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Abstract: A high-resolution multiproxy sedimentary record comprising pollen, charcoal, trace el-
ement, stratigraphy and particle size data is used to reveal environmental changes from the man-
grove ecosystem at Unguja Ukuu, Zanzibar, Tanzania, over the last 5000 years. Historical human–
environment interactions over the last millennia are explored by a comparison of the stratigraphic
and archaeological data. The area was characterised by a mixture of mangrove forest and beaches,
indicating a low level of tidal inundation to at least 3300 BCE. From 2750 BCE, mangrove forest
expanded as the area experienced sea-level rise. Further sea-level rise is recorded between 600 and
1100 CE, indicated by the pollen record, particle size analysis and the presence of shell fragments.
After 1100 CE, mangrove forest decreased with back mangrove species increasing, indicating a falling
sea level. Cocos nucifera decreased after 1900 CE, which reflects a recent sea-level rise and possibly a
phase of exploitation. Cereal pollen shows a high presence at around 1500 CE, which coincided with
the arrival of the Portuguese on Zanzibar and the transition to Omani colonisation. The sedimentation
rate in the core top indicates that mangroves in Unguja Ukuu cannot keep pace with the current rate
of sea-level rise.

Keywords: sea-level change; pollen analysis; palaeoecology; archaeobotany

1. Introduction

Mangrove forests are one of the most valuable ecosystems on Earth as they provide
a wide variety of ecosystem services such as supporting commercial fisheries, providing
habitats for animal and plants, filtering sediment, contributing to coastal protection and
sequestering large amounts of carbon [1–4] However, mangrove ecosystems have been
massively impacted on by human activities, river discharge, coastal development and
climate change, including recent sea-level rise [5,6]. Mangrove ecosystems accumulate
sediment and build up an archive of fossils that indicates changes in sea levels, river
discharge and mangrove composition. Thus, mangroves are widely used as a sea-level
indicator and to track environmental change and human–mangrove interaction, e.g., [7–11].
In addition to this, reconstructing past mangrove dynamics at a range of different temporal
and spatial scales can aid in understanding how mangroves may respond to future sea-level
change [12]. During the last millennium, global sea level at approximately 1150 CE had
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reached 12–21 cm above the level at 1980-1999 CE [13]. The projected global sea-level rise is
between 3.0 and 13.2 mm yr−1 by 2100 CE [14]. This recent and continuing rise is a threat
to mangrove ecosystems [6] and the large populations that live in the coastal zone. Coastal
areas are often highly developed, curtailing the ability of mangrove to migrate landward.

Relative sea-level changes have been reconstructed from a range of geomorphological
proxies across the world including the southwest Indian Ocean region [9–11,15–22]. How-
ever, the results from these studies are inconsistent and there is considerable disagreement
about the chronology, characteristics and duration of Holocene sea-level changes across
the Indian Ocean region. Moreover, few studies focus on Anthropocene sea-level change,
which began in the late 18th century [23,24]. Additional proxies and tighter chronological
control can resolve these inconsistencies while also exploring Holocene–Anthropocene en-
vironmental and sea-level change interactions. Such past relative sea-level reconstructions
are vital to understand anthropogenic-driven coastal environmental changes by combining
palaeoecological data from mangrove ecosystems and coastal archaeological sites.

Aside from past environmental changes, the interplay between humans and ecosys-
tems have shaped the composition and distribution of mangrove ecosystems [1,12]. Al-
though pollen and charcoal analyses of mangrove sediment cores from Unguja Ukuu,
Zanzibar, have already revealed that mangrove ecosystems have been influenced by human
activities since around 500 CE [9], more specific information on the nature of this human–
ecosystem interaction is needed. Human–environment interactions from the Holocene
onwards often focus on the exploitation of ecosystem resources, particularly food plant
resources for human communities [25–27]. In addition, there are direct impacts on man-
grove trees for timber to support the growing maritime trade, particularly along the Swahili
coast [28]. We focus on the investigation of plant resources in this study by combining
multiple proxies from mangrove sediments with additional archaeological data to unravel
historical human–ecosystem–environment interactions throughout the last millennia, a
critical period of significant global sea-level rise [14,29,30] that has affected not only the
mangrove ecosystems but also coastal cultures and landscapes. This study presents a high-
resolution multiproxy pollen analysis combined with phytolith, microcharcoal, stratigraphy,
particle size and trace element analysis set within a chronological framework provided by
14C dating on mangrove sediments of the last 5000 years collected from the site of Unguja
Ukuu, a former capital of Zanzibar, Tanzania. Insights from the sedimentary archive are
compared with an archaeological record covering the past 1000 years and used to explore
adaptive human responses to sea-level change, possible connections to cultural settlement,
development and abandonment including early agriculture with wider consequences to
the Swahili coast, Tanzania.

2. Materials and Methods
2.1. Study Area
2.1.1. Environmental Setting

Unguja is the largest island of the Zanzibar archipelago situated approximately 40 km
from mainland Tanzania and separated from Africa by the Zanzibar Channel [9,31,32].
Zanzibar comprises coral reefs and the continental slope underlain by Miocene sandy clay
marl. Zanzibar has a tropical monsoonal climate with two rainy seasons, typically with
dry and hot weather during January and February controlled by the biannual migration
of the Intertropical Convergence Zone (ITCZ). Northeast and southeast monsoons occur
from March to May with short rains from October to December [9,32–34]. Between June
and September, the southern monsoon winds bring cooler temperatures, stronger winds
and more rain. The monsoon winds were critical in linking Zanzibar to the rest of Indian
Ocean countries, enabling for socio-economic trade between Zanzibar and the rest of the
Indian Ocean [35]. Annual average rainfall is approximately 1100–1500 mm with average
temperature range approximately 27–30 ◦C [32,36]. Mangrove vegetation found along
Zanzibar’s western shores cover approximately 6% of the whole area of Zanzibar including
5% in Unguja and 15% in Pemba [35]. Root crops, vegetables and rain-fed rice plantations
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account for most of the agriculture in the island [32]. According to [10], although there
are ten mangrove species found on Zanzibar [37], eight mangrove species (Acrostichum
aureum, Avicennia marina, Bruguiera gymnorhiza, Ceriops tagal, Lumnitzera racemosa, Rhizophora
mucronata, Sonneratia alba and Xylocarpus granatum) form a distinct vegetation zonation.
The study area is located in a dense mangrove stand approximately 75–120 m wide and
1 km long in a north–south alignment bordered to the south by the sea and a 3 m high sand
ridge to the west (Figure 1).
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2.1.2. Archaeological Context

Unguja Ukuu was a prominent early settlement on Zanzibar and was one of the first
densely settled coastal sites in eastern Africa, with archaeological evidence of settlement
dating back to around 450 CE [38]. The archaeological site is situated along a narrow
coral-rag peninsula on Zanzibar’s southwestern coast, between the mangrove-lined Uzi
Creek to the east and Menai Bay to the west which formed a natural harbour [39]. There
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is a substantial archaeological deposit at Unguja Ukuu, indicating a major settlement and
trade port with a wattle-and-daub architecture spread across 17 ha, representing quantities
of imported goods, including Chinese and Near Eastern ceramics, glass beads and glass
vessel fragments [31,39] with evidence of mangrove exploitation [40]. The study from [31]
indicated the appearance of mud–timber buildings, pottery, iron working and other craft
materials for domestic use and trade, but little evidence of agricultural use. Nonetheless,
there was an evidence of a varied diet of people that included hunting, a major emphasis
on fish consumption and the rearing of chickens; the staple crops were pearl millet and
sorghum [41]. Unguja Ukuu was abandoned around 950 CE before experiencing a re-
occupation between 1450 to 1600 CE during which time several buildings were built from
coral rag. From 1100 to 1400 CE, there are an increasing number of other archaeological sites
along the coast of Zanzibar, especially on the western side of the island which was thought
to be a prosperous period on the island [31,42]. Following the arrival of Portuguese traders
on Zanzibar during the late 15th century, Zanzibar came under Omani rule from the 18th
century onwards, a period characterised by increased trade in commodities, particularly
spices, ivory and slaves [43] and wider connections into trade in ivory into Europe and
North America [28]. Zanzibar became a British protectorate from 1890 CE to 1963 CE before
becoming independent.

2.2. Sediment Core Sampling

This study is based on fieldwork conducted in 2010 CE by [9] with an additional site
visit in 2022. Three sediment cores, AUU1, BUU1 and CUU1 (Figure 1), were retrieved with
a 5 cm-diameter Russian-type corer along a transect perpendicular to the coastline from
seaward to landward through mangroves in Unguja Ukuu [9]. The sediment characteristics
of the cores were described based on depth, colour, texture by eye evaluation and finger-
texturing on dry and wet samples using a modified version of the Tröels-Smith (1955)
classification [44,45] and other notable characteristics.

2.3. Palaeoecological Analyses

Sediment samples of 1 cm3 were extracted every 2 cm along cores AUU1, BUU1 and
CUU1 for pollen, microcharcoal, phytolith, trace element and particle size analysis.

2.3.1. Pollen and Spore Analysis

Pollen and spores from sediment were processed using acetolysis technique [46,47]
and heavy liquid separation using sodium polytungstate solution with a specific gravity
of 2.0–2.2 [48]. One tablet of exotic Lycopodium spores was added to each sample to esti-
mate pollen concentration following [49,50]. Slides were prepared with sample residues
mounted in a silicone oil. The number of pollen species in five samples from each site
were counted and recorded for every 20 grains up to a count of 300 grains in order to
estimate the appropriate grain count. The tally of new taxa stopped increasing after 80
grains; therefore, every sample had a minimum of 150 pollen grains counted. Moreover,
due to the limited amount of pollen in some sediment samples, it was not possible to
obtain a count of 300 grains. The pollen and spore identification was based on published
pollen morphology and modern pollen references, as well as comparison with pollen
from mangrove specimens collected during fieldwork and modern pollen references
following [9]. Identified pollen and spore types were grouped according to their ecology
into mangroves, back mangroves, terrestrial herbaceous, non-mangrove arboreal and un-
known. Mangroves and back mangroves were grouped according to [51,52] inundation
classes. Pteridophyte spores were excluded from the pollen sum. Percentages of pollen
were calculated and zoned based on the total pollen sum and presented in diagrams by
stratigraphically constrained cluster analysis using CONISS, within the software TILIA2
and TILIA ∗ Graph [53].
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2.3.2. Phytolith Analysis

Phytoliths were extracted from mangrove sediments according to [54]. The sample
residues were mounted on microscope slides using silicone oil as a mounting medium.
However, the phytolith concentration in mangrove sediments were extremely low and
insufficient to be analysed.

2.3.3. Microcharcoal Analysis

The charcoal in pollen slides was quantified using size classes of microscopic charcoal
modified from [9,55–57] which is divided into six classes (3–10 µm, 11–25 µm, 26–50 µm,
51–75 µm, 76–100 µm and >100 µm). The total number of fragments counted on an entire
slide is used to represent the charcoal counts for each size class within 500 fields. The
quantity of fragments per calculated area of each sample slide is multiplied by the mean
length of each size class to determine the total charcoal content for each size class and is
also shown in summary diagrams of each core. The size of the charcoal fragments can
be used to provide more information about the distance from which the fire originated.
Smaller less than 50 µm charcoal fragments typically cover a wider area, indicating remote
regional fire and larger charcoal fragments tend to be found closer to the location of the
fire, indicating a local source of the charcoal. Moreover, larger fragments of charcoal can be
used to identify potential links between human activities and environment, particularly
those related to human-caused fires [56].

2.3.4. Trace Element Analysis

The X-ray fluorescence (XRF) technique was used to analyse trace elements on 192 sed-
iment sub-samples (2 cm intervals) within three sediment cores. The experiment was
carried out at the BL1.1W, Synchrotron Light Research Institute, Nakhon Ratchasima. A
19 element Ge detector was employed to measure fluorescence signals for all samples. As
elemental concentration is proportional to the strength of the fluorescence lines, the relative
heavy-metal content for all samples were determined by comparing areas under peaks
of the fluorescence lines corresponding to each element. The program PyMCA [58] was
used for the data analysis and the obtained peak areas as a function of core length and soil
samples are provided together with a pollen diagram, respectively.

2.3.5. Particle Size Analysis

Carbonate content and organic material were removed from the 192 subsamples using
10% HCl and 30% H2O2, respectively. Grain size analysis on the remaining material was
undertaken using a Malvern Mastersizer 2000 analyser with a measurement range of
0.02–2000 µm. The end-member-modelling algorithm of Weltje (1997) was used to calculate
the end members from the total set of grain size measurements of the cores.

2.3.6. Chronology

Five organic samples from the basal sections of each core and the depth of biostrati-
graphic changes were treated with acid–base–acid (ABA) method following [59] to remove
soluble carbonates and prevent humic acids from percolating into the mangrove sediment
sequences. The pre-treated samples were radiocarbon-dated by Acceleration Mass Spec-
trophotometry (AMS) at DirectAMS Radiocarbon Dating Service, USA. Combined with the
ages obtained from [9], the calibrated ages and age–depth model were performed using
the package ‘rBacon’ [60] and the R statistical programming language version 3.4.0 [61,62].
These calibrated ages for individual 14C ages were derive using a Southern Hemisphere
calibration curve, which provided range with 95% probability (SHCal20) [63]. The median
age probability prefixed circa (c.) is used to report 14C ages in this study, and the max–min
age range is presented as BCE/CE (Table 1).
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3. Results
3.1. Vegetation Survey and Mangrove Zonation in Unguja Ukuu, Zanzibar Island

Mangrove forest found along the coast of Unguja Ukuu was surveyed and levelled
by [9] and revisited in 2022. The ecological distribution of major mangrove species was then
presented along a 50 m transect from landward to seaward perpendicular to the shoreline
(Figure 2) to demonstrate the mangrove zonation in Unguja Ukuu.
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Figure 2. A cross-section showing the ecological distribution and dominant mangrove species from
landward to seaward in the Unguja Ukuu mangrove area and coring sites including the stratigraphic
details of AUU1, BUU1 and CUU1 cores.

3.2. Core Chronological Results and Sedimentation Rates

The chronology of mangrove development and palaeoenvironment changes on Unguja
Ukuu, Zanzibar have been revisited and provide more high resolution over the past
5000 years at Unguja Ukuu. Two dates were excluded from the age–depth curves but
reported in Table 1; these dates are both much younger than their stratigraphic position and
likely reflect the incorporation of younger plant material to depth. Therefore, approximate
ages of pollen zones were based on the interpolated age–depth curves (Figure 3).

The sedimentation rate in the lower part of core AUU1 is 0.69 mm yr−1 (128–56 cm),
increasing in the upper part to 1.66 mm yr−1 (56–0 cm). The sedimentation rate of BUU1
in the lower part (138–88 cm) is 1.31 mm yr−1 and the rate of the upper part is 0.83 mm
yr−1 (0–88 cm). The sedimentation rates in the lower, middle and upper part of CUU1 are
0.52 (55–78 cm), 0.11 (36–55 cm) and 0.26 (0–36 cm) mm yr−1, respectively.

3.3. Stratigraphy, Particle-Size and Trace Elements Analyses

The basal part of all three sediment cores is characterised by grey sand and silt, which
is overlain by peat containing woody root fragments. Shell fragments are discovered in the
lower parts of cores AUU1 and BUU1. Silt particles are present at the uppermost part of
core AUU1 while sand particles and small woody root fragments are found at the top of
cores BUU1 and CUU1 (Figures 2 and 4–6). Particle size analysis of the three cores agrees
with stratigraphic descriptions (Figures 7–9).
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Table 1. Radiocarbon ages from Unguja Ukuu mangrove areas including calibrated ages using the Southern Hemisphere calibration of the SHcal20 curve [63].
Asterisk (*) refers to excluded dates. (a.m.s.l. refers to above mean sea level).

Core Depth
(cm)

Altitude
(m a.m.s.l.) Codes Sample Type 14C Age

Min-Max Age Range
(BCE/CE)

Median Age
(BCE/CE)

Median Age
(Cal yr BP) Source

AUU1

56 −0.52 D-AMS 045311 Uncharred plant 218 ± 18 1507-1759 CE 1673 CE 277 This study

91 * −0.81 UBA-16626 Bulk sediment 169 ± 22 1672-1954 CE 1813 CE 137 [9]

128 −1.24 D-AMS 045312 Uncharred plant 1469 ± 20 756-635 CE 635 CE 1315 This study

BUU1
88 −0.71 D-AMS 045313 Charcoal 1182 ± 20 883-999 CE 949 CE 1001 This study

138 −1.21 UBA-16627 Bulk sediment 1534 ± 23 441-631 CE 565 CE 1385 [9]

CUU1

36 1.02 D-AMS 045314 Uncharred plant 1458 ± 20 545-758 CE 64 CE 1309 This study

55 0.83 D-AMS 046339 Charcoal, bark 4158 ± 35 2664-1461 BCE 2389 BCE 4339 This study

78 0.6 UBA-16628 Bulk sediment 4211 ± 25 3190-2641 BCE 2823 BCE 4773 [9]

* 88 0.5 D-AMS 045315 Uncharred plant 1506 ± 20 550-643 CE - - This study
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Most of core AUU1 contained moderately well-sorted medium sand, as well as sand
particles present along the core; these range from 0.5–71.2% while most of cores BUU1 and
CUU1 consisted of poorly sorted medium silt to very fine sandy. Silt and sand in core
BUU1 range from 42.6–98.1% and 0.5–71.2%, respectively. Silt and sand of CUU1 range
from 28–98% and 1–71%, respectively. In core BUU1, the coarsest particle size is from 0 to
76 cm (0–15%), then the particle size is smaller and gradually decreases towards its deepest
depth. The particle size in core CUU1 is mainly very coarse silt to very fine sandy. Sand
decreased from the bottom to the top of core CUU1, with some fluctuation, whereas silt
demonstrated in the opposite trend.

In core AUU1, Zn and Pb increase with peaks towards the top. As, Mn and Ni record
relatively low across the core with peaks at depths of 36, 76 and 134 cm, respectively. From
the core bottom to the AUU-2 zone boundary at around 80 cm, Ti, Fe and Zr increase,
but towards the top Ti and Zr fluctuate with several peaks while Fe slightly decreases. In
core BUU1, Zn and Pb demonstrate similar patterns to those in core AUU1. Mn and Ni
are lower, but As is slightly higher than those in core AUU1. Ti and Fe do not change in
concentration throughout core BUU1, whereas Zr increases from the bottom to the top of
the core with peaks at depths of 28, 44 and 56 cm. In core CUU1, all elements, except As, Ni
and Pb, show similar patterns, i.e., decreasing with some fluctuation from the bottom to the
core top. As increases from the bottom to the CUU-3 zone and then decreases towards the
top. Ni decreases from the bottom to CUU-3 zone, then increases before decreasing again
towards the top. Pb decreases from the core bottom to the top with a notable peak at 52 cm.

3.4. Pollen Records

Pollen taxa from three sediment cores of Unguja Ukuu are presented in Table 2 and
summaries of pollen zone characterisation of each core are shown in Figures 4–6 and in the
supplementary file, Table S1.

Table 2. Pollen taxa present in sediment cores from Unguja Ukuu. Groups are according to ecological
habitats and typical mangrove zonation in Zanzibar according to [9] with a ‘+’ indicates presence of
pollen taxa in the respective cores.

Group Families, Genera or Species AUU1 BUU1 CUU1

Mangroves Avicennia marina + + +
Bruguiera/Ceriops + + +
Rhizophora mucronata + + +
Sonneratia alba + + +

Back mangroves Acrostichum sp. +
Lumnitzera sp. + +

Non-mangrove arboreal Apocynaceae +
Arecaceae + +
Blighia sp. + +
Buddleja polystachya + + +
Casuarina sp. + +
Cocos nucifera + +
Convolvulaceae + +
Mangifera sp. + +
Sapindaceae + + +
Tiliaceae + +

Terrestrial herbaceous Asteraceae + + +
Cichorioideae +
Cyperaceae + + +
Poaceae + + +
Poaceae, >40–60 µm +
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3.5. Microcharcoal Records

Charcoal fragments in each size class and the total charcoal content are presented as
a summary diagram in Figures 7–9. Summaries of charcoal description based on pollen
zones of each core are shown in the supplementary file, Table S1.

4. Interpretation and Discussion

A high-resolution multidisciplinary approach that includes pollen, charcoal, stratig-
raphy, particle size and trace element analyses is used to contribute an understanding of
environmental change at Unguja Ukuu, Zanzibar Island with impact for the wider Indian
Ocean and sea-level change ecosystem. R. mucronata pollen dominated the mangrove
pollen in all sediment cores. Importantly, R. mucronata pollen is dispersed from local
sources although it can be over-represented due to its wind-pollination and high pollen
production [64–66]. Similarly, Poaceae pollen is also periodically abundant in the sediment
cores, especially towards the top of each core. Although several palaeoenvironmental stud-
ies show that grass pollen increases in dry conditions [67–69], there is a similar response
attributed to human-induced changes, making it more difficult to attribute the change
without additional information, e.g., [70–73]. C. nucifera is also abundant in sediment cores.
Surprisingly, C. nucifera pollen was not detected in the previous studies, most likely due
to this study using the heavy liquid separation technique, which was not reported in the
previous study [9], to separate pollen from sediment. The heavy liquid separation method
can more effectively increase a pollen concentration yield in the same volume as a previous
study which was 1 cm3 and reduced impurities. This could possibly be an explanation for
the high concentration of C. nucifera pollen discovered in this study [74]. C. nucifera pollen
has been used in some studies as a proxy for human activity [75]. C. nucifera dispersal
occurs by both natural flotation and/or human introduction such as maritime trading and
agricultural production [76]. Although several studies suggested that C. nucifera was not in
the study area before extensive human populations [77–79], the evidence here suggests that
it was present before extensive human populations. There have been significant interactions
between humans and environments across East Africa from the early Holocene through
the present day [80–82]. The environmental and human interactions from Unguja Ukuu,
Zanzibar Island will be presented and discussed in consecutive periods from 3300 BCE to
the present day (Figure 10).

4.1. ~3300 BCE–600 CE (5250–1350 cal yr BP)

C. nucifera pollen dominated in zones CUU-1 and CUU-2, followed by Poaceae pollen,
with a short-lived but dramatic increase in S. alba from around 72 to 68 cm indicating this
area experienced low levels of inundation from around 3300 BCE. The mid-Holocene sea-
level rise from around 5950–2650 BCE was recorded in Tanzania [83]; taken together with a
dominant presence of C. nucifera and a low representation of mangrove taxa in the CUU-1
zone, it is suggested that this area was likely the transitional zone between marine and
terrestrial habitats with the mixture of open sand bars and mangrove forests characterising
the area from 3300 BCE. Gradually, the intertidal area increased until around 2750 BCE
when a seaward mangrove species, S. alba, occurred at the beginning of zone CUU-2. This
interpretation is also supported by a high presence of sand particles in zone CUU-1 and
silt gradually becoming more dominant. Considering the altitude of core CUU1, and the
dominance of C. nucifera at the core base, it is likely that sea level was lower than 0.48 m
a.m.s.l. during 3300 BCE. However, at the beginning of zone CUU-2 until at the depth
around 64 cm, R. mucronata and S. alba became more common while C. nucifera and Poaceae
decrease, indicating a sea-level rise at around 2750 BCE with a short period of sea level
being consistent around 2650 BCE; this is in agreement with the sea-level reconstructions
from South Africa [17,18]. After 2650 BCE, sea level fell until around 1800 BCE, after
which sea-level rise took place again possibly causing erosion after the depth of 40 cm,
as evidenced in a sudden change in the pollen record and particle size in zone CUU-3.
Accordingly, the vegetation dynamics and sea-level changes during this period may not
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reasonably be described. Nonetheless, the existence of Poaceae and C. nucifera from the
bottom of core CUU1 combined with an increase in charcoal accumulation in all size
classes around 2650 BCE indicate a period of aridity that may have promoted both local
and regional fire events in Unguja Ukuu [9,84]. This interpretation is consistent with
other palaeoecological works revealing regional aridity occurred along East Africa during
2550–2150 BCE [80,85,86].
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4.2. ~600–950 CE (1350–1000 cal yr BP)

Mangrove taxa, particularly R. mucronata, were abundant through zone CUU-4, AUU1
and BUU1 from around 600 CE, indicating the whole area was inhabited by mangroves
influenced by tidal inundation. S. alba, which is generally found along the seaward edge
or a mangrove ecosystem where it is flooded by all tides [10,11,87], sharply increased
at the beginning of zones AUU-1 and BUU-1 and at the top part of core CUU1 around
970–1000 CE, implying sea-level rise. The presence of shell fragments in zone AUU-
1 further supports that sea-level transgression was occurring during this time. These
findings are congruent with evidence of sea-level rise between 750 and 1450 CE [9,83].
This sea-level rise also coincided with the late Holocene sea-level highstand from southern
Africa between 450 and 750 CE [16,21,88,89]. Moreover, there are higher total charcoal



Quaternary 2023, 6, 21 18 of 27

contents in all three cores at this time, probably due to burning, [56,57,84], which indicated
a dry climate across the area associated with the late Holocene arid climate regime in
East Africa [80,90]. This observation is accompanied by multiproxy records from the
Kapsabet Swamp in Kenya, which shows a warm and dry climate stage from 280 to
1325 CE [91]. In addition, the abundance of charcoal fragments larger than 100 µm in size,
around 635 CE in cores AUU1, BUU1 and CUU1 suggested that local fire regimes possibly
represent anthropogenic rather than natural fires with fingerprints related to earliest human
settlement on Unguja Ukuu [9,31]. This charcoal record could also suggest the increase in
exploitation of mangroves as a source of materials for mud–timber building constructions
and trade, the latter of which is well-organised and widespread throughout the Swahili
coast, part of a network of Islamic trade in settlements around the Indian Ocean coast
(Figure 11) [31,40]. Moreover, the presence of C. nucifera at the bottom of core AUU1, at
around 635 CE, is linked to the first human settlement in the Swahili coast around the
7th–10th centuries CE [31,41,92,93]. According to linguistic studies, C. nucifera arrived in
Madagascar with early Austronesian settlers in the 1st millennium [94,95]. It also was
found on Pemba, the Comoros and mainland Tanzania in the 6th to 8th centuries CE [96].
Therefore, C. nucifera can also be used to indicate human activities when combined with
other proxies of human activities. The high occurrence of C. nucifera in the area is also
indicative that humans had to find alternate food sources due to extirpating large animals
during the late Holocene [97] and possibly became more interested in coconut to expand
their diet. The timing of this is also related to an arrival of farmers in the Middle Iron
Age, who would have managed the area for their settlement and farming [97] to include
coconut in the plantations. However, C. nucifera appeared earlier (~2500 BCE) in core CUU1
before this time and might have dispersed through natural flotation throughout this area
prior to human settlement. The presence of anthropogenic activity during this time was
also tied to the marine molluscs in eastern Africa as mollusc exploitation was common at
Unguja Ukuu in the 8th–9th centuries CE [98]. The artifacts and organic supply analysed
from archaeological trenches situated in backshore area of the Unguja Ukuu coast revealed
that the early occupation was at around 7th century CE [99]. Furthermore, increases in
trace elements, notably Fe, As and Pb, in zone CUU-4 and along core BUU1 suggested
the ironwork in the Unguja Ukuu archaeological site during the 7th to 10th centuries
CE [31,100]. Although these trace elements are low in core AUU1, this could possibly be
due to location with AUU1 being located at a greater distance from the land compared to
cores BUU1 and CUU1. Yet, it also indicates the early Indian Ocean trade in East Africa
region, where Unguja Ukuu on Zanzibar Island was one of the major commercial ports
from the 6th–10th centuries CE [101].

4.3. ~950–1300 CE (1000–650 cal yr BP)

After 950 CE, mangrove taxa, particularly R. mucronata, remained prominent which
indicated a continuous mangrove environment in the area. S. alba is represented in zones
AUU-1 and BUU-2 and sharply increased in zone CUU-4, firmly cementing the notion of a
continuous sea-level rise from 950 to 1100 CE. After that, S. alba decreased in zones CUU-4
and BUU-2 and disappeared in zone AUU-1 which possibly suggested that sea level started
to fall until 1300 CE. Moreover, the presence of back mangrove species, i.e., Lumnitzera sp.,
in zones CUU-4 and BUU-2 indicates that the mangroves landward edges were subjected to
more freshwater input, an interpretation also supported by the presence of Poaceae pollen
in zones CUU-4, BUU-2 and AUU-1. C. nucifera still has a small presence in zone CUU-4
while it has stable presence in zone AUU-1 but dramatically increases at the bottom of
the AUU-2 zone. These pollen records combined with sharp increases and decreases in
sand and silt particles in zones BUU-2 and CUU-4 after 1100 CE suggest that the frequency
of sea-level inundation was reduced and the sea level fell, leading to mangrove retreat
from a landward habitat to seaward habitat. This evidence is in accordance with the
sea-level regression occurrences in other Tanzanian coastal regions throughout the late
Holocene period [90,102]. From roughly 1100 CE onwards, Poaceae pollen decreased while
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Cyperaceae was recorded in the top of zone AUU-1 which was dated to around 1276 CE,
and it coincided with wet conditions observed throughout East Africa, possible coeval
with the Little Ice Age (1250–1850 CE) [103]. A decline in the size of charcoal fragments
larger than 100 µm in zone BUU-1 and a disappearance at the top of zone BUU-2 suggest a
reduction in anthropogenic activities in the area. This suggestion is supported by the fact
that charcoal fragments size larger than 100 µm in cores CUU1 and AUU1 also decreased
during the same period. This period corresponds to human abandonment on Unguja Ukuu,
Zanzibar Island during the 10th and 13th centuries CE [93,100]. Persistent shortages of
resources such as food or raw materials for maintaining some specialised activities, or
an external attack, could have led to irreversible collapse. Unguja Ukuu’s demise could
have been caused by one or more of these factors, or a combination of them [31]. Apart
from these reasons, sea-level rise after 950 CE may be one of the factors contributing to
human abandonment. It is feasible that sites were submerged by rising sea level. However,
the cause of Unguja Ukuu’s demise at this period is unclear, and more investigation is
necessary to support this argument.
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4.4. ~1300 CE to the Present Day

Sonneratia alba pollen percentages decreased in the middle of zone CUU-4 at a depth
of 20 cm while R. mucronata decreased in both zones CUU-4 and AUU-2 and C. nucifera
increased dramatically in sub-zone AUU-2a. These data indicated the sea level fell from
1300 to 1900 CE, an event that coincides with a sea-level regression along the Tanzania coast
between 1450 and 1850 CE [83,104]. Conversely, mangrove taxa, particularly S. alba and R.
mucronata, continued to dominate throughout the uppermost parts of zones BUU-2 and
BUU-3 until around 1950 CE. These findings also point to a sea-level fall during this period.
Further evidence of sea-level fall was the formation of sand bars [105] along the area of
AUU1 core that was probably connected to the coast. This could be suitable for the growth
of C. nucifera and its pollen is found prominently in this core after 1300 CE (Figure 10).
Furthermore, this may be the reason that core AUU1 contained a high percentage of sand
particles across the core. The appearance of C. nucifera could be interpreted as human
actions and the evidence of sea-level fall. After 1900 CE, mangrove taxa, particularly R.
mucronata, had a marked presence in the uppermost part of cores AUU1, BUU1 and CUU1,
whereas C. nucifera sharply decreased at the top of sub-zone AUU-2b and disappeared
altogether in zone AUU-3; these changes are thought to reflect recent sea-level rise. This
evidence is most likely associated with global sea-level rise with the rates from 1.1 to 2.5 mm
yr−1 between 1902 and 1990 CE to the present rates of 3.1–3.4 mm yr−1 in the Anthropocene
period due to the ice melting in Greenland and Antarctica as well as thermal expansion
of warmed ocean waters [106–108]. Similar responses of late Holocene highstands are
recorded along the southern African coasts [17,18,89]. It should be noted that the short
period of rise and fall of sea level from the 900 CE until the present day corresponds to the
Holocene sea-level fluctuations during the last centuries along the Tanzanian coast [83]
which is seen in the fluctuation of sand and silt particles of zone CUU-4 and throughout
core BUU1. This period also corresponds to arid climatic regimes which is evidenced
by a significant increase in Poaceae pollen and high charcoal contents from the middle
to the top of zone CUU-4 and along zone AUU-3. This could be related to the general
decrease in moisture in East Africa from the mid-Holocene to the present day [80,82].
However, the significant presence of Poaceae pollen can be used to illustrate both drought
incident [9,82,109] and anthropogenic activities such as agriculture and pastoralism [80].
Therefore, it is a challenge to separate between natural regimes and anthropogenic signals
in palaeoenvironment reconstruction after the first imprint of anthropogenic influences [80].
Although pollen records reveal evidence of recent sea-level rise, S. alba pollen decreased
in all cores around 100 years ago, possibly due to human exploitation because S. alba
is commonly used in Zanzibar for charcoal production, firewood and materials for boat
construction such as boat ribs and outrigger canoes [37,110]. Along with S. alba, R. mucronata
is slightly declining at the top zone of cores AUU1 and BUU1, which is potentially related
to the usage of mangrove woods for construction, fuel and firewood [9,37,110,111]. All of
these are common uses of mangroves by Swahili communities today [112]. Poaceae pollen
continues to be present at the top of all cores at around 1500 CE and the domesticated grass
pollen dramatically increased at the uppermost zone of the BUU1 core which was dated
back to around 1554 CE. This evidence indicated that the area was once again influenced
by human activities associated with the human reoccupation phase at Unguja Ukuu during
14th–16th centuries CE, the arrival of the Portuguese on Zanzibar and continued to Omani
colonisation and a sea-level fall period in the area (Figure 11). Although grass pollen larger
than 40 µm is generally classified as domesticated grass pollen [113,114], grass pollen grain
sizes between 60 and 80 µm are considered to be derived from east African cereals such
as sorghum (Sorghum bicolor) [72]. Therefore, the presence of domesticated grass pollen
in this study which is larger than 40 µm but smaller than 60 µm is unlikely to represent
an east African cereal. The presence of domesticated grass pollen and coconut pollen
might be due to the significant quantities of Asian crops especially Oryza sativa at eastern
Africa sites including Unguja Ukuu after 11th century CE [112]. During this time, both
Asian rice (Oryza sativa) and coconut (C. nucifera) macrofossils were discovered at Unguja
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Ukuu, which coincided with a significant increase in Indian Ocean trade, as evidenced
by the arrival of imported ceramics, glass beads, metals and other foreign products from
China, India and the Middle East [115]. Although the introduction of Asian crops to the
region occurred in this period, African crops such as sorghum, pearl millet and finger millet
remained a major source of food on Unguja Ukuu [115]. It is likely that domesticated grass
pollen found in this study is considered to be trading Asian crops.

It is noted that since 1300 CE, trace elements, especially Ti, Fe, Ni, Pb, Zn and Zr, have
been significantly higher at the uppermost part of cores CUU1, BUU1 and AUU1. Zn and
Zr are elements that can be used for various purposes including household, agricultural
and industrial activities [116,117]. Natural processes such as weathering and erosion as
well as anthropogenic activity can expose these heavy metals [116]. Pb and Fe are typically
found in households, food processing and/or consumption areas [36]. The abundance
of Fe and Pb in the area could be due to either metal-bearing deposits or metal working,
nonetheless indicating anthropogenic activity. This record supports geochemistry result
studies conducted from excavation sites close to mangrove areas on Unguja Ukuu which
revealed elemental signatures related to human activities such as house construction and
resource uses [36]. After Zanzibar gained independence in 1967 CE, the coastal population
has been rapidly rising, leading to an increase in human activities (Figure 11) such as
tourism and urbanisation [118].

The multiproxy palaeoecological data with dating control from Unguja Ukuu, Zanzibar
provide the long-term history of sea-level change and the evidence of mangrove response
to the fluctuations in sea level in the last 5000 years. Relative sea-level rise as recorded from
various studies, e.g., [6,66] and in this study is the primary driver affecting the increasing of
inundation stress, decreasing the photosynthesis and growth of mangroves on the seaward
edge [119] which led to the shifts of their distribution. Given the projected global sea-
level rise of between 3.0 and 13.2 mm yr−1 by 2100 CE under low to high greenhouse gas
emission scenarios [14], mangroves in Unguja Ukuu with average accumulation rate of
0.26–1.66 mm yr−1 cannot keep pace with the current pace of sea-level rise. We suggest
that the sediment accumulation capacity at Unguja Ukuu will not be sufficient to sustain
future mangrove ecosystems, and it is predicted to be flooded as early as 2070 CE with
low tidal range and low sediment supply [120]. In addition to sea-level rise, the mangrove
forest in Unguja Ukuu is threatened by anthropogenic modification such as agriculture,
logging and coastal development [119].

It is noteworthy that sea-level rise has an impact not only on mangroves, but also
on other low-lying coastal communities including deltas, coral reefs and seagrass beds,
and there are many archaeological sites dated from the early to mid-Holocene submerged
by sea-level rise. Mangroves in Unguja Ukuu close to many coastal archaeological sites
provide services as the natural protection from natural threats such as coastal erosion
and flooding to these sites. Therefore, the findings of this study in combination of other
data are beneficial in developing future plans to protect the mangrove forest and coastal
community from sea-level rise and anthropogenic impacts. Furthermore, this may aid in
raising public awareness and developing a plan for the protection of coastal archaeological
sites associated to coastal communities, including the mangrove areas.

5. Conclusions

A high-resolution multiproxy record derived from three mangrove sediment cores
from Unguja Ukuu, Zanzibar, Tanzania, with the addition of adjacent archaeological data,
reveal a high resolution of vegetation change, sea-level dynamics and provide a long history
of human–environment interaction throughout the last millennia (Figure 11). The results
indicate that from at least 3300 BCE, the area was covered by a mixture of mangrove and
beaches, indicating a low level of inundation. Poaceae and C. nucifera, together with an
increase in charcoal accumulation, suggest that a dry climate was experienced from 2750 to
1800 BCE. Pollen, particle size and the presence of shell fragments provide evidence of sea-
level rise between 600 and 1100 CE. Charcoal fragments larger than 100 µm are abundant
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during this time, revealing increasing anthropogenic fingerprints from around 635 CE. The
changing proportion of C. nucifera pollen may also be a signal that people started eating
more coconut to expand their diet. After 1100 CE, S. alba decreased whereas back mangrove
species increased, indicating a period of sea-level fall until 1300 CE. Domesticated grass
pollen is not present at this time, which may indicate that anthropogenic activities in
the area decreased around the time that people left Unguja Ukuu in the 10th and 13th
centuries CE. After 1300 CE, the sea level continued to fall as evidenced by a decrease
in R. mucronata and C. nucifera before rising after 1900 CE. The abundance of Poaceae
pollen and domesticated grass pollen at around 1500 CE indicate reoccupation of this
area coincident with the arrival of the Portuguese on Zanzibar that continued through
Omani and British colonisation. After Zanzibar obtained independence in 1967, trace
elements—another indicator of human activity related to the expansion of the coastal
population on the island—increased dramatically, especially Fe and Pb.

The recent sedimentation rate in Unguja Ukuu indicates that mangrove in this area
cannot keep pace with the current rate of sea-level rise, with the mangrove forest in Unguja
Ukuu also threatened by anthropogenic modification. Therefore, mangroves in Unguja
Ukuu are at risk of being flooded because of recent sea-level rise and erosion from increasing
human disturbance along the coastal area.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/quat6010021/s1, Table S1: Description of pollen zone and dominant
charcoal fragment along three sediment cores from Unguja Ukuu.
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