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Abstract: Typical patterns of the Late Pleistocene loess–paleosol units are preserved in the Novo
Orahovo brickyard, Northern Serbia. Presented preliminary luminescence chronology supports
the chronostratigraphic interpretations of global isotopic marine climate reconstructions. Magnetic
susceptibility and sedimentological evidence exhibit general similarities with the marine oxygen-
isotope stratigraphy. These records provide new insights into the dust accumulation regimes over
the eastern side of the Bačka loess plateau and offer new paleoenvironmental information for the
region. They represent an important step forward towards the establishment of a catena from the
thin loess-like sediments of the Banat foothills in the east towards the thicker and seemingly more
complete loess sections of the southeastern and central Carpathian Basin. Grain-size data from the
loess record of Nova Orahovo explain the regional differentiation in dust deposition.

Keywords: Serbia; Late Pleistocene; loess; paleoclimate; paleoenvironment; regional dust variability

1. Introduction

During the past two decades, loess–paleosol sequences located in the southeastern
part of the Carpathian Basin have been intensively investigated due to their potential
to provide deeper understanding of the regional Pleistocene climate and environmental
dynamics in the region [1–16].

During the Late Pleistocene period, this area was an environmental transitional zone
by the alternation of diverse ecotones ranging from dry-steppic to forest-steppic environ-
ments [17–21]. Loess has been deposited mostly during the formation of different types
of grassland environments [22,23]. This significantly contrasts the paleoclimatic and pale-
oenvironmental reconstructions from other parts of the European loess belt, where loess is
usually formed in a periglacial, or tundra–steppe, environment [24–31].

Despite the recent extensive investigations in the southeastern part of the Carpathian
Basin [1–3,6,9], some local-to-regional elements of the Late Pleistocene environmental
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dynamics still remain unresolved. To fill these gaps related to the last glacial environmental
reconstructions of that region, we investigated the Novo Orahovo (Vojvodina, Serbia) loess
section. We present the preliminary absolute luminescence chronology, magnetic, and
sedimentological records of the Late Pleistocene climate and environment variations from
the Novo Orahovo loess–paleosol sequence, located on the interfluve area between the
Danube and Tisa (Tisza) rivers at the Bačka loess plateau (LP) in Northern Serbia (Figure 1).
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Figure 1. Distribution of the loess sediments and loess derivates in the southeastern Carpathian
Basin with the position of the Novo Orahovo loess section and other key loess sites in the region.
Distribution of loess, loess derivates, aeolian sand, and alluvium according to Lehmkuhl et al.
(2018) [10] and JAXA EORC (2016) [11], respectively. Loess plateaus (LP): 1. Bačka LP; 2. Banat LP;
3. Tamiš LP; 4. Titel LP; 5. Srem LP. Sandy terrains (ST): (A) Bačka ST; (B) Banat ST. Modified after
Perić et al. (2022) [12].

2. Material and Methods

The Novo Orahovo brickyard is situated in Northern Serbia (latitude N 45◦51′55′′

and longitude E 19◦48′01′′) in the Bačka LP, between the alluvial plains of the Danube
and Tisa rivers. The investigations of the loess–paleosol sequences at the Novo Orahovo
quarry began in 2017. After careful cleaning and a detailed description of the investigated
sections, samples were collected for color determination, magnetic susceptibility (MS), and
grain-size analysis and luminescence dating. Dry and moist colors of the loess and paleosol
units were characterized using Munsell Soil Color Charts. Bulk sediment samples were
collected at 5 cm intervals for texture analysis.

The MS was measured using a Bartington MS2 B Dual Frequency Sensor instru-
ment–36 mm sample cavity diameter, at the Laboratory of Physical Geography, Faculty of
Sciences, University of Novi Sad, Serbia. The samples were first placed in non-magnetic
plastic boxes, after which they were carefully compressed with a non-magnetic plastic
pusher. Before closing the box, cotton wool was placed to prevent any movement of the
material during the measurement.

The grain-size (GS) distribution of samples was carried out on a Fritsch Analysette
22 MicroTec laser diffraction grain-sizer at the Department of Geoinformatics, Physical
and Environmental Geography, University of Szeged. The device is equipped with a green
(λ = 532 nm, p = 7 mW) and an infrared (λ = 940 nm, p = 9 mW) laser, and has a measurement
range of 0.08–2000 µm. Sample preparation followed the procedures detailed in Kun et al.
(2013) [32] and Serban et al. (2015) [33]. Furthermore, no chemical dispersion was applied
to avoid the modifying effect of the dispersant on the measurements. A longer, 180 s
ultrasonic pretreatment (f = 36 kHz, p = 60 W) was applied instead [30]. To generate
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grain-size distribution curves, the laser diffraction data were processed according to the
Mie optical theory, using the following parameters: refraction index of 1.52 and absorption
index of 0.1 for the dispersed sample and refraction index of 1.33 for water [34]. Apart
from specific characteristic grain-size ranges, we also calculated the U-ratio. The latter
sedimentary proxy expresses the proportion of medium- and coarse-grained silt (44–16 µm)
versus fine-sized silt (16–5.5 µm) [35]. It especially enables the elimination of potentially
present pedogenic (mostly submicron) clay.

The samples for luminescence dating were obtained by hammering stainless steel
tubes into the freshly cleaned profile. In total, 20 samples were collected. Here, we present
the initial dating results of 5 quartz samples from the upper 610 cm of the profile. The
inner material of the cylinders was used for equivalent dose measurements (conducted
at the Luminescence Dating Laboratory, University of Szeged, Hungary) and the outer
material (~2 cm) for the present water content and radionuclide activity determination. The
preparation of samples was conducted according to standard laboratory techniques [36].
All procedures were tested in subdued yellow light conditions. Selected samples were
wet sieved using 90, 63, and 40 µm sieves. The <40 µm fraction was placed into Atterberg
settling cylinders to separate the 4–11 µm silt fraction. However, none of the samples
contained a sufficient amount of fine silt for further processing; therefore, in a second run,
the 11–20 µm medium silt fraction was separated. Carbonate and organics were removed
by repeated treatment in 10% HCl and 10% H2O2, respectively. To isolate the quartz grains,
a portion of the 11–20 µm fraction was immersed in 35% H2SIF6 for 10 days. Subsequently,
the quartz grains were treated with 30% HCl to remove any remaining fluorides.

The equivalent dose (De) of samples was determined on a Risø DA-20 TL/OSL-type
luminescence reader equipped with a 90SR/90Y β-source and an EMI ET9107-type photo-
multiplier [37]. Stimulation was carried out using a blue (470 ± 30 nm) LEDs set for 90%
power release, while detection was made through a Hoya U-340 filter. Throughout the
measurements, the single aliquot regeneration (SAR) protocol was applied [38,39]. Subse-
quently, preheat plateau and dose recovery tests were performed to identify the optimal
measurement parameters and assess the reproducibility of measurements. Appropriate
stimulation temperatures were determined using preheat plateau and dose recovery tests
on sample 1141. The initial 0.4 s minus a late background subtraction from the last 30 s was
used when plotting dose points.

Natural aliquots were first bleached using blue LEDs at room temperature for 100 s,
followed by a 3000 s pause, and subsequently further bleached at room temperature for
100 s [38]. Finally, a laboratory β-dose of 50 Gy was administered to the bleached aliquots
and measured using a SAR protocol in which the preheating temperature varied between
180 and 300 ◦C, while the cut-heat temperature was fixed at 160 ◦C.

During OSL measurements, optical stimulation was performed at 125 ◦C (heating rate:
5 ◦C/s) for 40 s. Standard rejection criteria were used to select aliquots that performed well
during the SAR measurements [38]. Potential feldspar contamination of the quartz extracts
was monitored by the IR/OSL depletion ratio, as proposed by Duller (2003) [40]. In the
case of each sample, at least 24 aliquots were analyzed. Dose–response curves were fitted
in each case using the single saturating exponential function. The α-value was directly
determined by recovering known α doses with β regeneration measurements on aliquots
that previously went through a SAR procedure [41]. A representative dose–response curve
is presented in Figure 2b.

The environmental dose rate (D*) was determined using high-resolution, extended-
range gamma-ray spectrometry (Canberra XtRaCoaxial Ge detector). Dry dose rates were
calculated using the conversion factors of Liritzis et al. (2013) [42]. The alpha and beta
attenuation factors were estimated using the calculations of Brennan et al. (1999) [43]
and Brennan (1999) [44], respectively, with dose rate conversion factors obtained from
Guérin et al. (2012) [45]. Uncertainties are based on the propagation, in quadrature, of
individual errors for all measured quantities, which, if unknown, are recorded as 10%.
The cosmic ray contribution to the total dose rate was calculated according to Prescott
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and Hutton (1994) [46] for each sample as a function of depth, altitude, and geomagnetic
latitude, assuming an uncertainty of 10%. The total dose rate was calculated using DRAC
version 1.2 [47].
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Figure 2. (a) Dose recovery ratio as a function of first preheat temperature for sample 1141. There
were 3 aliquots used per preheat temperature and the error bars represent 1 standard error. The
dashed line is drawn at an ideal ratio of 1.0. (b) Representative sensitivity-corrected dose–response
curves for sample 1141. The dashed line shows the equivalent dose. The response to a zero dose is
depicted as an open circle, while the recycling point is represented as an open inverted triangle. The
inset displays a typical decay curve of natural CW-OSL (continuous-wave OSL signal) (full blue line)
for the first 5 s of stimulation in comparison to a regenerated signal (dashed black line) induced by a
beta dose approximately equal to the equivalent dose.

3. Results
3.1. Lithostratigraphy and Pedostratigraphy

The stratigraphic framework of loess–paleosol sequences from the Vojvodina region,
Northern Serbia, is generally simple [2]. Aeolian dust deposition happened on a nearly
horizontal platform of the Bačka LP, which exhibits a geomorphologically similar set-
ting as that of the Chinese Loess Plateau [48–51]. Following the criteria presented by
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Marković et al. (2015) [3], we describe, stratigraphically characterize, and label the loess
and paleosol units at the Novo Orahovo loess section (see Figure 3 and Table 1).
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Figure 3. Magnetic susceptibility record (black line) and luminescence chronology (red dots) of the
Novo Orahovo loess–paleosol sequence related to pedostratigraphy.

The uppermost part of the penultimate loess unit L2 is just 75 cm exposed in the
lower part of its profile and correlates to the latest MIS 6. Many small carbonate spherical
concretions (1–2 cm diameter) and humic infiltration in the former root channels were
observed close to the contact with the overlaying paleosol S1 (developed during MIS 5).
The last interglacial pedocomplex, S1, is 155 cm thick and shows a gradual decrease in
pedogenic intensity over time. The 35 cm thick basal transitional AB horizon (10YR6/2–4)
is strongly developed and characterized by a granular and partly blocky structure. Above
this pedohorizon, two humic granular horizons Ah1 and Ah2 have been developed at
a profile depth between 890 cm and 820 cm. Finally, the relatively weakly developed
uppermost A horizon is 50 cm thick and strongly affected by numerous krotovinas. This
pedogetic horizon represents a gradual weakening of pedogenesis and gently transforms
into the overlaying thick loess unit L1. This last glacial composite loess unit is 680 cm thick
in total. The lower loess subunit L1LL2 is 265 cm thick, porous, and represents a typical
loess. It is interbedded by sandy layers, containing numerous krotovinas, and is in some
parts bioturbated. The middle paleosol L1SS1 is developed at a profile depth between
515 cm and 450 cm. This is a slightly developed fossil chernozem-like paleosol (A horizon)



Quaternary 2023, 6, 23 6 of 15

with intensive granular structure and krotovinas. The uppermost loess subunit L1LL1
is 360 cm thick. This typical porous pale-yellow loess is intercalated by two embryonic
weakly developed paleosols at approximate depths of 3.75 cm (L1LL1SSS2) and 1.75 cm
(L1LL1SSS1), respectively. The top of the loess subunit L1LL1 is heavily bioturbated
at the contact with the modern pedocomplex S0. This Holocene soil has a thickness of
approximately 90 cm. The lower Ck horizon contains many CaCO3 nodules of 1–5 cm
in diameter and former root channels were infiltrated by upper humic material. The
transitional AC horizon (10YR 5/1 3/3) is 15 cm thick, consisting of very porous silt
loam with a granular structure. At the top, typical granular Ah horizon (10YR 6/3 4/4)
remarkable krotovinas are present. Table 1 shows the detailed morphological description
of the Novo Orahovo loess and paleosol units.

Table 1. Detailed morphological description of the loess–paleosol sequence at the Novo Orahovo
brickyard.

Unit Thickness
(cm)

Depth
(cm) Description

L2 75 1000–925
Porous pale yellow (5YR 4/3, 5/4) typical loess with
many humic infiltrations and carbonate concretions

(ø 1–3 cm), intensively bioturbated.

S1 155 925–890 A basal transitional AB horizon has granular and partly
platy structure (10YR 6/2–4).

890–855
Ah1 lower humic (10YR 6/3, 4/2) horizon with

granular structure, carbonate concretions (ø 1–2 cm),
and krotovinas.

855–820 Upper lighter Ah2 (10YR 5/3–4) with carbonate
concretions (ø 1–2) has typical granular structure.

820–770 The upper mollic A horizon with brighter color (10YR
6/2–4) and many carbonate pseudomycelia.

L1 680 770–515
Loess subunit L1LL2 is a porous typical loess (5YR 7/3,

5/4) intercalated by sandy layers in some parts
with krotovinas.

515–450
PaleosolL1SS1 is a fossil A horizon (10YR 4/2, 6/3)
with intensive granular structure partly disturbed

by krotovinas.

450–90
Loess subunit L1LL1 I is a typical porous loess (10YR

7/4, 5/3) intercalated with two weakly developed
initial paleosols, L1LL1SSS2 and L1LL1SSS1.

S0 90 90–75
Ck with many soft spherical carbonate nodules (ø 1–5
cm) intensively bioturbated with humic infiltrations

and krotovinas.

75–60 Transitional AC horizon is very porous with many
carbonate pseudomycelia.

60–0 Typical strongly developed granular Ah horizon
(10YR 6/3, 4/4).

3.2. Magnetic Susceptibility (MS)

MS records within the Novo Orahovo loess–paleosol sequence mostly coincide with
lithologic and pedologic variations reflecting the changes in past climate and environmental
conditions. The magnetic record supports the SPECMAP marine oxygen-isotope record of
the past 150,000 years [52,53].

Figure 3 shows MS records at the Novo Orahovo section. The values of MS are
related to pedogenetic processes and reflect differences in composition, concentration,
and particle size of magnetic minerals between interglacial, interstadial, and stadial loess
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and paleosol units [54,55]. MS variations in the interglacial pedocomplexes S1 (average
60.5 SI units) and S0 (average 34.2 SI units) are higher than those measured in loess layers
L2 (average 15.6 SI units), L1LL2 (average 188 SI units), and L1LL1 (average 20.8 SI units).
The weakly developed interstadial fossil soil L1SS1 has relatively low MS values (average
25.6 SI units) compared to the interglacial paleosols; they are only slightly higher than
the values measured in loess strata. Two initial pedogenic layers within loess unit L1LL1
are characterized by similar MS values as observed in loess deposits. The MS variations
recorded at the Novo Orahovo loess–paleosol sequence generally display a great similarity
to other investigated loess sections in the Vojvodina region [2,3]. This type of magnetic
signal enhancement via soil formation is also similar to those observed in Chinese and
Central Asian loess deposits [54–57].

3.3. Grain-Size (GS) Variations

Variations in the GS distribution in comparison to the pedostratigraphy of the Novo
Orahovo loess–paleosol sequence are presented in Figure 4. Generally, the GS record at the
Novo Orahovo section corresponds less to pedostratigraphy than other previously investi-
gated sections [8,17,18]. The loess grain-size distribution shows a minor clay subfraction
at all levels (e.g., samples in Figure 4 at 415 cm (L1LL1) 6.9% and 725 cm (L1LL2) 6.8%
depth), while in the paleosols, a slight but distinctive increase of the clay subfraction is
present: a slight increase in the weak subsoil at 565 cm in L1SS1 (e.g., Figure 5 at 565 cm
depth) reaching 11%. Further along, L2 (below 950 cm) shows a high clay content of
22% (Figure 4).
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In contrast, U-values remain relatively similar in all loess units and paleosols (only
a slightly smaller modal value at 965 cm). The U-ratio of the Holocene soil at the Novo
Orahovo loess profile has an average value of 1.9, which was also an average value during
the Early glacial. The maximum U-value of S0 is present in the first 10 cm of the profile (2.2).
The average Late Pleniglacial U-ratio is slightly higher in the depth intervals of 235 cm to
265 cm and in between 600 cm and 700 cm. A slight drop of the U-ratio is present in the
Middle Pleniglacial (average value of 2.2–2.5). The last interglacial phase has, on average,
slightly lower values in paleosol S1. Values of the U-ratio are increasingly moving from the
top of the profile towards approximately 250 cm depth, after which they decrease continu-
ously until the base of the L1LL1 loess unit. From there, the U-ratio is steadily increasing
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towards the middle part of L1LL2 and decreases again until a depth of approximately
850 cm in pedocomplex S1. The last interglacial pedocomplex, S1, is characterized by rela-
tively high U-ratio values compared with the transition to the penultimate glacial loess unit,
L2 (Figure 4).
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Orahovo loess section.

The lowest values of grain sizes <2 µm occur in the loess layers with a minimum
value of 6% in L1LL1 and L1LL2. The percentage increases with pedogenesis, as the S0,
L1SS1, and S1 have maximum values of 11%, 10%, and 22%, respectively. The latest value
corresponds to the AB horizon of the Early glacial. The <10 µm curve is in good agreement
with the <2 µm fraction, as lower values follow the Early and Late Pleniglacial with 18%
and 19%, respectively. This granulation is dominant at a depth of 9.35 m, where it comprises
up to 50% of the sample (this single sample might also be considered as an exceptional
outlier). The Middle Pleniglacial is more pronounced with the maximum value of 32%,
reaching almost the value of the Holocene soil. The next three curves of >15 µm, >31 µm,
and >63 µm content display inversed values to the previous two. The maximum values of
the grain-size fraction >15 µm is seen in the loess horizon L1LL2 (73%) and the minimum
is at paleosol S1 (36%). The values of >31 µm fractions drop to 9%, 19%, and 17% in the soil
units S1, L1SS1, and S0, respectively. Higher values are present in the glacial periods. The
minimum values of the grain sizes >63 µm reach 0% in soils, while the maximum value of
18% is present in the Early Pleniglacial, indicating fine sand bands.

3.4. Luminescence Geochronology

The De value did not show any significant sensitivity to preheat temperature up to
300 ◦C, with the recycling ratios close to unity and the recuperation close to 1% over the
160–300 ◦C first preheat interval. The dose recoveries given various preheats are summa-
rized in Figure 2a. The overall average measured-to-given-dose ratio is 1.03 ± 001 (n = 21).
The results show that at any given temperature over the 160–300 ◦C first preheat interval,
the SAR protocol was able to recover a given dose within 10% of unity. However, no clear
plateau could be observed over the entire 160–300 ◦C preheat temperature interval. For
this reason, a preheat temperature of 240 ◦C, which gave the best measured dose ratio, is
chosen for all consecutive measurements.

Table 2 presents results for the U, Th, and K concentrations, water content, calculated
total dose rates, and ages. The calculated OSL ages range from 15.9± 0.5 ka to 47.8± 1.6 ka,
indicating that the upper 610 cm of the Novo Orahovo loess section formed during Marine
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Isotope Stages MIS 2–MIS 4. The ages show a consistent increase and display no jumps
nor inversions outside error margins. Sample 1151, taken below the boundary between S0
and L1 (110 cm depth), was dated at 15.9 ± 0.5 ka, suggesting accumulation during the late
phase of MIS 2. This is consistent with other dated loess sections in the region, as similar
ages of 13.6 ± 1.0 ka and 10.2 ± 0.7 ka for the upper part of L1 were reported for the Titel
LP and the Irig loess site, respectively [9,58].

Table 2. Summary of sample codes, depth information, present-day water content (WC), radionuclide
activities, α-values, total dose rates, weighted mean De values, and luminescence ages for the Novo
Orahovo samples. Error terms are given at 1 standard error.

Scheme Depth (cm) WC (%) U (ppm) Th (ppm) K (%) α-Values (Gy.ka−1) De (Gy) Age (ka)

1151 110 10.0 ± 2.0 2.80 ± 0.03 8.48 ± 0.15 1.23 ± 0.05 0.055 ± 0.003 3.00 ± 0.07 47.9 ± 0.7 15.9 ± 0.5

1147 225 12.5 ± 2.5 2.95 ± 0.03 8.70 ± 0.16 1.30 ± 0.05 0.040 ± 0.004 2.90 ± 0.07 57.7 ± 1.7 19.9 ± 0.8

1144 325 12.5 ± 2.5 2.83 ± 0.03 8.58 ± 0.15 1.27 ± 0.05 0.036 ± 0.003 2.78 ± 0.07 65.9 ± 0.8 23.8 ± 0.7

1141 435 12.5 ± 2.5 3.24 ± 0.04 10.57 ± 0.18 1.61 ± 0.06 0.030 ± 0.002 3.20 ± 0.08 86.1 ± 1.0 26.9 ± 0.7

1138 610 12.5 ± 2.5 2.66 ± 0.03 9.22 ± 0.17 1.29 ± 0.05 0.029 ± 0.002 2.64 ± 0.06 126.4 ± 3.0 47.8 ± 1.6

The sample 1147 at 225 cm depth that was recovered below the uppermost intercalated
paleosol L1LL1SSS1 was dated at 19.9 ± 0.8 ka. Analogous ages were reported for the
Titel LP (19.7 ± 1.7–27.8 ± 2.1 ka) by Perić et al. (2019) [9] for the L1 loess at depths
209–227 cm. The OSL age for sample 1144 taken from the central part of L1 (325 cm depth)
was 23.8 ± 0.7 ka. The underlying sample 1141 recovered from L1LL1SSS2 was dated
at 26.9 ± 0.7 ka, suggesting it developed shortly after the transition between MIS 2 and
MIS 3. Schmidt et al. (2010) [59] and Murray et al. (2014) [60] also reported comparative
ages of 23.3 ± 1.5 and 23.6 ± 1.4 ka, respectively, for the L1L1 loess at the Stari Slankamen
section. The lowermost sample 1138 taken at the L1S1L1LL2 boundary yielded an age of
47.8 ± 1.6 ka. This suggests that the formation of the L1SS1 paleosol started somewhat later
in MIS 3 and fits with the expected age for this paleosol layer. Most recently, similar ages
for the L1S1SS1 paleosol (27–38 ka) were observed at the Irig loess–paleosol sequence [57].
Comparable ages for the upper paleosols in the Vojvodina region have also been reported
for numerous loess sites: Surduk: 31.8 ± 3.7 ka [61], Stari Slankamen: 34.4 ± 2.2 ka [59],
Crvenka: 38 ± 4 ka [6], and the Titel LP: 34.2 ± 2.4 ka [9].

As demonstrated above, the calculated OSL ages for the upper 610 cm for the Novo
Orahovo loess profile show a remarkable agreement with the ages from several investigated
loess–paleosol sequences in the Vojvodina region. This implies that the loess accumulation
and paleosol formation had a similar trend in this region.

4. Discussion

The Novo Orahovo loess site is located further to the northeast compared to other
similar previously investigated Northern Serbian loess sections. Figure 6 shows the rela-
tionship between low-field MS records of investigated loess sites in Vojvodina and their
correlation with the marine oxygen-isotope stratigraphy [62]. Variations in MS correlate
closely with the pedostratigraphy of the analyzed exposures, providing a similar pattern of
variation, and the main MS peaks can be easily correlated between the sections. The general
pattern of magnetic records of Irig, Ruma, Batajnica, Stari Slankamen, Mošorin (Titel loess
plateau), Crvenka, and Novo Orahovo sections is characterized by high MS values in
strongly developed interglacial soils S0 and S1, low MS values in loess layers L1LL1, L1LL2,
and L2, and slightly higher values in weakly developed and morphologically variable
L1SS1 pedocomplex.
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2011) [63], Batajnica (Marković et al., 2009) [64], Titel loess plateau (Marković et al., 2012) [65], and
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plotted on a depth scale. They are correlated with the LR04 paleoclimatic stack model of Lisiecki and
Raymo (2005) [66].

The geographical position of the Novo Orahovo site provides a unique opportunity to
reconstruct climate and environmental evolution in the transitional area between the south-
eastern limit and central part of the Carpathian (Pannonian) Basin. While the paleoclimatic
and paleoenvironmental reconstruction derived from the loess–paleosol sequences at the
Novo Orahovo brickyard generally displays a similar stratigraphic pattern and magnetic
variations observed in other investigated sites in the Vojvodina region [2,3] (Figure 6),
there are also some distinct differences in glacial–interglacial GS distributions compared to
other similar sites in the region. For example, at the Novo Orahovo section, the Middle
Pleniglacial warm climatic conditions are reflected in an increase of MS values in weakly
developed pedocomplex L1SS1. Compared to this, higher MS values in the upper part of
pedocomplex L1SS1 are observed at the Irig, Ruma, Batajnica, and Stari Slankamen sections
situated at the Srem LP. The MS pattern of the Veliki Surduk section at Titel LP and Crvenka
at the southern limit of Bačka LP, located in between the Srem loess plateau and the Novo
Orahovo section, show more uniform values. Further investigations will need to be tailored
to address the question: do these changes in MS variations represent regional paleoclimatic
gradient or is this just a consequence of some local environmental exception related to
the Novo Orahovo loess–paleosol sequence? The mean grain size at Novo Orahovo is
slightly coarser than in other sections in Vojvodina. The modal values at Novo Orahovo are
29–37 µm from the top to the bottom of S1. At Irig, the mode is 22–32 µm (except two
samples in the L1LL1 loess unit) [58], while at Ruma [8], the mode is 24–29 µm. It is not
likely that the wind strength increases would be equal in both glacial and interglacial
periods at Novo Orahovo in contrast to other places in the Vojvodina region and also in
China (e.g., the Luochuan type loess site [8]). Therefore, the grain size of the source region
may be the reason for these conditions. Additionally, loess and paleosol units between Irig
and Ruma show variable morphological characteristics of recent and two younger fossil
soils (L1SS1 and S1). Vandenberghe et al. (2014) [8] interpreted these geomorphological
forms as relicts of dry valleys (dels) which potentially served as local sources for loess
transport. Ludwig et al. (2021) [61] found that in the Carpathian Basin during the Last
Glacial Maximum peak, dust emissions in spring coincide with the highest wind speeds
and relatively low precipitation amounts.

The similarity between the modal values and U-ratios of loess and paleosols at Novo
Orahovo supports the idea that loess deposition was restricted or absent during inter-
glacials, as was also demonstrated at the Ruma loess site [8]. Since U-values, displaying
grain sizes >5 µm, reflect the dust properties, the general stability of U-values in both
loess and paleosols point to a similar source area and transport process in loess as well as
in paleosols.

The U-ratios in the Novo Orahovo section are between 1.1 in paleosol layers and 2.5 in
loess units. These values are generally similar to other Serbian loess sites such as Ruma
(U-ratio varying between 1.6 and 2.2) [8], Irig (U-ratio varying between 1.4 and 2.0) [10],
and Dupljaja (U-ratio varying between 1.4 and 2.1), as well as in the famous Chinese type
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loess section in Luochuan, with a U-ratio that varies between 1.0 and 2.2 [8,51]. The stability
and relatively high values of the modal size at Novo Orahovo contrast with many sites in
plateau position in the Vojvodina region [2,5,49,60,67] and China [51].

Novo Orahovo’s geomorphological position provides a reasonable explanation for
the described regional variability in grain-size records. The site is located near the Čik
River valley, and also in the vicinity of recent and paleo-floodplains of the Tisza and
Mures rivers to the east, as well as the dune fields to the north, as potential sources of
aeolian material (Figure 1). We conclude that the regional geomorphological position of the
site—more specifically, the relative distance to source areas for loess supply—provides a
good explanation for the regional differences of dustiness, as expressed by loess accumula-
tion rate and grain-size variability (especially the modal size) of the loess cover. This is in
agreement with the conclusions by Stevens et al. (2020) in England [68].

Finally, Novo Orahovois is located in the modern, most arid, part of the Carpathian
Basin (Figure 7A). Gavrilov et al. (2021) [69] provided a map of spatial distribution of
aridity (the De Martonne Aridity Index) based on data from 78 meteorological stations
in Hungary and Vojvodina during the period between 1949 and 2017. Aridity is most
pronounced during the summer season (Figure 7B). Several previous studies have sug-
gested that current climatic gradients in the region are similar to those during the Late
Pleistocene period [2,3,15–17,66]. These arid local climate conditions associated with sparse
vegetation make the surroundings of Novo Orahovo sensitive to the emission of material
available for further aeolian action. Biotic proxy records from other Bačka LP sites, such as
Madaras [70–72], Katymár [70–74], and Crvenka [6,21,22], also support previous interpreta-
tions. A novel n-alkenes paleoenvironmental record provides evidence for the continued
dominance of grasslands during the Late Pleistocene at the Crvenka loess site, indicat-
ing more arid climate during the interglacial than glacial periods [6,21,22]. In spite of
the general predomination of different grassland environments at Bačka LP, analyzed
biotic proxies also show that stadials were more humid than interstadials, leading to
the expansion of arboreal plants influencing reduced erosion and aeolian input in cooler
phases [6,21,22,71–74].
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5. Conclusions

Investigations of the loess–paleosol sequence at the Novo Orahovo brickyard have
established the importance of this site as a record of Late Pleistocene climate and environ-
mental dynamics in the southeastern part of the Carpathian Basin.

The loess record at Novo Orahovo provides an opportunity to reconstruct local and
regional environmental processes and conditions during the past ∼150,000 years. Sedi-
mentological, pedological, and magnetic evidence recorded in Novo Orahovo show many
similarities with previously investigated loess sites in the Vojvodina region, indicating
relatively stable Late Pleistocene environmental conditions at these discontinuous loess
plateaus. However, the observed specific grain-size composition of the Novo Orahovo
loess–paleosol sequence is a consequence of its specific geomorphological position and
most likely existence of arid climate conditions. These environmental conditions promote
higher availability of the source material for further aeolian action. Additionally, existing
biotic proxies from other investigated sites at Bačka LP indicate the standing of favorable
local vegetation conditions for dust uptake during the whole Late Pleistocene.
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revisited: Local and regional Quaternary biogeographical inferences of the southern Carpathian Basin. Open Geosci. 2016,
8, 390–404. [CrossRef]
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