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Abstract: Remains of Rhynchotalona latens (Sarmaja-Korjonen, Hakojärvi et Korhola 2000) were found
in the bottom sediments of several glaciogenic lakes in northwestern Russia. Subfossil remains of
the species were noted both in the bottom sediments of the Late Pleistocene and Mid-Holocene.
We discovered a rare species, R. latens, in the bottom sediments of Lake Medvedevskoye (Karelian
Isthmus). This species prefers shallow oligo-mesotrophic lakes with organic sediments and has
attracted the interest of scientists around the world as it is considered a glacial relict and has recently
been found in surface sediments and as a living population in Finland and Russia.
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1. Introduction

The existence of the species Rhynchotalona latens (Sarmaja-Korjonen, Hakojärvi et Ko-
rhola 2000) (described as Unapertura latens) [1] was previously known exclusively from
paleoecological studies of Quaternary bottom sediments of lakes [2]. This was possible
because of the preserved remains of the chitinous exoskeleton of Cladocera [3,4]. However,
this species has recently attracted particular interest among taxonomists and paleoecolo-
gists [1,5,6]. The species was thought to be a glacial relict associated with modern analogues
in periglacial aquatic environments. Researchers are working to refine the taxonomy, mor-
phology, ecology, and biogeography of the species [5]. Rhynchotalona latens is of interest
also because of its peculiar geographical distribution. Previously, chitinous remains of
the species were found only in lakes in Finland, and the species was considered absent in
modern zooplankton. However, recent studies have shown that the species is not endemic
to Finland and is not extinct at all [5,6]. Both chitinized remains in lake surface sediments
as well as actual specimens in Finland and Russia have proven that the species is present in
modern cladoceran communities [5–7]. This is confirmed by the recording of this species in
the surface sediments in the Pechora River delta (N 68◦21′454′′ E 053◦24′759′′) [8]. Moreover,
an active population of the species was recently found in North Karelia [7]. Rhynchotalona
latens prefers acidic, mesotrophic, humic, and shallow lakes with organic sediments in
northeast Lapland, inhabiting waterlogged Sphagnum mosses at lake margins [5,7]. Accord-
ing to the latest information on the ecology of the species, R. latens does not occur in the
littoral zone of lakes [7]; however, previous studies have shown that the species is found
in semi-aquatic wetlands, lush lake littorals, and clear and cold waters [5,6,9,10]. At the
northern end of its geographical distribution (NE Lapland), it reproduces with abundant
gamogenesis under environmental stress [5]. Rhynchotalona latens has a Holarctic northern–
alpine distribution [5] and has not been previously identified in paleolimnological studies
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in Russia. For the first time, we discovered R. latens in 2015 in the bottom sediments of
Lake Medvedevskoye (Karelian Isthmus) [11]. Our latest findings of this species in bottom
sediments are from the Kola–Karelian region of Russia and the central part of European
Russia. Our research has allowed us to obtain new information about the distribution
of R. latens, identify its preferred ecological and climatic conditions, and supplement the
taxonomic lists of the order Cladocera in Russia.

2. Materials and Methods

The material for the study was sampled from the bottom sediments of seven glacio-
genic lakes of European Russia (Table 1). The bottom sediments were selected by employees
of the Kazan Federal University in joint expeditions with employees of the Northern Water
Problems Institute at the Karelian Research Institute of the Russian Academy of Sciences,
the University of Tartu (Estonia), and the Herzen State Pedagogical University using a Rus-
sian peat drill and Uwitec (Mondsee, Austria) and Limnos (Limnos Ltd., Turku, Finland)
sediment samplers. The samples were prepared according to the method first proposed by
Frey [12] and Hann [13] and later improved by Korhola and Rautio [14]. In the laboratory,
suspensions of wet precipitate were dissolved in a 10% KOH solution, heated to 75 ◦C for
30 min, then filtered through sieves with a mesh of 50 µm. The filtered suspension was
stained with a safranin–alcohol solution.

Table 1. Morphometric characteristics of lakes in which subfossil remains of Rhynchotalona latens
were found in the bottom sediments.

Name of the Lake Location Absolute Water
Level Mark, m Area (ha) Maximum

Depth (m)
Sampling
Depth (m)

Core Length
(m)

Age of the
Column

(cal ka BP)
Vegetation Zone

Antyukh-Lambina 67◦04′01.6′′ N
33◦18′47.2′′ E 59.4 22.5 4.0 4.0 3.0 10.5

North taiga
Yujnoye

Haugilampi
63◦33′13.4′′ N
33◦20′15.7′′ E 153.0 49.0 2.5 2.5 3.5 12.7

Gahkozero 62◦28′53.91′′ N
35◦03′09.56′′ E 79.5 12.5 3.1 3.1 4.25 ≈11.9

Middle taigaMaloye Shibrozero 62◦22′20.76′′ N
35◦12′39.60′′ E 56.5 7.6 3.1 3.1 7.4 ≈10.6

Medvedevskoye 60◦31′51.0′′ N
29◦53′57.0′′ E 102.2 59 4.0 2.35/4 1/2.5 12.3

Rubskoye 56◦43′31.6′′ N
40◦36′23.7′′ E 127.0 295 16.5 2.03 4.98 11.0 Mixed-forest zone

The samples were analyzed under Carl Zeiss Axiostar Plus and Axio Lab A1 stere-
omicroscopes at magnifications of 100–400×. At least 100 specimens of Cladocera were
identified in each sample, and the counting of remains was carried out taking into account
the pairing of some remains of the Cladocera exoskeleton: two shell flaps were counted
as one carapace. The identification of the remains was carried out according to modern
keys for Cladocera identification, reflecting the current taxonomy [15,16], and generally
accepted definitive identification keys for Cladocera subfossil remains from European
lakes [2]. In this case, the latest publications on the ecology and systematics of individual
Cladocera groups by leading Russian and foreign Cladocera specialists were used [6,14].
All discovered remains of Cladocera were identified to the level of species, species group, or
only to the genus if there were problems with identification. Faunal zones were identified
using CONISS cluster analysis in TILIA version 2.0.b.4 [17].

Radiocarbon dating of lacustrine sediments of the studied lakes was carried out using
accelerator mass spectrometry (AMS) at the Institute of Geography of the Russian Academy
of Sciences, Moscow (Yuzhnoye Haugilampi Lake); at the Laboratory of Geomorphological
and Palaeogeographic Studies of Polar Regions and the World Ocean, Institute of Earth
Sciences, St. Petersburg (Antyukh-Lambina Lake); in the Laboratory of Ion Beam Physics,
Eidgenössische Technische Hochschule (ETH), Zürich (Medvedevskoe Lake and Rubskoye
Lake); and at the AMS Laboratory of Taiwan University (Medvedevskoe Lake, Gakhkozero
and Maloye Shibrozero lakes) [18,19]. Calibration of radiocarbon age to calendar age was
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carried out using the CALIB REV 8.2 [20], Bacon 2.2 [21], and OxCal 4.2 [22] programs,
with the IntCal13 and IntCal20 [23] calibration curves. Detailed information on the AMS
dating results of the studied lakes is given in Subetto et al. [18] and Nazarova et al. [24].

3. Results and Discussion

Rhynchotalona latens was previously considered endemic to Finland, but several previ-
ous works have questioned this view [5,6,11,25]. Remains identified as Unapertura latens
have been recorded from oligotrophic lakes in the Swiss Alps [26], northern Italy [27], and
the Tatra mountains in Poland [28], as well as lakes in northern Canada [5,6,25]. There is
also one unconfirmed record from central China [5,29]. In previous studies in Russia, no
species was found in bottom sediments of lakes. Our research indicates the presence of R.
latens in six lakes of the Kola–Karelian region and the central part of the East European
Plain [11]. The species is rare even in Finland, typically as single specimens [5,6]. The very
small size of R. latens (0.2–0.3 mm) is also a challenge in the study of the species. Lake
Sylvilampi (NE Finnish Lapland) is currently the only recorded lake where R. latens formed
a significant part of the fossil cladoceran community [5,29]. This species, which inhabits
northern and alpine areas, was previously considered a glacial relict sensitive to climate
change [5,6,30]. All our findings of R. latens were only from the lake sediments of the Late
Pleistocene and Mid-Holocene. The first discovery of this species in the bottom sediments
of Russia’s lakes was made in 2015, when we found R. latens in the bottom sediments of
Lake Medvedevskoye in the Karelian Isthmus (60◦31′51.0′′ N, 29◦53′57.0′′ E) [11]. Chiti-
nous remains of the exoskeleton of seven specimens, represented by head shields and
postabdomens, were found at a depth of 286–472 cm (4.2–11.16 cal ka BP). Lake Medvede-
vskoye is located in the Central Upland of the Karelian Isthmus at elevations of 102.2 m
a.s.l. Due to its location and small watershed, the lake was never flooded by larger water
bodies after deglaciation of the Karelian Isthmus and is characterized by a slow rate of
continuous sedimentation, with allochthonous and aeolian components dominating the
sediments [31]. The surrounding vegetation is dominated by Pinus sylvestris, Picea abies,
dwarf shrubs, shrubs, lichens, and mosses. Lake Medvedevskoye has an open basin with a
surface area of ca 0.46 km2; it is 0.39 km wide and 1.22 km long, with a maximum depth
of 4 m. Approximately 20% of the lake area is overgrown with macrophytes and riparian
vegetation. There is almost no summer ‘flowering’ of the water in the lake [32].

Rhynchotalona latens is rare in sediment cores of Russia’s lakes; the relative abundance
of the species in the studied lakes was less than 1.0% of the total number of Cladocera
remnants discovered (Figure 1). The headshields of R. latens bear an external resemblance to
the closely related R. falcata, which has a different pore system, an extended midpoint of the
posterior margin, and a much longer narrow rostrum [2,6]. The location and shape of the
head pores are considered the main feature in the identification of Cladocera headshields.
R. latens has a single oval median pore and two small lateral pores slightly below it [6].
The headshield is quite wide with a long, tapered rostrum and a slightly tapered posterior
edge [2]. The disappearance of R. latens in the sediments of Lake Medvedevskoye corre-
sponding to its current state is likely associated with a change in ecological and climatic
conditions in the study region.

The taxonomic richness of the Lake Medvedevskoye Cladocera community was low
at the bottom of the core and increased towards the sediment surface, along with a rise
in organic content of the sediments. Acroperus harpae, Bosmina (Eubosmina) cf. longispina,
Alonella nana, Alonella excisa, Camptocercus rectirostris, Biapertura affinis, and Eurycercus sp.
were the first invaders of Lake Medvedevskoe. The dominance of the pelagic genus Eu-
bosmina sp. characterizes the lake as a clear, oligotrophic, and cold-water [33,34]. However,
the presence of numerous chitinous remains of Cladocera taxa closely associated with
vegetation (macrophyte thickets, algae, and submerged vegetation) indicates the predomi-
nance of shallow, heavily overgrown areas in the lake. The LOI values gradually increased
from 4–6% at the lowermost parts with up to 87% at the central and the upper section of
composite column of the bottom sediments of Lake Medvedevskoye [24]. In the Cladocera
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community, the most prominent taxonomic shift coincided with an increase in the organic
matter concentration between ca. 10.6 and 9.1 cal ka BP (Zone II, Figure 2). At this time,
cold-water littoral (C. cf. sphaericus, A. harpae), oxygen variation-tolerant (C. cf. sphaericus),
and planktonic cold-water oligosaprobic taxa (B. (E.) cf. longispina) were replaced by typical
fauna associated with submerged vegetation (Alona, Alonella and Eurycercus sp.). There
were significant changes in the composition of subfossil Cladocera communities, connected
with an increase in the number of species, indicative of the changing environmental and
climatic situation. C. cf. sphaericus declined and nearly disappeared from the record after
9.1 cal ka BP. Shifts in the biological communities (Cladocera and Chironomidae) and
organic content of the sediments indicate that, during the Early Holocene, the lake was
well oxygenated, with high water transparency [24].
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population of the species in North Karelia [7].

During the Middle Holocene (8.0–4.0 cal ka BP), the abundance of littoral and phy-
tophilic Cladocera species indicates a moderately warm climate. Between ca. 8.9 and
7.5 cal ka BP, there was a noticeable increase in the proportion of B. affinis, which becomes
the dominant species (Zone III, Figure 2). However, after ca. 7.5 cal ka BP, there was a sharp
decrease in its relative abundance in favor of the small A. nana, a more flexible vegetation
dweller [33,34]. Alonella nana is closely associated with the territory of Finland. According
to a number of studies, the taphocoenosis of Cladocera in the lake sediments of Finland
differs markedly from that in more southern lakes, primarily by the increased relative abun-
dance of A. nana [33,35–39]. There is also evidence of the presence of abundant remains of
A. nana species in the dystrophic lakes of the Wieger National Park in Poland [40]. However,
there is no mention in the literature of the significant role of the species in the lakes of
the northwest of Russia. Alonella nana in the bottom sediments of Lake Medvedevskoye
(Figure 2) reaches 50% of the total number of Cladocera remains in the Cladocera tapho-
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coenosis at certain stages of its existence. The small dweller of vegetation is characteristic
of both boreal lakes [30,41] and more northern lakes [42,43] and has even been assigned
to a subarctic taxon [44]. However, this species is also strongly associated with vegetation
and has a noticeable ecological preference for dystrophic lakes with Sphagnum mosses [30].
The pH range of A. nana is 4.0–10.2 [45]. The species is characteristic of acidic waters in
Finland, but in North America, on the contrary, it was noted that its abundance decreases
with acidification of lakes [34]. An increase in the phytophilic and acid-tolerant taxa may
indicate a decrease in the stability of ecological conditions in Lake Medvedevskoye in the
Middle Holocene. According to temperature reconstructions based on the analyses of the
chironomid composition of bottom sediments, after ca. 7.9 cal ka BP, the reconstructed
temperature in July reached maximum values, and, most likely, the littoral zones of the
lake became overgrown with macrophytes, which, especially under warm conditions,
contributed to paludification processes and possible oxygen depletion [24].
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Most remains of R. latens were found in the bottom sediments of Lake Medvedevskoye
in the Middle Holocene; no remains of this species were found in more recent sediments
(4.0 cal ka BP to present time). Moreover, in none of the lakes studied by us were the
remains of R. latens found in the Late Holocene. Nevalainen et al. [5] noted a co-occurrence
of the species pool Alonella excisa–Alonopsis elongata–Alonella nana together with R. latens. It
should be noted that the listed taxa also form a significant part of the subfossil Cladocera
composition of Lake Medvedevskoe, which confirms the assumption of joint occurrence of
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species and gives further evidence of the affiliation to vegetation-rich oligotrophic lakes
and dystrophic wetland lakes. The relative abundance of these species was as follows:
A. nana—15.35%, A. excisa—6.84%, and A. elongata—1.03%. A significant proportion of
identified specimens in the sediment column in Lake Medvedevskoe belonged to Bosmina
(Eubosmina) cf. longispina (15.49%), a typical representative of pelagic plankton, which
inhabits various water bodies of northern latitudes but prefers oligotrophic conditions [34].

There was a further increase in the trophic capacity of the lake during 7.0 cal ka BP–
present time (Zones IV–V, Figure 2). There was some acidification of Lake Medvedevskoye,
observed as an increase in the number of acidophilic taxa, which could relate to an increase
in the water level of the lake and waterlogging of the coastal area due to climate humidifica-
tion [31]. Currently, Lake Medvedevskoye has a pH from 5.1 to 5.3, and the phytoplankton
in the lake is dominated by raphidophyte algae, typical of stagnant basins and swamps [24].
The decrease in the proportion of the species pool A. excisa–A. elongata–A. nana is probably
associated with changes of conditions in the water body, which are most suitable for the
existence of R. latens. It is also likely that the disappearance of this species is related to
the high content of organic matter: the concentration remained high until ca. 0.9 cal ka
BP (median loss on ignition (LOI) = 85.4%) and then reduced to 42% [24]. For example,
Nevalainen et al. [5] attribute road construction to the disruption of natural organic matter
flux and hydrological changes in the small catchment of Lake Sylvilampi, which is probably
related to further changes in the proportion of R. latens in the lake bottom sediments. Chi-
ronomid analysis of the sediment column of Lake Medvedevskoye revealed the dominance
of thermophilic inhabitants of the littoral zone at the present stage of the lake development
and some cooling in the study region [46]. The disappearance of R. latens from European
Russia may be associated with climatic and environmental changes, in particular warming
and changes in the trophic status of the studied lakes, which confirms that it is a species
sensitive to the effects of global warming, as stated in Nevalainen et al. [5] and Van Damme
and Nevalainen [6].

4. Conclusions

Remains of Rhynchotalona latens, previously unidentified in the bottom sediments of
lakes of European Russia, were found in the bottom sediments of some lakes. All of the
recovered remains of R. latens were dated to the Late Pleistocene–Mid-Holocene period;
remains of this species were not found in bottom sediments corresponding to the Late
Holocene. According to the data obtained and in accordance with previous studies, R. latens
prefers conditions of cold climate and low organic matter content. The great rarity of the
species in modern reports of Russia’s zooplankton may be due to insufficient knowledge of
the species, particularly its habitats, or to climatic and environmental changes in the study
region. However, findings of the species in surface sediments and as a living population
support the suggestion of previous studies that the species is associated with modern
analogues of periglacial aquatic environments and may be sensitive to global warming. To
better understand the geographical distribution of the species in Russia, a more detailed
analysis of both modern Cladocera communities and subfossil remains in the bottom
sediments of lakes in the northern regions of the country is required.
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