also require samples of
data where the object to be recognized is not present. An error that the neural networks assign the
object to a category is used to change the weights of the neurons so that the global error of the
network gradually decreases during the network training. Such type of training is also called the
error propagation algorithm. If the network reaches the specified error threshold, network training
is terminated. Another possibility is to terminate the training after reaching a predetermined
number of iterations. However, this solution does not take into account the global error of the
training in any way.

Figure 3. Support vector machine (SVM) principle.

As can be seen in Figure 3, the line represents a classifier (for example a solid shape can represent
the drone and shape with fill represents the background) and it divides the data successfully into two
classes. Sometimes, when classifying with similar methods, the problem is that the superposition
splitting data is too close to one of the classes. Therefore, SVM seeks a separator to reach the maximum
distance between the data classes. If the classes are non-separable, the so-called non-linear SVM is
used. In this case, the data are projected into a multidimensional space where they are separable [10].

2.5. Cascade Classifier (Haar-Like Features)

This classifier is primarily intended for the classification of objects that are stable [10]. As an
example, the figure of the human body or human face can be mentioned. The human body and face in
most cases have the same proportions, i.e., there are always hands, legs, head, and so on. The drone
shape analysis showed that the drone does not fall into such a category of objects. As stated in [16],
there are two main reasons why a Haar classifier is used to recognize objects. One is that Haar-like
features can effectively describe a region of interest, which is a challenging task with limited training
data. If Haar features are compared to raw pixels, they can increase or reduce the variability of data
belonging or not into a common class by their properties. Haar features are capable of recognizing and
effectively describing the value of the ratio between light and dark parts of the scene. As mentioned
in [16], they are also successful in classical computer vision problems, namely scene variability and
varying illumination of the scene. The second reason to use this method of classification is its speed,
as working with Haar features is considered highly effective.

2.6. Machine Learning and Neural Networks

The topic of using neural networks for object recognition is very complex. To use a neural network
for this purpose, it is necessary to have a sufficiently large set of data showing the object that is needed
to be recognized. Some of the methods using neural networks also require samples of data where the
object to be recognized is not present. An error that the neural networks assign the object to a category
is used to change the weights of the neurons so that the global error of the network gradually decreases
during the network training. Such type of training is also called the error propagation algorithm. If the
network reaches the specified error threshold, network training is terminated. Another possibility is to
terminate the training after reaching a predetermined number of iterations. However, this solution
does not take into account the global error of the training in any way.

Appl. Syst. Innov. 2020, 3, 29 6 of 23

2.7. TensorFlow (TF)

TensorFlow (TF) is an open-source machine learning platform that is used in a wide range
of applications [17,18]. A tensor is a generalization of vectors and matrices to potentially higher
dimensions. TF represents tensors as n-dimensional coordinates of basic data types [19]. This system
is based on artificial intelligence and it was published by Google (for free use) in 2015. TF uses the
dataflow graph method to represent the calculations. Units of calculations are represented by graph
nodes. The edges of the graph transmit tensors (multidimensional arrays) between nodes [17,18] and
represent the data consumed or produced by the calculation [20]. The advantage of this system is its
architecture which by its flexibility allows easy and affordable deployment of computing on various
platforms such as multicore processors, graphics cards, or Tensor processing units (a computer system
also developed by Google designed primarily for machine learning). As mentioned in [17], training a
neural network to classify and recognize objects requires a large number of calculations. The features
of TF allow its users to perform computationally complex tasks such as classification in a relatively
reasonable time.

3. Drone Detection Using Computer Vision Methods

Our detection procedure shall meet the following requirements and objectives: recognition of
moving objects in the image, identification of each object in an image, correct matching of objects from
the previous frame to the currently located objects in the image, and path drawing of the object in the
scene. For these reasons, the detection procedure using computer vision was proposed as illustrated in
Figure 4.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 6 of 23

2.7. TensorFlow (TF)

TensorFlow (TF) is an open-source machine learning platform that is used in a wide range of
applications [17,18]. A tensor is a generalization of vectors and matrices to potentially higher
dimensions. TF represents tensors as n-dimensional coordinates of basic data types [19]. This system
is based on artificial intelligence and it was published by Google (for free use) in 2015. TF uses the
dataflow graph method to represent the calculations. Units of calculations are represented by graph
nodes. The edges of the graph transmit tensors (multidimensional arrays) between nodes [17,18] and
represent the data consumed or produced by the calculation [20]. The advantage of this system is its
architecture which by its flexibility allows easy and affordable deployment of computing on various
platforms such as multicore processors, graphics cards, or Tensor processing units (a computer
system also developed by Google designed primarily for machine learning). As mentioned in [17],
training a neural network to classify and recognize objects requires a large number of calculations.
The features of TF allow its users to perform computationally complex tasks such as classification in
a relatively reasonable time.

3. Drone Detection Using Computer Vision Methods

Our detection procedure shall meet the following requirements and objectives: recognition of
moving objects in the image, identification of each object in an image, correct matching of objects
from the previous frame to the currently located objects in the image, and path drawing of the object
in the scene. For these reasons, the detection procedure using computer vision was proposed as
illustrated in Figure 4.

Figure 4. The basic scheme of the proposed detection procedure.

The first step is the background segmentation (Figure 5). Among the tested methods, the MoG
(Mixture of Gaussians) method was chosen for the following reasons: adaptability of the algorithm
to changes in illumination conditions during the day (not sudden changes as switching on the light
in a room), a small movement of background objects that do not represent significant objects in the
image and possible image covered by a large object. All of the cases can be expected during drone
detection in the image.

Figure 4. The basic scheme of the proposed detection procedure.

The first step is the background segmentation (Figure 5). Among the tested methods, the MoG
(Mixture of Gaussians) method was chosen for the following reasons: adaptability of the algorithm to
changes in illumination conditions during the day (not sudden changes as switching on the light in a
room), a small movement of background objects that do not represent significant objects in the image
and possible image covered by a large object. All of the cases can be expected during drone detection
in the image.

Appl. Syst. Innov. 2020, 3, 29 7 of 23

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 7 of 23

Figure 5. Segmentation of objects using the MoG (Mixture of Gaussians) method (background has

black color).

The next step is the application of filters on the input image. It is needed to remove noise and
smooth it out. Comparing the individual smoothing methods, a Gaussian filter, which [21] is
considered to be “most useful”, although not the fastest, was used due to the high noise reduction
efficiency.

However, the correct selection of the image segmentation method and proper smoothing filter
may still cause there to be areas in the image that do not match any of the objects. They simply
represent noise caused by illumination conditions, camera focusing, or other reasons. The basic
operations of mathematical morphology (erosion, dilatation, and morphological opening) were used
to reduce the noise and correct bounding of the areas that belong to the objects in the image.

The contour search method determines whether or not the moving objects are in the image. A
contour-bounding method using a rectangle was used to outline the moving object (Figure 6).

Figure 6. Moving objects bounded by the contour search method using a rectangle.

Successful tracking of moving objects requires the knowledge of whether the segmented object
from the previous frame is the same as that detected in the current frame. If only one object is
considered, this issue can be neglected. Of course, such a situation can occur, but it is necessary to
take into account situations where there are many objects in the image. For this reason, the objects in
the image must be identified, and to select the correct method, tracked objects must be defined.
Knowing this information, an identifier can be defined. The identifier is the information that clearly
describes the object being tracked. The tracked object must be trackable also in the presence of other
objects even in the change of location, illumination conditions, or other changes. At this point, local
features are appropriate to locate and describe areas in the image that belong to a particular object.
The process of finding these features consists of the detection of such features and describing their
surroundings. The methods by which these local features are searched to create descriptive vectors
of features that are invariant (change in position, rotation, and other changes) are described in [11].
Several local feature detectors are available in the Open Computer Vision (OpenCV) library and

Figure 5. Segmentation of objects using the MoG (Mixture of Gaussians) method (background has
black color).

The next step is the application of filters on the input image. It is needed to remove noise and
smooth it out. Comparing the individual smoothing methods, a Gaussian filter, which [21] is considered
to be “most useful”, although not the fastest, was used due to the high noise reduction efficiency.

However, the correct selection of the image segmentation method and proper smoothing filter may
still cause there to be areas in the image that do not match any of the objects. They simply represent
noise caused by illumination conditions, camera focusing, or other reasons. The basic operations of
mathematical morphology (erosion, dilatation, and morphological opening) were used to reduce the
noise and correct bounding of the areas that belong to the objects in the image.

The contour search method determines whether or not the moving objects are in the image.
A contour-bounding method using a rectangle was used to outline the moving object (Figure 6).

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 7 of 23

Figure 5. Segmentation of objects using the MoG (Mixture of Gaussians) method (background has

black color).

The next step is the application of filters on the input image. It is needed to remove noise and
smooth it out. Comparing the individual smoothing methods, a Gaussian filter, which [21] is
considered to be “most useful”, although not the fastest, was used due to the high noise reduction
efficiency.

However, the correct selection of the image segmentation method and proper smoothing filter
may still cause there to be areas in the image that do not match any of the objects. They simply
represent noise caused by illumination conditions, camera focusing, or other reasons. The basic
operations of mathematical morphology (erosion, dilatation, and morphological opening) were used
to reduce the noise and correct bounding of the areas that belong to the objects in the image.

The contour search method determines whether or not the moving objects are in the image. A
contour-bounding method using a rectangle was used to outline the moving object (Figure 6).

Figure 6. Moving objects bounded by the contour search method using a rectangle.

Successful tracking of moving objects requires the knowledge of whether the segmented object
from the previous frame is the same as that detected in the current frame. If only one object is
considered, this issue can be neglected. Of course, such a situation can occur, but it is necessary to
take into account situations where there are many objects in the image. For this reason, the objects in
the image must be identified, and to select the correct method, tracked objects must be defined.
Knowing this information, an identifier can be defined. The identifier is the information that clearly
describes the object being tracked. The tracked object must be trackable also in the presence of other
objects even in the change of location, illumination conditions, or other changes. At this point, local
features are appropriate to locate and describe areas in the image that belong to a particular object.
The process of finding these features consists of the detection of such features and describing their
surroundings. The methods by which these local features are searched to create descriptive vectors
of features that are invariant (change in position, rotation, and other changes) are described in [11].
Several local feature detectors are available in the Open Computer Vision (OpenCV) library and

Figure 6. Moving objects bounded by the contour search method using a rectangle.

Successful tracking of moving objects requires the knowledge of whether the segmented object
from the previous frame is the same as that detected in the current frame. If only one object is
considered, this issue can be neglected. Of course, such a situation can occur, but it is necessary to take
into account situations where there are many objects in the image. For this reason, the objects in the
image must be identified, and to select the correct method, tracked objects must be defined. Knowing
this information, an identifier can be defined. The identifier is the information that clearly describes
the object being tracked. The tracked object must be trackable also in the presence of other objects even
in the change of location, illumination conditions, or other changes. At this point, local features are
appropriate to locate and describe areas in the image that belong to a particular object. The process
of finding these features consists of the detection of such features and describing their surroundings.
The methods by which these local features are searched to create descriptive vectors of features that are
invariant (change in position, rotation, and other changes) are described in [11]. Several local feature
detectors are available in the Open Computer Vision (OpenCV) library and have been tested and

Appl. Syst. Innov. 2020, 3, 29 8 of 23

analyzed. The following detectors were compared: Scale-Invariant Feature Transform (SIFT), Speed
Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and
Rotated BRIEF (ORB), and Accelerated KAZE (AKAZE). Two images showing one object (drone) were
used for this analysis (Figure 7).

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 8 of 23

have been tested and analyzed. The following detectors were compared: Scale-Invariant Feature
Transform (SIFT), Speed Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints
(BRISK), Oriented FAST and Rotated BRIEF (ORB), and Accelerated KAZE (AKAZE). Two images
showing one object (drone) were used for this analysis (Figure 7).

Figure 7. Testing images used to evaluate the suitability of feature detectors.

When testing each of the detectors, features were found in both frames, and then the vectors
were extracted using the same descriptor, in this case, the SURF descriptor. Using the closest
neighbor search method or algorithm Fast Library for Approximate Nearest Neighbors (FLANN), it
was determined which feature in the first frame coincided with the feature identified in the second
frame. Of these matches, those found to be good were selected. The good match was defined by this
criterion: the mean distance between the feature identified in the first frame and feature identified in
the second frame. Only those distances that were above the mean of maximum and minimum
distances of all features were selected. Thus, only those that are qualitatively above half of all
distances have been obtained. The result of this calculation was influenced by a suitably chosen
constant. During the testing it was found that this method works relatively correctly and even
though sometimes incorrectly identified features matches were found, it is considered to be a basic
filter to determine the correct matching of features. Testing detectors led to the following findings:

1. SIFT—the number of features found compared to other detectors was higher, features were
scattered throughout the object and identified also in areas that did not correspond to the edges
of the object, finding good matches of features was also difficult after the application of
additional filter;

2. SURF—as in the first detector, the number of features identified was too high and often did not
correspond to the object’s edges; features matching was only partially successful;

3. BRISK—the number of features found was higher, but most of them corresponded to the edges
of the object and the important parts of the objects; a sufficient number of successfully matched
features were achieved by the additional filter;

4. ORB—the number of significant points was the lowest among the tested detectors, but their
localization was almost exclusively at the edges of the object and the important parts of the
object; the points were not scattered throughout the whole object when the additional filter was
applied; and a high number of correctly matched features was achieved;

5. AKAZE—the number of significant points was higher, some even outside the object and
important areas; a sufficient number of successfully matched features were achieved by an
additional filter.

The evaluation of detector testing is shown in Table 1. The greater the number of characters x,
the more successful the test was.

Table 1. The evaluation of detectors test.

 SIFT SURF BRISK ORB AKAZE
Number of features x x xx xxx xx
Dispersal of features x x xxx xxx xx

The number of successfully matched features x x xx xx xx
Overall rating x x xx xxx xx

Figure 7. Testing images used to evaluate the suitability of feature detectors.

When testing each of the detectors, features were found in both frames, and then the vectors were
extracted using the same descriptor, in this case, the SURF descriptor. Using the closest neighbor search
method or algorithm Fast Library for Approximate Nearest Neighbors (FLANN), it was determined
which feature in the first frame coincided with the feature identified in the second frame. Of these
matches, those found to be good were selected. The good match was defined by this criterion: the
mean distance between the feature identified in the first frame and feature identified in the second
frame. Only those distances that were above the mean of maximum and minimum distances of all
features were selected. Thus, only those that are qualitatively above half of all distances have been
obtained. The result of this calculation was influenced by a suitably chosen constant. During the
testing it was found that this method works relatively correctly and even though sometimes incorrectly
identified features matches were found, it is considered to be a basic filter to determine the correct
matching of features. Testing detectors led to the following findings:

1. SIFT—the number of features found compared to other detectors was higher, features were
scattered throughout the object and identified also in areas that did not correspond to the
edges of the object, finding good matches of features was also difficult after the application of
additional filter;

2. SURF—as in the first detector, the number of features identified was too high and often did not
correspond to the object’s edges; features matching was only partially successful;

3. BRISK—the number of features found was higher, but most of them corresponded to the edges of
the object and the important parts of the objects; a sufficient number of successfully matched
features were achieved by the additional filter;

4. ORB—the number of significant points was the lowest among the tested detectors, but their
localization was almost exclusively at the edges of the object and the important parts of the object;
the points were not scattered throughout the whole object when the additional filter was applied;
and a high number of correctly matched features was achieved;

5. AKAZE—the number of significant points was higher, some even outside the object and important
areas; a sufficient number of successfully matched features were achieved by an additional filter.

The evaluation of detector testing is shown in Table 1. The greater the number of characters x,
the more successful the test was.

Table 1. The evaluation of detectors test.

SIFT SURF BRISK ORB AKAZE

Number of features x x xx xxx xx
Dispersal of features x x xxx xxx xx

The number of successfully matched features x x xx xx xx

Overall rating x x xx xxx xx

Appl. Syst. Innov. 2020, 3, 29 9 of 23

Since some incorrect feature matchings were evaluated as good even after applying the good
match filter, it would not be appropriate to compare the ratio of features found and well-matched
features between the detectors. Thus, the success of each detector was compared visually. BRISK and
ORB detectors achieved the best results. The ORB feature detector, which uses the BRIEF descriptor for
feature extraction, was selected.

The goal of this work is not to compare existing detectors and evaluate their success in general.
Therefore, we chose a representative pair of images describing our use case and tried to evaluate the
success rate of detectors supported by the OpenCV library. A detailed description of used detectors,
together with the achieved success, in general, is described in [22] in detail. Comparing our testing
results and results published in [22], there is a required match in parameters that are important for us.
Taking into account this information we consider our testing relevant and selected ORB detector suitable
for our usage. The following test scenarios have been developed to verify the proposed procedures:

• movement and tracking of a single object,
• movement and tracking of multiple objects,
• leaving the sensing area,
• clash of objects.

During the first test, there was only one object in the test area that moved freely. The test also
simulated a situation where the object once came out of the sensing area and returned at a different
angle. Also, zooming in and out of objects was simulated, which would mean the object’s approaching
and moving away. Throughout testing, only one object in the test area was identified, whose identifier
(the object itself) was updated in the database with each additional incoming frame. The result of the
experiment can be seen in Figure 8.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 9 of 23

Since some incorrect feature matchings were evaluated as good even after applying the good
match filter, it would not be appropriate to compare the ratio of features found and well-matched
features between the detectors. Thus, the success of each detector was compared visually. BRISK and
ORB detectors achieved the best results. The ORB feature detector, which uses the BRIEF descriptor
for feature extraction, was selected.

The goal of this work is not to compare existing detectors and evaluate their success in general.
Therefore, we chose a representative pair of images describing our use case and tried to evaluate the
success rate of detectors supported by the OpenCV library. A detailed description of used detectors,
together with the achieved success, in general, is described in [22] in detail. Comparing our testing
results and results published in [22], there is a required match in parameters that are important for
us. Taking into account this information we consider our testing relevant and selected ORB detector
suitable for our usage. The following test scenarios have been developed to verify the proposed
procedures:

• movement and tracking of a single object,
• movement and tracking of multiple objects,
• leaving the sensing area,
• clash of objects.

During the first test, there was only one object in the test area that moved freely. The test also
simulated a situation where the object once came out of the sensing area and returned at a different
angle. Also, zooming in and out of objects was simulated, which would mean the object’s
approaching and moving away. Throughout testing, only one object in the test area was identified,
whose identifier (the object itself) was updated in the database with each additional incoming frame.
The result of the experiment can be seen in Figure 8.

Figure 8. Movement and tracking of a single object using the ORB detector.

During further testing, two objects were in the sensing area. The objects, as in the first case,
moved freely in the sensing area. The object described by the blue line (Figure 9) once left the area
and returned. The proposed detection procedure was successful because the object (drone) was
identified as the same. In Figure 9 it is clear that the object from the previous frame was always
assigned to the correct object in the current frame.

Figure 8. Movement and tracking of a single object using the ORB detector.

During further testing, two objects were in the sensing area. The objects, as in the first case,
moved freely in the sensing area. The object described by the blue line (Figure 9) once left the area and
returned. The proposed detection procedure was successful because the object (drone) was identified
as the same. In Figure 9 it is clear that the object from the previous frame was always assigned to the
correct object in the current frame.

Appl. Syst. Innov. 2020, 3, 29 10 of 23

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 10 of 23

Figure 9. Movement and tracking of multiple objects using the ORB detector.

In the next scenario, the identified object left the sensing area. As shown in Figure 10, one object
in the area has been identified. This object came out of the area several times and returned at a
different angle, rotated, and did so at a different size (UAV was approaching and moving away from
the camera). As is evident from the shape analysis, the drone is an invariant object and, in many
cases, it resembles a different object. For this reason, the proposed solution is considered successful
in this scenario.

Figure 10. Leaving the sensing area.

When testing the objects clash scenario, several objects appeared on the scene that partially
overlapped each other, and their path merged. All objects moved freely for a while and overlapped
after some time. The test result is shown in Figure 11.

Figure 9. Movement and tracking of multiple objects using the ORB detector.

In the next scenario, the identified object left the sensing area. As shown in Figure 10, one object in
the area has been identified. This object came out of the area several times and returned at a different
angle, rotated, and did so at a different size (UAV was approaching and moving away from the camera).
As is evident from the shape analysis, the drone is an invariant object and, in many cases, it resembles
a different object. For this reason, the proposed solution is considered successful in this scenario.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 10 of 23

Figure 9. Movement and tracking of multiple objects using the ORB detector.

In the next scenario, the identified object left the sensing area. As shown in Figure 10, one object
in the area has been identified. This object came out of the area several times and returned at a
different angle, rotated, and did so at a different size (UAV was approaching and moving away from
the camera). As is evident from the shape analysis, the drone is an invariant object and, in many
cases, it resembles a different object. For this reason, the proposed solution is considered successful
in this scenario.

Figure 10. Leaving the sensing area.

When testing the objects clash scenario, several objects appeared on the scene that partially
overlapped each other, and their path merged. All objects moved freely for a while and overlapped
after some time. The test result is shown in Figure 11.

Figure 10. Leaving the sensing area.

When testing the objects clash scenario, several objects appeared on the scene that partially
overlapped each other, and their path merged. All objects moved freely for a while and overlapped
after some time. The test result is shown in Figure 11.

Appl. Syst. Innov. 2020, 3, 29 11 of 23
Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 11 of 23

Figure 11. Overlapping of objects.

In Figure 11 (first picture) there was an overlap of objects and the proposed detection procedure
evaluated all objects as one. In this step, the object that had the largest match in the previous frame
was identified. In this case, it was the drone in the center of the group. Because there was only one
object identified in the scene, the others were not tracked. In the next frame, when objects were
separated, some objects were re-matched with objects in the database and some of them were
evaluated as new ones.

After verifying the detection procedure in various scenarios, the reliability of the selected ORB
detector and its BRIEF descriptor was further evaluated. The goal was to evaluate the number of
correctly matched features throughout the object’s occurrence on the scene. In this way, the scenario
where the object came out of the sensing area several times and returned in a different angle, and in
a different size, was evaluated. The maximum number of features detected and recorded in the
database was set to 500. The number of correctly matched features will, therefore, be in the range of
0–500. The test video is 16 s long and consists of 481 frames. During the whole test (Figure 12), 500
features were detected for a single object in each frame and of course the same number was recorded
in the database.

Figure 11. Overlapping of objects.

In Figure 11 (first picture) there was an overlap of objects and the proposed detection procedure
evaluated all objects as one. In this step, the object that had the largest match in the previous frame
was identified. In this case, it was the drone in the center of the group. Because there was only one
object identified in the scene, the others were not tracked. In the next frame, when objects were
separated, some objects were re-matched with objects in the database and some of them were evaluated
as new ones.

After verifying the detection procedure in various scenarios, the reliability of the selected ORB
detector and its BRIEF descriptor was further evaluated. The goal was to evaluate the number of
correctly matched features throughout the object’s occurrence on the scene. In this way, the scenario
where the object came out of the sensing area several times and returned in a different angle, and
in a different size, was evaluated. The maximum number of features detected and recorded in the
database was set to 500. The number of correctly matched features will, therefore, be in the range of
0–500. The test video is 16 s long and consists of 481 frames. During the whole test (Figure 12), 500
features were detected for a single object in each frame and of course the same number was recorded
in the database.

Appl. Syst. Innov. 2020, 3, 29 12 of 23
Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 12 of 23

Figure 12. The number of correctly matched features in 481 frames.

The results (Figure 12) are divided into 6 sections during which the object was in the sensing
area. During the presentation in the first area, the object was stable, partially enlarged and reduced
in size, and did not significantly change its position. This is also reflected in the relatively stable
number of correct matches found. During the object’s presence in sections 2 to 5, it moved away
from the sensing area for only a short time and it always returned relatively with the same rotation.
While in the last area, the object rotated all the time, changing its size and position. For this reason,
the number of correct matches found is the smallest (in the range of 250—350). This once again
shows that the selected detector is effective even in situations where an object changes its size,
position, or rotation during tracking.

The proposed solution relies on the usage of classical computer vision methods, which are not
intended exclusively for object tracking. For this reason, there were several situations during
validation where the implemented tracking procedure did not behave as was required. Specifically,
this was the case in a situation where objects clashed and, after separation, they were incorrectly
paired with objects in the database. Therefore, it would be appropriate to use a method where it is
possible to identify the object in the scene clearly and thus make it easier to track. It would also be
appropriate to use a method other than background subtraction to identify a moving object in the
image because of the susceptibility of this method to scene changes, such as lighting conditions or
various camera noise when focusing, and so on. Therefore, other detection and identification
principle was proposed and tested.

Used methods for drone tracking and detection methods were mainly tested on the simulated
scenes described above. This work aims to use and verify the success of detection multi-rotor UAVs
using machine-learning methods, so in the next section, we will describe the process of training and
evaluation on a real dataset of photos and videos.

4. Detection and Identification of a Drone Using a Machine-Learning Approach

The goal of using machine-learning methods is to choose a suitable neural network, which is
acceptable for the detection of multi-rotor UAV machines. For this purpose, we have chosen an
available and modern TensorFlow machine learning platform. After selecting a suitable type of
network, our task was to overtrain it using appropriate network parameters and test its success ratio

Figure 12. The number of correctly matched features in 481 frames.

The results (Figure 12) are divided into 6 sections during which the object was in the sensing
area. During the presentation in the first area, the object was stable, partially enlarged and reduced
in size, and did not significantly change its position. This is also reflected in the relatively stable
number of correct matches found. During the object’s presence in Sections 2–5, it moved away from
the sensing area for only a short time and it always returned relatively with the same rotation. While in
the last area, the object rotated all the time, changing its size and position. For this reason, the number
of correct matches found is the smallest (in the range of 250—350). This once again shows that the
selected detector is effective even in situations where an object changes its size, position, or rotation
during tracking.

The proposed solution relies on the usage of classical computer vision methods, which are not
intended exclusively for object tracking. For this reason, there were several situations during validation
where the implemented tracking procedure did not behave as was required. Specifically, this was
the case in a situation where objects clashed and, after separation, they were incorrectly paired with
objects in the database. Therefore, it would be appropriate to use a method where it is possible to
identify the object in the scene clearly and thus make it easier to track. It would also be appropriate to
use a method other than background subtraction to identify a moving object in the image because
of the susceptibility of this method to scene changes, such as lighting conditions or various camera
noise when focusing, and so on. Therefore, other detection and identification principle was proposed
and tested.

Used methods for drone tracking and detection methods were mainly tested on the simulated
scenes described above. This work aims to use and verify the success of detection multi-rotor UAVs
using machine-learning methods, so in the next section, we will describe the process of training and
evaluation on a real dataset of photos and videos.

4. Detection and Identification of a Drone Using a Machine-Learning Approach

The goal of using machine-learning methods is to choose a suitable neural network, which is
acceptable for the detection of multi-rotor UAV machines. For this purpose, we have chosen an
available and modern TensorFlow machine learning platform. After selecting a suitable type of
network, our task was to overtrain it using appropriate network parameters and test its success ratio in

Appl. Syst. Innov. 2020, 3, 29 13 of 23

classifying objects moving in the sky into the considered classes. Our solution and proposed approach
consist of the following steps:

• preparing data for training;
• preparing data for evaluation;
• selection of detection model;
• creating other necessary files for training;
• training;
• export of the trained model to a frozen graph format;
• creating an application to test the detector.

4.1. Preparing Data for Training and Evaluation

For successful training of a neural network, a sufficiently large set of data is needed. The object of
interest should be captured in various light, spatial or other conditions. It is also important that the data
show all of the defined drone types in different situations, rotations, and environments. The amount of
data collected should be sufficient to allow the network to be trained and to recognize the object of
interest. In addition to the obtained data, it is also necessary to make annotations that specify the exact
location of the object in the scene.

4.2. Selection of Detection Model

Since creating a brand-new recognition model would require a large amount of time and computing
power to achieve the desired results, detection models that were trained on the data set called “Common
Objects in Context dataset” were used after analyzing the available solutions. This set contains over
200,000 annotated images of various classes (e.g., cat, dog, car, boat, etc.) that can be used for the
training. However, the drone is not among them. On the other hand, defining our detection model
would probably be more reliable than using the pre-trained model, as all the training parameters
would be adopted to specific detection.

In Table 2 some of the latest available detection models are listed with the time that represents
the speed of a particular model for a sample of 600 × 600-pixel images and also bounding box mean
average precision (mAP) representing the performance of the detector. The speed measurement was
performed with the NVidia GeForce GTX TITAN X graphics card and mAP metric evaluated on COCO
14 minimal set. The table contents are taken from the official TensorFlow repository on the Github
software development platform.

Table 2. Pre-trained TensorFlow models.

Name of the Model Speed of the Model [ms] Mean Average Precision 1

ssd_mobilenet_v2_coco 31 22
ssd_inception_v2_coco 42 24

faster_rcnn_inception_v2_coco 58 28
faster_rcnn_resnet50_coco 89 30

faster_rcnn_resnet50_lowproposals_coco 64 -
1 See evaluation protocol here: https://cocodataset.org/#detection-eval.

Each of these models contains a configuration file that serves as a source of information for
training the model. When selecting the parameters of the model, it is necessary to consider the specific
application. Models such as Faster Regions with Convolutional Neural Networks (R-CNN) use the
selective search method to find possible objects in a scene and they are used when the detector is
required to be more accurate. On the other hand, the processing time in these models has lower priority.
This is the case of automated UAV detection, so a model of this type will be used. By contrast, SSD
(Single Shot MutliBox Detector) models have priority on the processing time. This is proven by the

https://cocodataset.org/#detection-eval

Appl. Syst. Innov. 2020, 3, 29 14 of 23

table of pre-trained models (Table 2, where the abbreviation SSD or RCNN is used in the model name
and this corresponds to the model type) [21].

4.3. Creating Other Necessary Files for Training

For successful training of the model, it is necessary to have a sufficient amount of data. Therefore,
drone images were collected from freely available sources on the Internet. Their number was
approximately 100. After communication with the developers of the SafeShore project, a project funded
by the European Commission to detect small targets flying at low altitudes, a further data set was
obtained of approximately 1000 samples. Other samples were created from video sequences capturing
a flying drone.

Next, it was necessary to create our annotation for each image showing the object of interest—the
drone. The data was split so that 80% of the data was left for model training and the rest 20% for testing.
The freely available LabelImg tool was used to create annotations. An example of an annotation can be
seen in Figure 13.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 14 of 23

4.3. Creating Other Necessary Files for Training

For successful training of the model, it is necessary to have a sufficient amount of data.
Therefore, drone images were collected from freely available sources on the Internet. Their number
was approximately 100. After communication with the developers of the SafeShore project, a project
funded by the European Commission to detect small targets flying at low altitudes, a further data set
was obtained of approximately 1000 samples. Other samples were created from video sequences
capturing a flying drone.

Next, it was necessary to create our annotation for each image showing the object of
interest—the drone. The data was split so that 80% of the data was left for model training and the
rest 20% for testing. The freely available LabelImg tool was used to create annotations. An example
of an annotation can be seen in Figure 13.

Figure 13. Annotated object (drone) in LabelImg.

The .xml file generated by the annotation tool can be seen in Figure 14. From this file, the data,
which are used to create the TensorFlow Record (TFRecord) file, were extracted. It is the simple file
whose content is in binary form and it is used by the TensorFlow training library. Therefore, it is
located in one memory block and the data access is faster. The extracted data are saved in a .csv file
(right part of Figure 14). This file displays information such as the name of the file in which the
drone object is located, its height and width, the name of the class, and the coordinates of the upper
right corner of the located object.

Figure 13. Annotated object (drone) in LabelImg.

The .xml file generated by the annotation tool can be seen in Figure 14. From this file, the data,
which are used to create the TensorFlow Record (TFRecord) file, were extracted. It is the simple file
whose content is in binary form and it is used by the TensorFlow training library. Therefore, it is
located in one memory block and the data access is faster. The extracted data are saved in a .csv file
(right part of Figure 14). This file displays information such as the name of the file in which the drone
object is located, its height and width, the name of the class, and the coordinates of the upper right
corner of the located object.

Appl. Syst. Innov. 2020, 3, 29 15 of 23
Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 15 of 23

Figure 14. The creation of TensorFlow Records (TFRecords).

4.4. Training

The training script is provided directly by the library developers and it is included in the official
Github repository. The time required to complete one training step took 4.5 s on average (using
TensorFlow with a Central Processing Unit (CPU) support only—3,5 GHz Intel Core i5). Using
TensorFlow with a Graphics Processing Unit (GPU) support—NVIDIA GeForce GTX1050 Ti, the
time of one training step was on average 0.33 s, so we use this approach. The difference between the
training time is, therefore, highly dependent on how the detector is trained. Information about
model and training configuration is summarized in Table 3. For more information about model
architecture, see publication [23] from Szegedy et al.

Table 3. Model and training configuration.

Model Configuration
model name Faster R-CNN with Inception v2

1st stage (location) regularizer L2
1st stage initializer Truncated Normal

2nd stage (classification) regularizer L2
2nd stage initializer Variance Scaling

score converter SOFTMAX
Training Configuration

learning rate 0.0002
number steps 300k

A model with adequate reliability and feasibility was achieved after a total of 300,000 steps
(about 2 training days). The progress of classification and object location is shown in Figure 15. The
data on the graph entitled Classification loss show a gradual improvement of the model according to
the number of training steps in the task of classifying the object into the correct class. In the case of a
model that classifies data into a single class (single class classification), objects that do not contain the
drone are considered as incorrectly classified. Another graph called Localization loss shows how the
model was improved with the number of training steps in the task of a correctly localized object.

Figure 14. The creation of TensorFlow Records (TFRecords).

4.4. Training

The training script is provided directly by the library developers and it is included in the official
Github repository. The time required to complete one training step took 4.5 s on average (using
TensorFlow with a Central Processing Unit (CPU) support only—3,5 GHz Intel Core i5). Using
TensorFlow with a Graphics Processing Unit (GPU) support—NVIDIA GeForce GTX1050 Ti, the time
of one training step was on average 0.33 s, so we use this approach. The difference between the training
time is, therefore, highly dependent on how the detector is trained. Information about model and
training configuration is summarized in Table 3. For more information about model architecture, see
publication [23] from Szegedy et al.

Table 3. Model and training configuration.

Model Configuration

model name Faster R-CNN with Inception v2
1st stage (location) regularizer L2

1st stage initializer Truncated Normal
2nd stage (classification) regularizer L2

2nd stage initializer Variance Scaling

score converter SOFTMAX

Training Configuration

learning rate 0.0002
number steps 300k

A model with adequate reliability and feasibility was achieved after a total of 300,000 steps (about
2 training days). The progress of classification and object location is shown in Figure 15. The data
on the graph entitled Classification loss show a gradual improvement of the model according to the
number of training steps in the task of classifying the object into the correct class. In the case of a model
that classifies data into a single class (single class classification), objects that do not contain the drone

Appl. Syst. Innov. 2020, 3, 29 16 of 23

are considered as incorrectly classified. Another graph called Localization loss shows how the model
was improved with the number of training steps in the task of a correctly localized object.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 16 of 23

Figure 15. Progress of the training in drone detection using TensorFlow.

The graph in Figure 16 shows the improvement of the detection model taking into account all
aspects of the success and correct detection of the object.

Figure 16. Progress of the model’s training concerning the overall aspects of reliable and accurate
object detection.

Figure 15. Progress of the training in drone detection using TensorFlow.

The graph in Figure 16 shows the improvement of the detection model taking into account all
aspects of the success and correct detection of the object.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 16 of 23

Figure 15. Progress of the training in drone detection using TensorFlow.

The graph in Figure 16 shows the improvement of the detection model taking into account all
aspects of the success and correct detection of the object.

Figure 16. Progress of the model’s training concerning the overall aspects of reliable and accurate
object detection.

Figure 16. Progress of the model’s training concerning the overall aspects of reliable and accurate
object detection.

5. Experiments

Various scenarios were verified to determine the success rate of the trained detection model under
different conditions. The model was tested on drone images and videos as well as various backgrounds.
The testing scenarios were as follows:

• drone in a static image;

Appl. Syst. Innov. 2020, 3, 29 17 of 23

• drone in the sky;
• multiple drones in one image;
• drone with another flying object in the sky.

5.1. Drone in a Static Image

Static images of a drone with varying background and several other objects on the scene were
presented to the detector. In most cases, the drone was detected correctly. The successful finding of the
object in several pictures is shown in Figure 17.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 17 of 23

5. Experiments

Various scenarios were verified to determine the success rate of the trained detection model
under different conditions. The model was tested on drone images and videos as well as various
backgrounds. The testing scenarios were as follows:

• drone in a static image;
• drone in the sky;
• multiple drones in one image;
• drone with another flying object in the sky.

5.1. Drone in a Static Image

Static images of a drone with varying background and several other objects on the scene were
presented to the detector. In most cases, the drone was detected correctly. The successful finding of
the object in several pictures is shown in Figure 17.

Figure 17. Detection of the drone in the static image.

During testing, there were also situations when the drones were detected incorrectly.
Specifically, such situations occur where one drone was split into two objects or a boat object was
identified as a drone (Figure 18).

Figure 18. Incorrect drone detection in a static image.

Figure 17. Detection of the drone in the static image.

During testing, there were also situations when the drones were detected incorrectly. Specifically,
such situations occur where one drone was split into two objects or a boat object was identified as a
drone (Figure 18).

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 17 of 23

5. Experiments

Various scenarios were verified to determine the success rate of the trained detection model
under different conditions. The model was tested on drone images and videos as well as various
backgrounds. The testing scenarios were as follows:

• drone in a static image;
• drone in the sky;
• multiple drones in one image;
• drone with another flying object in the sky.

5.1. Drone in a Static Image

Static images of a drone with varying background and several other objects on the scene were
presented to the detector. In most cases, the drone was detected correctly. The successful finding of
the object in several pictures is shown in Figure 17.

Figure 17. Detection of the drone in the static image.

During testing, there were also situations when the drones were detected incorrectly.
Specifically, such situations occur where one drone was split into two objects or a boat object was
identified as a drone (Figure 18).

Figure 18. Incorrect drone detection in a static image. Figure 18. Incorrect drone detection in a static image.

Appl. Syst. Innov. 2020, 3, 29 18 of 23

5.2. Video: Drone in the Sky

This scenario was focused on the classic situation when the camera is pointing to the sky and the
drone is moving freely in the sensing area. During the whole scenario, there was no other object in
the image. A video from a series of data from the SafeShore project developers was used for testing.
The drone was detected correctly during the whole scene. One of the detection results is shown in
Figure 19.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 18 of 23

5.2. Video: Drone in the Sky

This scenario was focused on the classic situation when the camera is pointing to the sky and
the drone is moving freely in the sensing area. During the whole scenario, there was no other object
in the image. A video from a series of data from the SafeShore project developers was used for
testing. The drone was detected correctly during the whole scene. One of the detection results is
shown in Figure 19.

Figure 19. Detection of the drone in the sky.

In this scenario, we also monitored the success of our detection model depending on the size of
the drone in the scene. In this case, the size of the drone corresponded to its distance from the camera
sensor. During this test, the object occupied from 0.42% to 3.43% of the image area. Detector operated
reliably at every object size. Examples of drone sizes in the test video are shown in Figure 20.

Figure 20. Drone sizes.

5.3. Video: Multiple Drones in One Image

When testing this scenario, multiple drones occurred in the sensing area. All the drones were
correctly detected and bounded during the whole testing process. A screenshot from the testing is
shown in Figure 21.

Figure 19. Detection of the drone in the sky.

In this scenario, we also monitored the success of our detection model depending on the size of
the drone in the scene. In this case, the size of the drone corresponded to its distance from the camera
sensor. During this test, the object occupied from 0.42% to 3.43% of the image area. Detector operated
reliably at every object size. Examples of drone sizes in the test video are shown in Figure 20.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 18 of 23

5.2. Video: Drone in the Sky

This scenario was focused on the classic situation when the camera is pointing to the sky and
the drone is moving freely in the sensing area. During the whole scenario, there was no other object
in the image. A video from a series of data from the SafeShore project developers was used for
testing. The drone was detected correctly during the whole scene. One of the detection results is
shown in Figure 19.

Figure 19. Detection of the drone in the sky.

In this scenario, we also monitored the success of our detection model depending on the size of
the drone in the scene. In this case, the size of the drone corresponded to its distance from the camera
sensor. During this test, the object occupied from 0.42% to 3.43% of the image area. Detector operated
reliably at every object size. Examples of drone sizes in the test video are shown in Figure 20.

Figure 20. Drone sizes.

5.3. Video: Multiple Drones in One Image

When testing this scenario, multiple drones occurred in the sensing area. All the drones were
correctly detected and bounded during the whole testing process. A screenshot from the testing is
shown in Figure 21.

Figure 20. Drone sizes.

5.3. Video: Multiple Drones in One Image

When testing this scenario, multiple drones occurred in the sensing area. All the drones were
correctly detected and bounded during the whole testing process. A screenshot from the testing is
shown in Figure 21.

Appl. Syst. Innov. 2020, 3, 29 19 of 23
Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 19 of 23

Figure 21. Testing of multiple drones in the scene scenario.

5.4. Video: Drone with Another Flying Object in the Sky

In this scenario, it was investigated how the detector reacts to a situation when several objects
of a different kind appear in the sensing area. The detector was tested on different objects and
different classes. A situation where the drone and the bird appeared on the scene at the same time
was also tested. These two objects are each of a different class, but visually they are very similar.
Therefore, the proposed detector failed in this situation. As shown in Figure 22, the detector
classified the bird in the same class as the drone.

Figure 22. Testing the drone detection in the sky with another object.

For this reason, one more detector has been trained to be able to recognize two classes of objects,
namely the drone and the bird. After training, the test was repeated. As shown in Figure 23, the
detector was successful in this case and it classified the objects into the correct classes.

Figure 21. Testing of multiple drones in the scene scenario.

5.4. Video: Drone with Another Flying Object in the Sky

In this scenario, it was investigated how the detector reacts to a situation when several objects of a
different kind appear in the sensing area. The detector was tested on different objects and different
classes. A situation where the drone and the bird appeared on the scene at the same time was also
tested. These two objects are each of a different class, but visually they are very similar. Therefore,
the proposed detector failed in this situation. As shown in Figure 22, the detector classified the bird in
the same class as the drone.

Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 19 of 23

Figure 21. Testing of multiple drones in the scene scenario.

5.4. Video: Drone with Another Flying Object in the Sky

In this scenario, it was investigated how the detector reacts to a situation when several objects
of a different kind appear in the sensing area. The detector was tested on different objects and
different classes. A situation where the drone and the bird appeared on the scene at the same time
was also tested. These two objects are each of a different class, but visually they are very similar.
Therefore, the proposed detector failed in this situation. As shown in Figure 22, the detector
classified the bird in the same class as the drone.

Figure 22. Testing the drone detection in the sky with another object.

For this reason, one more detector has been trained to be able to recognize two classes of objects,
namely the drone and the bird. After training, the test was repeated. As shown in Figure 23, the
detector was successful in this case and it classified the objects into the correct classes.

Figure 22. Testing the drone detection in the sky with another object.

For this reason, one more detector has been trained to be able to recognize two classes of objects,
namely the drone and the bird. After training, the test was repeated. As shown in Figure 23, the detector
was successful in this case and it classified the objects into the correct classes.

Appl. Syst. Innov. 2020, 3, 29 20 of 23
Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 20 of 23

Figure 23. Testing the objects detection in the sky with an improved detector.

5.5. Statistical Evaluation of the Detector

The detection rate of two detectors was statistically evaluated—a detector able to classify
objects into one class (drone) and a detector able to classify objects into two classes (drone and bird).
The detectors were evaluated on a set of 150 images; 74 of them represented a single drone, and 76
represented a bird. For this evaluation, a new data set was used that was not used in training. The
detection rate of the detector trained to one class is shown in Table 4 and the same rate of the
detector trained to two classes is shown in Table 5.

Table 4. The detection rate of the detector trained to one class (drone).

Object
Class

Num. of
Objects

Num. of Successful
Detections

Num. of Failed
Detections Detection Rate [%]

Drone 74 74 0 100.0
Bird 76 18 58 23.6

Overall 150 92 58 61.3

Table 5. The detection rate of the detector trained to two classes (drone and bird).

Object
Class

Num. of
Objects

Num. of Successful
Detections

Num. of Failed
Detections Detection Rate [%]

Drone 74 70 4 94.5
Bird 76 76 0 100.0

Overall 150 146 4 97.3

SafeShore licensed data were used for testing as well as training. The first set of test images
were displaying one or more instances of a multi-rotor drone object. There were also other objects in
the pictures, such as people, water, grass, nature, other machines, etc. An example of this data is
shown in Figure 24. Some drones in testing pictures were also equipped with various add-ons. The
second set of pictures contained birds of various sizes, often with sky as the background.

Figure 23. Testing the objects detection in the sky with an improved detector.

5.5. Statistical Evaluation of the Detector

The detection rate of two detectors was statistically evaluated—a detector able to classify objects
into one class (drone) and a detector able to classify objects into two classes (drone and bird).
The detectors were evaluated on a set of 150 images; 74 of them represented a single drone, and
76 represented a bird. For this evaluation, a new data set was used that was not used in training.
The detection rate of the detector trained to one class is shown in Table 4 and the same rate of the
detector trained to two classes is shown in Table 5.

Table 4. The detection rate of the detector trained to one class (drone).

Object Class Num. of
Objects

Num. of Successful
Detections

Num. of Failed
Detections Detection Rate [%]

Drone 74 74 0 100.0
Bird 76 18 58 23.6

Overall 150 92 58 61.3

Table 5. The detection rate of the detector trained to two classes (drone and bird).

Object Class Num. of
Objects

Num. of Successful
Detections

Num. of Failed
Detections Detection Rate [%]

Drone 74 70 4 94.5
Bird 76 76 0 100.0

Overall 150 146 4 97.3

SafeShore licensed data were used for testing as well as training. The first set of test images were
displaying one or more instances of a multi-rotor drone object. There were also other objects in the
pictures, such as people, water, grass, nature, other machines, etc. An example of this data is shown in
Figure 24. Some drones in testing pictures were also equipped with various add-ons. The second set of
pictures contained birds of various sizes, often with sky as the background.

Appl. Syst. Innov. 2020, 3, 29 21 of 23Appl. Syst. Innov. 2020, 3, x FOR PEER REVIEW 21 of 23

Figure 24. Testing the objects detection in the sky with an improved detector.

6. Conclusions and Future Work

A reliable detection mechanism of multi-rotor UAV was achieved by the usage of the
TensorFlow library. For this purpose, the “Common Objects in Context dataset” was used and it was
extended by 1000 samples of UAVs from the SafeShore dataset. A successful detection rate of 97.3%
in optimal conditions was achieved.

It can be concluded that the proposed detection principle was successful in described testing
cases. The trained detection model was successful in almost every tested scenario. A problem
occurred only when objects with similar features from another class were on the scene. Statistical
evaluation of the detection model showed that the detection rate, in this case, was only 61.3%.
Moreover, the bird should not be detected at all. Therefore, another detection model was used. This
model was able to recognize two classes—drone and bird. From the experiments, it was found that if
the detector was trained on several objects, the detection was much more successful. From this
finding, we conclude that the biggest problem in drone detection is the occurrence of objects with
similar properties. These objects comparable to the drone can include a bird, airplane, parachute, or
paragliding wing. There are not so many of these objects, so it would be possible to train such a
detection model with a sufficiently large data set. Such a detector can be even more successful than
the one trained in two classes. On the other hand, the detection rate of 97.3% of the detector trained
in two classes is sufficient for most of the basic security applications. Achieved success and system
reliability can be compared with the common human observer. Testing was performed on all
described data and conditions and our work presents a functional approach for multi-rotor drone
detection under ideal flight conditions. Future work using our approach may be to focus on the cases
described in the chapter Introduction, where the detector could represent not only the role of a
common observer but also a sophisticated detection system usable in adverse conditions.

Author Contributions: Šimon Grác was the main investigator. Peter Beňo mainly proposed the methodology
used in the article. František Duchoň supervised the article, Martin Dekan provided the validation of the results
and Michal Tölgyessy was responsible for the text reviewing and editing.

Funding: This work was supported by projects APVV-17-0116, VEGA 1/0752/17, and DIH2.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 24. Testing the objects detection in the sky with an improved detector.

6. Conclusions and Future Work

A reliable detection mechanism of multi-rotor UAV was achieved by the usage of the TensorFlow
library. For this purpose, the “Common Objects in Context dataset” was used and it was extended
by 1000 samples of UAVs from the SafeShore dataset. A successful detection rate of 97.3% in optimal
conditions was achieved.

It can be concluded that the proposed detection principle was successful in described testing
cases. The trained detection model was successful in almost every tested scenario. A problem occurred
only when objects with similar features from another class were on the scene. Statistical evaluation of
the detection model showed that the detection rate, in this case, was only 61.3%. Moreover, the bird
should not be detected at all. Therefore, another detection model was used. This model was able to
recognize two classes—drone and bird. From the experiments, it was found that if the detector was
trained on several objects, the detection was much more successful. From this finding, we conclude
that the biggest problem in drone detection is the occurrence of objects with similar properties. These
objects comparable to the drone can include a bird, airplane, parachute, or paragliding wing. There are
not so many of these objects, so it would be possible to train such a detection model with a sufficiently
large data set. Such a detector can be even more successful than the one trained in two classes. On the
other hand, the detection rate of 97.3% of the detector trained in two classes is sufficient for most of
the basic security applications. Achieved success and system reliability can be compared with the
common human observer. Testing was performed on all described data and conditions and our work
presents a functional approach for multi-rotor drone detection under ideal flight conditions. Future
work using our approach may be to focus on the cases described in the chapter Introduction, where
the detector could represent not only the role of a common observer but also a sophisticated detection
system usable in adverse conditions.

Author Contributions: Šimon Grác was the main investigator. Peter Beňo mainly proposed the methodology
used in the article. František Duchoň supervised the article, Martin Dekan provided the validation of the results
and Michal Tölgyessy was responsible for the text reviewing and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by projects APVV-17-0116, VEGA 1/0752/17, and DIH2.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Syst. Innov. 2020, 3, 29 22 of 23

References

1. Boon, M.A.; Drijfhout, A.P.; Tesfamichael, S. Comparison of a fixed-wing and multi-rotor uav for
environmental mapping applications: A case study. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. 2017, 42, 47. [CrossRef]

2. Norouzi Ghazbi, S.; Aghli, Y.; Alimohammadi, M.; Akbari, A.A. Quadrotors Unmanned Aerial Vehicles:
A Review. Int. J. Smart Sens. Intell. Syst. 2016, 9, 309–333.

3. McEvoy, J.F.; Hall, G.P.; McDonald, P.G. Evaluation of unmanned aerial vehicle shape, flight path and camera
type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 2016, 4, e1831. [CrossRef]
[PubMed]

4. Rosnell, T.; Honkavaara, E. Point cloud generation from aerial image data acquired by a quadrocopter type
micro unmanned aerial vehicle and a digital still camera. Sensors 2012, 12, 453–480. [CrossRef] [PubMed]

5. Deng, C.; Wang, S.; Huang, Z.; Tan, Z.; Liu, J. Unmanned aerial vehicles for power line inspection:
A cooperative way in platforms and communications. J. Commun. 2014, 9, 687–692. [CrossRef]

6. DeGarmo, M.; Nelson, G. Prospective unmanned aerial vehicle operations in the future national airspace
system. In Proceedings of the AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum,
Chicago, IL, USA, 20–22 September 2004.

7. Case, E.E.; Zelnio, A.M.; Rigling, B.D. Low-cost acoustic array for small UAV detection and tracking. In
Proceedings of the 2008 IEEE National Aerospace Electronics Conference, Dayton, OH, USA, 16–18 July 2008.

8. Busset, J.; Perrodin, F.; Wellig, P.; Ott, B.; Heutschi, K.; Rühl, T.; Nussbaumer, T. Detection and Tracking of
Drones Using Advanced Acoustic Cameras. In Unmanned/Unattended Sensors and Sensor Networks XI; and
Advanced Free-Space Optical Communication Techniques and Applications; International Society for Optics and
Photonics: Bellingham, WA, USA, 2015; Volume 9647.

9. Shi, X.; Yang, C.; Xie, W.; Liang, C.; Shi, Z.; Chen, J. Anti-drone system with multiple surveillance technologies:
Architecture, implementation, and challenges. IEEE Commun. Mag. 2018, 56, 68–74. [CrossRef]

10. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with The OpenCV Library; O’Reilly Media, Inc.:
Newton, MA, USA, 2008.

11. Šikudová, E.; Černeková, Z.; Benešová, W.; HALADOVÁ, Z.; Kučerová, J. Počítačové Videnie. Detekcia a
Rozpoznávanie Objektov; Wikina: Prague, Czech Republic, 2013; p. 397.

12. Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B. Wallflower: Principles and practice of background maintenance.
In Proceedings of the seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27
September 1999; Volume 1.

13. Koniar, D.; Hargaš, L.; Štofan, S. Segmentation of motion regions for biomechanical systems. Procedia Eng.
2012, 48, 304–311. [CrossRef]

14. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J.
Comput. Vis. 2013, 104, 154–171. [CrossRef]

15. Mallick, S. Image Recognition and Object Detection: Part 1. Available online: https://www.learnopencv.com/

image-recognition-and-object-detection-part1/ (accessed on 28 April 2018).
16. Chen, Q.; Georganas, N.D.; Petriu, E.M. Real-time vision-based hand gesture recognition using haar-like

features. In Proceedings of the 2007 IEEE Instrumentation & Measurement Technology Conference IMTC
2007, Warsaw, Poland, 1–3 May 2007.

17. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.;
et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016.

18. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
2016, arXiv:1603.04467.

19. Creative Commons (CC) License. Tensors. Available online: https://www.tensorflow.org/programmers_
guide/tensors (accessed on 28 April 2018).

20. Creative Commons (CC) License. Graphs and Sessions. Available online: https://www.tensorflow.org/

programmers_guide/graphs (accessed on 28 April 2018).

http://dx.doi.org/10.5194/isprs-archives-XLII-2-W6-47-2017
http://dx.doi.org/10.7717/peerj.1831
http://www.ncbi.nlm.nih.gov/pubmed/27020132
http://dx.doi.org/10.3390/s120100453
http://www.ncbi.nlm.nih.gov/pubmed/22368479
http://dx.doi.org/10.12720/jcm.9.9.687-692
http://dx.doi.org/10.1109/MCOM.2018.1700430
http://dx.doi.org/10.1016/j.proeng.2012.09.518
http://dx.doi.org/10.1007/s11263-013-0620-5
https://www.learnopencv.com/image-recognition-and-object-detection-part1/
https://www.learnopencv.com/image-recognition-and-object-detection-part1/
https://www.tensorflow.org/programmers_guide/tensors
https://www.tensorflow.org/programmers_guide/tensors
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs

Appl. Syst. Innov. 2020, 3, 29 23 of 23

21. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.;
et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

22. Tareen, S.A.; Saleem, Z. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In Proceedings of
the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),
IEEE, Sukkur, Sindh, Pakistan, 3–4 March 2018.

23. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, San
Francisco, CA, USA, 4–9 February 2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Existing Methods for Detection and Identification of Objects in an Image
	Background Subtraction
	Contour Searching
	Selective Searching
	Support Vector Machines (SVM)
	Cascade Classifier (Haar-Like Features)
	Machine Learning and Neural Networks
	TensorFlow (TF)

	Drone Detection Using Computer Vision Methods
	Detection and Identification of a Drone Using a Machine-Learning Approach
	Preparing Data for Training and Evaluation
	Selection of Detection Model
	Creating Other Necessary Files for Training
	Training

	Experiments
	Drone in a Static Image
	Video: Drone in the Sky
	Video: Multiple Drones in One Image
	Video: Drone with Another Flying Object in the Sky
	Statistical Evaluation of the Detector

	Conclusions and Future Work
	References

