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S1 

 Integrating equation  v ( ) =  -  =   = λ n ( )        
with initial condition at the time to, we obtain: 

ln ( ) 
( )  = - λ (t – to) 

and n ( )   = n ( ) e ( )            (1) 

where ln indicates the natural logarithm, t is the time of interest, to is the initial time when 

the number of Rb atoms is n ( ), and e is the Neper’s number (e = 2.71828 …). 
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For the mineral phases 1, 2, …, ϕ, we have: n   =  ∑ n  

Dividing n  and the generic value n  by n  and multiplying by  n , and 

considering the isotopic abundances X, we obtain: 

  =  ∑    //  = ∑        (1)  

The ratios  n n  for each mineral 1, 2, …, ϕ is a mathematical weight which 

evaluates the role of the different phases in defining the isotopic features of the 

total rock, tot, formed by the minerals 1, 2, …, ϕ.  
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 The ratio n n  is frequently substitutes by the n n⁄   ratio, where n  

and n  are the number of strontium atoms in the mineral i and in the total rock, 

tot, respectively. Thus:  

 ≅ ∑                 (2)  

Multiplying and dividing (2B) by the atomic weight, AW ,  of strontium, we 

obtain 

 ≅ ∑           = ∑             (3) 

where Q represents the different masses. Multiplying and dividing for the mass 

of the minerals 1, 2, …, ϕ  and of the total rock, tot, is  

 = //       + //       +… + 
 / /        =  

  =  W  +  W   + … + 
  W  =  

  = ∑    W           (4) 

where C , C , . . ., C  and C  are the weight concentrations of strontium in the 

minerals 1, 2, …, ϕ and in the total rock, tot, and W =Q Q  ⁄ , W = Q Q  ⁄ ,…, W  

= Q Q  ⁄ , the relative weight abundance of the different minerals in the total 

rock. It is noteworthy that (2) -and thus (3)- are rigorously correct only in case the 

ratio n /n  is the same for all the minerals, as demonstrated below.   

 Consider the number of atoms n   and the number of atoms of total 

strontium  n  in the generic mineral i and n  and n    in the total rock, tot. In 

any mineral i as well as in the total rock, tot, the number of moles n  will be 

related to total strontium, n , present in the single phase i or in the total rock, tot. 

Thus, for any phases and for the total rock we may write the isotope abundance:  

 = X            (5) 
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 = X            (6) 

Dividing (5) by (6) and rearranging, we write: 

   =
                  (7) 

From equation (7), it is evident that equation (2) and (3) may be used in place of 

(1) only in case for all the different minerals 1, 2, …, ϕ  and, thus, for the total rock, 

tot, the X values are the same, i.e., 
      = 1       

S3 

 Consider equation (3B) referred to the aqueous solution, aq:  

  ≅ ∑ ( )     = ∑ W ( )       (1) 

where aq refers to the total number of the strontium nuclides transferred in 

solution from the minerals and aq(i) to the number of nuclides transferred to the 

aqueous solution by the dissolution of the mineral i, and W ( )  indicates the 

relative contribution of the miuneral i to the total strontium transferred into 

solution.  

 In conditions far from the solution saturation in calcite and muscovite, in 

agreement with the kinetic values reported in the text, for calcite and muscovite 

dissolution in water, aq, we write:     ≅ 10             (2) 

Given the formula weight equal to GF  = 100.09 g/mole for calcite and GF  = 

316.32 g/mole for muscovite and considering the relation (2), for the mass Q  of 

calcite and the mass Q  of muscovite transferred into solution, the following 

relation holds: 

   =     = 10              →    Q  = 0.32 × 10   Q  

Consider now a rock with muscovite and calcite. In the example of Table 

S3; we have:  
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Q  = 0.32 × 10   Q  Q  + Q  = Q  

Combining the two equations, we obtain: Q  = .  ×    = 3.124902 × 10  Q  Q  = (1- 3.124902) Q      = 0.9999688 Q  

where small digits have not physical significance but are reported only to make 

calculation more evident. Thus, the mass of strontium transferred from the 

minerals to the solution is calculated as follows: 

 Q ( ) =  C  × Q  = 0.080 × 0.9999688 Q  = 0.07999750  Q    Q ( ) =  C  × Q   = 0.007×3.124902 × 10    = 0.02187431 × 10   Q  

Strontium transferred from calcite is very high in comparison to that from 

muscovite. We omit other calculations, which are evident in Table S3. 

 

Table S3. Example of strontium isotope calculation for a water which dissolves calcite 

(Cc) and muscovite (Mu) W  = Q /(Q + Q ) 0.30 W  = Q /(Q + Q ) 0.70 

 C  0.080   C  0.007 C /C  0.91954023   C /C  0.08045973 Q  0.9999688 Q   Q  3.124902 × 10-5 Q  Q ( ) =  C  Q   0.07999750 Q  Q (  ) =  C  Q   0.02187431 ×10-5 Q  W ( ) =  ( )( ) ( ) = 
( )

  0.9999972 W ( ) =  ( )( ) ( ) = 
( )

  0.2737299 × 10-5  n n   0.70700  n n  0.8105 

  ≈  W ( )    +  W ( )      = 0.9999972 × 0.7070 + 0.2737299  × 10-5 × 0.8105 = 0.707000239   

W  and W , relative weigh amount of Cc and Mu in the total rock. C  = Q /Q , strontium concentration in the 
mineral i and   C  = Q /Q , strontium concentration in the total rock. Q  and Q ,  mass of Cc and Mu 
transferred from the mineral into solution. Q ( ) and Q ( ), mass of strontium transferred from Cc and Mu 
into solution.  Q ( )  and  Q ( ), mass of strontium transferred from Cc and Mu into solution. W ( ) and W ( ), relative weight amount of strontium transferred from Cc and Mu into solution.  Digits are reported in 
excess (small character) for a better comprehension of the calculations.   

    

S4    
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 Assume that, for each investigated archaeological Area 1 and Area 2 we 

dispose of twenty data of n / n  obtained on twenty remains collected 

randomly. We want to verify if the remains may be referred to the same group or 

not. This, of course, depends on the way we use to define the group.  In case the 

distribution of data is statistically “normal” (normality verified, for instance, 

using the Shapiro-Wilk and Anderson-Darling normality tests), in order of 

stating that a sample may belong to the group of interest, we may use the 

“contrast” value (“contrast” ≤ 1). On the contrary, if the data distribution is not 

“normal”, we can use “kernel density”. The “kernel density” estimation is a non-

parametric method to estimate the probability density function of a random 

variable, a method based on kernel, which is a smoothing parameter. In the 

example reported in Table S4-Area 1, the data have “normal” distribution and 

thus the value of the “contrast” is useful for the attribution of the single sample 

to the group. In our case, all samples exhibit “contrast” ≤ 1: thus, we cannot exclude 

that all the samples come from the same group. The data from Area 2, have not 

“normal” distribution; thus, the parameter “contrast” in not significant. In this 

case, in our opinion, is better to use the “kernel density” as reported in Fig. S4-

Area 2. In this diagram, the distribution simulates bimodal distribution: three 

samples (0.7086, 0.7089, and 0.7091) are far from the main group. Thus, we state 

that they may be regarded as not belonging to the group. Note that in case one 

group merges into the other, for some samples the attribution to one group or to 

the other could result difficult.  

Table S4. Data for two different areas (exemplum fictum) 

Area 1 Contrast  Area 2  

0.7069 0.998  0.7069  

0.7076 0.999  0.7076  

0.7075 0.999  0.7086  

0.7074 0.999  0.7089  

0.7071 0.999  0.7091  

0.7075 0.999  0.7075  

0.7073 0.999  0.7073  

0.7074 0.999  0.7074  

0.7071 0.999  0.7071  
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0.7070 0.998  0.7070  

0.7072 0.999  0.7072  

0.7077 0.999  0.7078  

0.7076 0.999  0.7079  

0.7073 0.999  0.7073  

0.7074 0.999  0.7074  

0.7071 0.999  0.7071  

0.7072 0.999  0.7072  

0.7074 0.999  0.7074  

0.7077 0.999  0.7077  

0.7078 1.000  0.7079  

     
Normality test, p(normal)   Normality test, p(normal)  
Shapiro-Wilk 0.81  Shapiro-Wilk 0.0057 
Anderson-Darling 0.78  Anderson-Darling 0.0050 
Number of data 20  Number of data 20 
Average, �̅� 0.70736  Average, �̅� 0.70762 
Standard deviation, s 0.00025  Standard deviation, s 0.00061 

Treshold, �̅� + 3s 0.70811  Treshold, �̅� + 3s 0.70945 

 

 

Figure S4-Area 1. “Kernel density” for data of Area 1.  
Apparently, we could assume that all samples belong to 
the same group.  
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Figure S4-Area 2. “Kernel density” for data of Area 2; 
the distribution is “bimodal”. Three samples are far 
from the main group and, thus, we could assume that 
they belong to a different group.  
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