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Abstract: A dendrochronological investigation was undertaken on subfossil Scots pine (Pinus
sylvestris L.) stumps following their discovery during conservation management at Wem Moss,
a small (28 ha) former raised mire in Shropshire, UK. Two ring-width chronologies were constructed
from 14 of the 17 trees sampled spanning 198 and 208 years, respectively. Whilst dendrochronological
dating was not possible, radiocarbon assays provided an estimated age for this mire-rooting wood-
land of between 3015 and 2505 years cal. BCE, coinciding with the age traditionally associated with
the widespread mortality of pine trees throughout much of the UK and Ireland, often referred to as
the Pine Decline (ca. 4000 radiocarbon years BP). Placed in a wider geographical context, the Wem
Moss pines are located within the lowland Meres and Mosses region, where previous studies on
subfossil pine have demonstrated protracted declines in mire-rooting trees. These have included tree
mortality significantly post-dating the Pine Decline, especially at larger peatland sites that exceed
5 km2. Such macrofossil evidence for the presence of Scots pine into the late Holocene is supported
by continuous Pinus pollen representation at peatland sites in the Welsh Marches (English–Welsh
border), suggesting the possible survival of native Scots pine trees in this area up to the present
day. The investigation of Wem Moss bog pines and their wider geographical context highlights the
incomplete and patchy nature of palaeo-vegetational records and also the need for future genetic
research on living Scots pine in possible refugial areas in Britain and Ireland.

Keywords: climate change; dendrochronology; peatland archives; Pine Decline; Pinus sylvestris L.;
radiocarbon dating

1. Introduction

Under natural environmental and climatic conditions, many tree species are capable
of colonising peatlands, particularly during periods of dry or relatively dry surface condi-
tions [1,2]. Research in the last decade has demonstrated that tree growth and survival in
these often-extreme environments is predominantly regulated by hydrological conditions,
with climatic parameters correlated less well with dendrochronological records [2–5]. Peat-
land drainage events in the twentieth century CE have been clearly shown to promote tree
colonisation and tree growth [6–9].

Past tree growth on peatlands over many centuries is often demonstrated by finds
of isolated tree stumps and fallen trunks or apparent forest ‘layers’ revealed by erosion
events, peat cutting, drainage and other human-related activities in Britain, Ireland and
further afield, e.g., [2,10–16]. Whilst these subfossil trees are thought to represent previous
drier peat surfaces, their preservational state can indicate wet conditions immediately post-
mortem (intact bark and vertical trunk components) or relatively dry conditions (little trunk
component remaining), as observed in subfossil pine (Figure 1), supporting other evidence
for rapid natural fluctuations in past mire–surface hydrology during the Holocene.
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Preservation of organic remains in waterlogged peatlands is exemplified by investi-

gations of bog bodies, such as Tollund Man (Denmark) and Lindow Man (England), that 

have provided detailed insights into our prehistoric past [17]. Human remains preserved 

in peat can, in addition to subfossil trees, also demonstrate imperfect preservation, with 

for instance bone demineralisation in acidic ombrotrophic peats and bone survival in nu-

trient-rich fens [18]. A variety of subfossil trees have been found in peat ranging from 

birch (Betula spp.), pine (Pinus sylvestris), oak (Quercus spp.), alder (Alnus glutinosa), wil-

low (Salix spp.), hawthorn (Crataegus spp.), and hazel (Corylus avellana) in southern Pen-

nine blanket peats, northern England (UK) [11,19], to yew stumps (Taxus baccata) in the 

fenlands of eastern England [20]. Preservation and usefulness of these trees for palaeoe-

cological investigations can, however, vary considerably, with, for instance, the frequently 

occurring macrofossils of alder (Alnus glutinosa) and birch (Betula spp) failing to provide 

robust samples with sufficient tree-ring series for dendrochronological investigation. By 

contrast, oak (Quercus spp.) and pine (P. sylvestris), due to their generally broad spatial 

and temporal occurrence, and comparatively better preservation, have been the focus of 

palaeoecological investigations since the 1960s [2,21–28]. 

 

(a) (b) 

Figure 1. Subfossil bog pine (P. sylvestris) at Lindow Moss, Cheshire, UK. (a) Ex situ small diameter 

tree removed from an upper ‘regeneration layer’ in ombrotrophic peat–note c 20 cm of vertical trunk 

component facilitating sampling for dendrochronology. (b) In situ stump demonstrating some dam-

age caused during mechanised peat extraction, but also limited surviving trunk component. Scale 

length 23 cm. 

Research utilising subfossil trees and other proxy records such as pollen has revealed 

natural developments in wetland sites progressing from open water to eutrophic fens, 

culminating in raised ombrotrophic bogs [29]. Whilst this hydroseral succession has been 

demonstrated at numerous sites throughout north-west Europe, the successional path-

ways for wetland environments are known to be more complex [30], and some regions 

such as the Lancashire Coastal Plain are thought to have remained at early successional 

stages for millennia, promoting the persistence of extensive and unique bog-oak wood-

lands [16,31–33] (Figure 2). Dendrochronological dating of bog-oak and bog-pine wood-

lands, notably in Germany and Poland, has revealed extensive tree colonisation of Euro-

pean bogs correlating with periods of climatic amelioration (e.g., Holocene Thermal Max-

imum), as well as mass mortality events associated with climatic deterioration. These 

studies have indicated possible synchronous climatic forcing throughout north-western 

Europe, particularly during the mid-Holocene [2,15,27,34,35]. 

Figure 1. Subfossil bog pine (P. sylvestris) at Lindow Moss, Cheshire, UK. (a) Ex situ small diameter
tree removed from an upper ‘regeneration layer’ in ombrotrophic peat–note c 20 cm of vertical
trunk component facilitating sampling for dendrochronology. (b) In situ stump demonstrating some
damage caused during mechanised peat extraction, but also limited surviving trunk component.
Scale length 23 cm.

Preservation of organic remains in waterlogged peatlands is exemplified by investi-
gations of bog bodies, such as Tollund Man (Denmark) and Lindow Man (England), that
have provided detailed insights into our prehistoric past [17]. Human remains preserved
in peat can, in addition to subfossil trees, also demonstrate imperfect preservation, with for
instance bone demineralisation in acidic ombrotrophic peats and bone survival in nutrient-
rich fens [18]. A variety of subfossil trees have been found in peat ranging from birch
(Betula spp.), pine (Pinus sylvestris), oak (Quercus spp.), alder (Alnus glutinosa), willow
(Salix spp.), hawthorn (Crataegus spp.), and hazel (Corylus avellana) in southern Pennine
blanket peats, northern England (UK) [11,19], to yew stumps (Taxus baccata) in the fenlands
of eastern England [20]. Preservation and usefulness of these trees for palaeoecological
investigations can, however, vary considerably, with, for instance, the frequently occurring
macrofossils of alder (Alnus glutinosa) and birch (Betula spp) failing to provide robust
samples with sufficient tree-ring series for dendrochronological investigation. By contrast,
oak (Quercus spp.) and pine (P. sylvestris), due to their generally broad spatial and temporal
occurrence, and comparatively better preservation, have been the focus of palaeoecological
investigations since the 1960s [2,21–28].

Research utilising subfossil trees and other proxy records such as pollen has revealed
natural developments in wetland sites progressing from open water to eutrophic fens,
culminating in raised ombrotrophic bogs [29]. Whilst this hydroseral succession has been
demonstrated at numerous sites throughout north-west Europe, the successional pathways
for wetland environments are known to be more complex [30], and some regions such as the
Lancashire Coastal Plain are thought to have remained at early successional stages for mil-
lennia, promoting the persistence of extensive and unique bog-oak woodlands [16,31–33]
(Figure 2). Dendrochronological dating of bog-oak and bog-pine woodlands, notably in
Germany and Poland, has revealed extensive tree colonisation of European bogs correlating
with periods of climatic amelioration (e.g., Holocene Thermal Maximum), as well as mass
mortality events associated with climatic deterioration. These studies have indicated possi-
ble synchronous climatic forcing throughout north-western Europe, particularly during the
mid-Holocene [2,15,27,34,35].
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Figure 2. Contrasting preservational environments for subfossil bog-pine in north-west England: a) 

Lindow Moss, (a) former raised peat bog, north Cheshire (image: 6 June 2012), (b) a low-lying arable 

field (5–10 m asl) adjacent to Curlew Lane, south-west of Rufford on the Lancashire Coastal Plain. 

Inland hills (near Parbold) approximately 6 km to the south-east can be seen in the distance (image: 

16 October 2019). 

A significant concentration of radiocarbon dates for P. sylvestris microfossils (sharply 

declining pine pollen representation in pollen diagrams) and widespread occurrence of 

macrofossils (tree trunks and stumps) from Britain and Ireland has previously been noted 

at around 4000 14C years before the present (BP) and has been termed the ‘Pine-decline’ 

[36] (pp. 145–146). Although the precise mechanisms involved in this apparent ‘event’ 

were initially a matter of conjecture, climatic deterioration was suspected, and was also 

corroborated by existing evidence from other proxy records such as lake sediments and 

peat stratigraphy [37–40] cited by [36]. The ‘Pine Decline’ has remained contested within 

palaeoecology, attributed to climate change, competition between coniferous and broad-

leaf tree species, humans, pathogens, and even the potential impacts of Icelandic volcan-

ism. The latter, for instance, has included some quite heated debates relating to the appli-

cation of dating techniques and palynological criteria for the presence of local pine wood-

land [41–47]. 

This research presents new palaeoecological data relating to a subfossil pine wood-

land that grew on Wem Moss, a former raised bog, located close to the border between 

Wales and England (UK). It examines the significance of these dendrochronological rec-

ords in relation to previous research on Scots pine (P. sylvestris) from the broader Meres 

and Mosses region and from elsewhere in Britain and Ireland, providing a critical exami-

nation of existing palaeoecological evidence for the ‘Pine Decline’ at 4000 14C years BP. In 

doing so, this research highlights the spatially and temporally discontinuous nature of 

micro- and macrofossil records of Scots pine, as well as the need for future genetic research 

on living pine trees. 

2. Study Area and Site 

Wetlands and former wetlands within the UK counties of Cheshire, Staffordshire and 

Shropshire are collectively known today as the Meres and Mosses region, an area of pre-

dominantly low-lying topography sharing not only similar landscape characteristics, but 

also similarities in glacial, landscape, vegetation, and human history [48–50]. These wet-

lands and their environmental archives have been the focus of a considerable quantity of 

both ecological and palaeoecological research including seminal works on the terrestrial-

isation of wetland sites, development of Schwingmoor, and the definition of palynological 

‘events’ such as the ‘Tilia Decline’, e.g., [51–55]. The research reported here formed part of 

a wider Meres and Mosses Landscape Partnership Scheme (MMLPS) [56] building on the 

Figure 2. Contrasting preservational environments for subfossil bog-pine in north-west England:
(a) Lindow Moss, (a) former raised peat bog, north Cheshire (image: 6 June 2012), (b) a low-lying
arable field (5–10 m asl) adjacent to Curlew Lane, south-west of Rufford on the Lancashire Coastal
Plain. Inland hills (near Parbold) approximately 6 km to the south-east can be seen in the distance
(image: 16 October 2019).

A significant concentration of radiocarbon dates for P. sylvestris microfossils (sharply
declining pine pollen representation in pollen diagrams) and widespread occurrence of
macrofossils (tree trunks and stumps) from Britain and Ireland has previously been noted
at around 4000 14C years before the present (BP) and has been termed the ‘Pine-decline’ [36]
(pp. 145–146). Although the precise mechanisms involved in this apparent ‘event’ were ini-
tially a matter of conjecture, climatic deterioration was suspected, and was also corroborated
by existing evidence from other proxy records such as lake sediments and peat stratigra-
phy [37–40] cited by [36]. The ‘Pine Decline’ has remained contested within palaeoecology,
attributed to climate change, competition between coniferous and broadleaf tree species,
humans, pathogens, and even the potential impacts of Icelandic volcanism. The latter,
for instance, has included some quite heated debates relating to the application of dating
techniques and palynological criteria for the presence of local pine woodland [41–47].

This research presents new palaeoecological data relating to a subfossil pine woodland
that grew on Wem Moss, a former raised bog, located close to the border between Wales
and England (UK). It examines the significance of these dendrochronological records in
relation to previous research on Scots pine (P. sylvestris) from the broader Meres and Mosses
region and from elsewhere in Britain and Ireland, providing a critical examination of
existing palaeoecological evidence for the ‘Pine Decline’ at 4000 14C years BP. In doing so,
this research highlights the spatially and temporally discontinuous nature of micro- and
macrofossil records of Scots pine, as well as the need for future genetic research on living
pine trees.

2. Study Area and Site

Wetlands and former wetlands within the UK counties of Cheshire, Staffordshire
and Shropshire are collectively known today as the Meres and Mosses region, an area of
predominantly low-lying topography sharing not only similar landscape characteristics,
but also similarities in glacial, landscape, vegetation, and human history [48–50]. These
wetlands and their environmental archives have been the focus of a considerable quantity
of both ecological and palaeoecological research including seminal works on the terrestrial-
isation of wetland sites, development of Schwingmoor, and the definition of palynological
‘events’ such as the ‘Tilia Decline’, e.g., [51–55]. The research reported here formed part of a
wider Meres and Mosses Landscape Partnership Scheme (MMLPS) [56] building on the
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UK Government’s National Improvement Area initiative (2011) and focusing on improve-
ments to wetland landscapes. Sub-project COMM2 Peat Coring & Archaeology involved
highlighting the nature and value of the wetland archives in this region and included both
detailed palynological investigations [57], as well as the analyses of subfossil pine trees
that were excavated at Wem Moss.

Wem Moss is a small (28 ha), lowland raised bog in Shropshire, UK (National Grid
Reference SJ 473 343) and forms part of a larger conservation area, Fenn’s, Whixall and
Bettisfield Mosses National Nature Reserve (Figure 3 and is noted for raft spiders, the Large
Heath Butterfly (Coenonympha tullia), and the common European Viper or Adder (Vipera
berus). It is owned and managed by the Shropshire Wildlife Trust [58]. In 2015, conservation
management required the insertion of a linear hydrological barrier to further site re-wetting
and necessitated the removal of a number of subfossil bog-pine trees (P. sylvestris) from
within the peat. Following a request from the Shropshire Wildlife Trust to ascertain the age
of these trees, disc samples were removed from 17 subfossil stumps for dendrochronological
analyses (Figure 4a,b).Quaternary 2023, 6, x FOR PEER REVIEW 5 of 19 

 

 

 

Figure 3. Locations of key palaeoecological studies undertaken on subfossil P. sylvestris in Britain 
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Figure 3. Locations of key palaeoecological studies undertaken on subfossil P. sylvestris in Britain
and Ireland. (a) Sites in Ireland, Northern Ireland, Scotland, northern and eastern England. (b) Sites
in the Meres and Mosses region (Shropshire—Cheshire—Staffordshire), including Wem Moss, site
25 (RED)—new dendrochronological data presented in this paper: 1–2 Aughrim Swamp, Rockforest
Lough [59,60]; 3–5 Letterfrack, Derryeighter, Garrynagran [61]; 6–7 Sluggan, Sharvogues [62–64];
8 Fallahogy [62]; 9 Ballynagilly [65,66]; 10 Garry Bog [62]; 11 Drumaville [D Brown pers. comm.];
12 Derrycrow [62]; 13 Ballymacombs More [62,65]; 14 Altnahinch [62]; 15–17 Ballycon, Glashabaun,
Timahoe [10]; 18 Loch Strathy [67]; 19 Rannoch Moor [68]; 20 N Scot—11 sites [69]; 21 Dubh
Lochan [70]; 22 Loch an Amair [70]; 23 Curlew Lane [16]; 24 Hatfield Moors [71]; 26 Fenn’s, Whixall
& Bettisfield Mosses [53,72–76]; 27 Morris’s Bridge [77]; 28 Crose Mere [78]; 29 Fenemere [79]; 30 Lin
Can Moss [80]; 31 Lindow Moss [81]; 32 Davenham [82]; 33 White Moss [25].
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pling tree discs using a chainsaw from well-preserved stumps close to the tree root crowns. Note 

corrugated plastic barrier inserted into the peat as a hydrological barrier. (b) Seventeen pine disc 

samples prior to transportation to the Dendrochronology laboratory at Manchester Metropolitan 

University. 
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fully visible for measurement (examples of similar prepared subfossil pine discs can be 

seen elsewhere [16]). Ring-width measurements were made for each sample disc starting 

at or near the centre of the tree (pith) and progressing towards the youngest ring, as close 

as possible to the bark. Two ring-width series were made for each of the 17 disc samples 

using a binocular microscope, measuring stage, an electronic measuring device (measure-

ment accuracy 0.01 mm), and data input software described in Tyers [83]. Ring-width se-

ries from these radial measurements were subsequently combined to create a mean ring-

width record for each sample, and these were then compared for similarity using cross-

matching software routines described by Tyers [83], Lageard et al. [25], and Lageard & 

Robinson [16]. Cross-matching and chronology-building followed standard dendrochron-

ological procedures, utilising raw ring-width data [16,25]. The resultant Wem Moss ring-
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ting. A detailed description of the methodology followed in this research and also recom-

mended for the dendrochronology of subfossil pine, including cross-matching procedures 

and chronology-building, is described in further detail elsewhere [16]. 

3.2. Radiocarbon Dating 

Following the creation of floating (un-dated) site ring-width chronologies, samples 

of wood were carefully removed from discs using a hammer and narrow-bladed chisel 

(avoiding any potential contamination from modern or older carbon). These samples com-

prised the youngest chronology components, e.g., rings 191–198 from disc Wem 01 from 

chronology Wem 2_2 (exceeding the minimum weight 3–100 mg required for AMS da-

ting). Samples were sealed in laboratory sample bags and sent to Beta Analytic (Miami, 

USA) for 14C assay. All 14C date calibrations including for the Wem Moss wood samples 

Figure 4. Recovering subfossil bog-pine trees from Wem Moss, Shropshire in March 2015. (a) Sam-
pling tree discs using a chainsaw from well-preserved stumps close to the tree root crowns. Note cor-
rugated plastic barrier inserted into the peat as a hydrological barrier. (b) Seventeen pine disc samples
prior to transportation to the Dendrochronology laboratory at Manchester Metropolitan University.

3. Materials and Methods
3.1. Dendrochronology

Disc samples were allowed to air dry and then polished using progressively finer
grades of sandpaper and a belt sander to make the wood structure and tree-ring patterns
fully visible for measurement (examples of similar prepared subfossil pine discs can be
seen elsewhere [16]). Ring-width measurements were made for each sample disc starting at
or near the centre of the tree (pith) and progressing towards the youngest ring, as close as
possible to the bark. Two ring-width series were made for each of the 17 disc samples using
a binocular microscope, measuring stage, an electronic measuring device (measurement
accuracy 0.01 mm), and data input software described in Tyers [83]. Ring-width series from
these radial measurements were subsequently combined to create a mean ring-width record
for each sample, and these were then compared for similarity using cross-matching software
routines described by Tyers [83], Lageard et al. [25], and Lageard & Robinson [16]. Cross-
matching and chronology-building followed standard dendrochronological procedures,
utilising raw ring-width data [16,25]. The resultant Wem Moss ring-width chronologies
were cross-matched against available subfossil pine reference chronologies from the Meres
and Mosses region [25,81] to attempt dendrochronological dating. A detailed description of
the methodology followed in this research and also recommended for the dendrochronol-
ogy of subfossil pine, including cross-matching procedures and chronology-building, is
described in further detail elsewhere [16].

3.2. Radiocarbon Dating

Following the creation of floating (un-dated) site ring-width chronologies, samples
of wood were carefully removed from discs using a hammer and narrow-bladed chisel
(avoiding any potential contamination from modern or older carbon). These samples
comprised the youngest chronology components, e.g., rings 191–198 from disc Wem 01
from chronology Wem 2_2 (exceeding the minimum weight 3–100 mg required for AMS
dating). Samples were sealed in laboratory sample bags and sent to Beta Analytic (Miami,
USA) for 14C assay. All 14C date calibrations including for the Wem Moss wood samples
utilised the IntCal20 atmospheric curve [84], and previously published 14C dates included
in the discussion were recalibrated using OxCal v. 4.4 [85].
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4. Results
4.1. Dendrochronology

Ring-width measurements of the disc samples were undertaken in the Dendrochronol-
ogy Laboratory at Manchester Metropolitan University, revealing mean ring counts of 49 to
269 years (see data in Supplementary Materials S4.1). Subsequent cross-matching [cf 16]
demonstrated contemporaneity between 9 of the 17 mean ring-width series, indicated by
t value correlations exceeding 5.0 in Table 1. Contemporaneity between three of these
mean ring-width series (Wem01M, Wem06M, and Wem07M—each created using raw ring-
width data) is illustrated in Figure 5. Wem01 and Wem07 (t-value correlation 8.14) were
initially combined to form an interim site chronology, with Wem06 subsequently added
following further cross-matching, forming site Chronology Wem 2_2 and illustrating the
standard dendrochronological chronology-building process (Table 2). Note the variability
in the sensitivity of these ring-width records (Wem01—0.39; Wem06—0.27; Wem07—0.37)
possibly demonstrating variability in palaeohydrology on the bog surface over relatively
short distances.

Table 1. Correlation matrix for Wem Moss samples Wem01–Wem14 showing t values exceeding 5.0.
Site chronologies and their individual components are distinguished using the following colours:
WEM2_2—lime green, WEM4_1—dark green.

Wem01 Wem02 Wem03 Wem04 Wem05 Wem06 Wem07 Wem08 Wem09 Wem10 Wem11 Wem12 Wem13 Wem14
Wem01 5.38 8.14
Wem02 5.74
Wem03 6.16
Wem04 5.29 9.2
Wem05 6.79
Wem06 5.72
Wem07 6.19
Wem08 6.57
Wem09
Wem10
Wem11
Wem12
Wem13
Wem14

Table 2. Details of Wem Moss site tree ring-width chronologies.

Site
Chronology

Component
Chronologies

Number of
Samples

Length
(Years)

Average
Ring-Width (mm) Sensitivity

WEM1_3 - 4 184 102.99 0.38

WEM2_2 - 3 198 90.48 0.31

WEM3_1 - 2 115 123.77 0.23

WEM4_1 WEM1_3 &
WEM3_1 6 208 103.24 0.33
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Figure 5. Contemporaneity and variability in subfossil pine growth from the same peat bog:
P. sylvestris ring-width records Wem01M, Wem06M, and Wem07M, components of the 198-year
site chronology Wem2_2. Black rectangle highlights wood sent for 14C assay (Wem01 rings 191–197).

Three initial site ring-width chronologies were constructed (Table 2) and further
cross-matching demonstrated the contemporaneity between Wem1_3 and Wem3_1. These
chronologies were subsequently combined to form site chronology Wem4_1 (see Figure 6
& Supplementary Materials S4.2). Further sampling and analysis of bog-pines from Wem
Moss are likely to extend the duration of this mire-rooting woodland and could also reveal
protracted and staged decline as witnessed elsewhere in the Meres and Mosses region [25].

As cross-matching with other available regional subfossil pine reference chronologies
was unsuccessful, age-estimation for samples from the two site chronologies (WEM2_2 and
WEM4_1) was reliant on the results of the radiocarbon age determination.

4.2. Radiocarbon Dating

Youngest series of tree-rings were removed from subfossil pine disc samples emanating
from both site chronologies (wood immediately proximate to tree bark: Wem2_2 rings
191–198; Wem4_1 rings 199–208) and sent for radiocarbon dating. Calibration (2 sigma)
of the resultant 14C dates suggest that the dendrochronological records are closely related
and may relate to the same continuum of mire-rooting woodland centred on the period
3015–2505 Cal BCE (see Table 3).



Quaternary 2023, 6, 12 8 of 17

Table 3. Radiocarbon dates associated with samples from chronologies Wem2_2 and Wem4_1.

Chronology Tree Chronology Years Radiocarbon Age
(14C Years BP)

Calibrated Age
Range–Years (2 Sigma)

WEM2_2 Wem01 191–198 4330 ± 30
(Beta–424347) 3015–2895 cal. BCE

WEM4_1 Wem10 199–208 4100 ± 30
(Beta–424348) 2860–2505 cal. BCE
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5. Discussion

The similarity in the radiocarbon dates and the calibrated age ranges for the two
floating pine ring-width chronologies from Wem Moss suggests that the trees sampled
in this research comprised part of the same mire-rooting woodland probably extant for
several centuries leading up to their mortality at or ca. 4000 14C years BP, ‘typical’ pine
macrofossil evidence of the ‘Pine Decline’ [36]. More detailed investigations of similar
subfossil woodland elsewhere in the Meres and Mosses region have however sometimes
revealed a more complex picture of subfossil pine woodland decline with series of distinct
temporal phases. At White Moss (45 km to the north-west in south Cheshire—Figure 3b),
three phases of macrofossils were identified (see Figure 7A). White Moss Phase B was ini-
tially assayed by radiocarbon, but was subsequently dated precisely by dendrochronology
to 2881–2559 BC [25]. The youngest tree layer/s from White Moss (Phase C) comprised
an upper ‘regeneration’ layer(s) of small diameter stumps thought to represent the last
attempts of woodland to re-establish in an increasingly wet environment, unsuited to tree
growth (2484–2199 cal. BC & 1972–1740 cal. BCE) [25]. A similar ‘regeneration’ layer
is currently under investigation at Lindow Moss (north Cheshire), and the morphology
of many of its components provide further evidence implicating mire hydrology in tree
mortality after 2569–2146 cal. BCE [2,15,81] (see Figure 8).

Whilst a number of mire-rooting pine woodland phases during the Holocene
have now been dendrochronologically dated in Britain and, particularly, also in
Ireland [25,62,69,71]—Figures 3 and 7—these contrast with temporally and geographically
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more extensive European records whose dating has benefitted from the widespread contem-
poraneity between bog-oak and bog-pine woodlands [2,15,34,35]. It is, however, possible
to compare the radiocarbon dates for the Wem Moss subfossil pine woodland to palaeoeco-
logical investigations from the wider Meres and Mosses region, and also from the rest of
Britain and Ireland (Table 4; Figures 3 and 7). Previously dated pine and oak macrofossil
and microfossil (pine pollen) events from immediately adjacent peatlands in Shropshire are
listed in Table 4 and these reveal a series of radiocarbon age-estimates post-dating the Wem
Moss woodland and the age traditionally associated with the ‘Pine Decline’ (4000 14C years
BP) (Figure 7A). These local investigations focussed primarily on a layer of pine stumps
originally described by Hardy [72] at Whixall Moss (part of the larger Fenn’s and Whixall
Mosses peatland complex covering over 550 ha).

Table 4. Dating associated with subfossil Scots pine and subfossil oak macrofossils and sharp declines
in Pinus (P. sylvestris) pollen from Whixall Moss and other sites in Shropshire, UK. Calibrations:
[84,85]. See also Figure 3b.

Publication Site Bog-
Oak/Bog-
Pine/Pine
Pollen

14C Age (Years BP) Calibrated
Age Range
(2 Sigma)
(Years cal.
BCE/CE)

Calendar
Date (Years
BCE)

Artefact
Dating
(Years
BCE)

Undated
Tree-Ring
Series

[72] Whixall Moss Pine - - - 1500–1000 -
[53] Whixall Moss Pine 2307 ± 110 761–106 BCE - - -
[73] Whixall Moss Pine pollen ca. 2000 - - - -
[78] Crose Mere Pine pollen 2310 ± 85 753–164 BCE - - -
[79] Fenemere Pine pollen 1890 ± 50 232–248 CE - - -
[74] Whixall Moss Pine 2180 ± 50 397–3 BCE - - X
[75] Whixall Moss Pine - - - - X
[77] Morris’

Bridge
Oak - - 4596–4304 - -

[76] Whixall Moss Pine (6 x 14C dates)
Oldest: 3140 ± 45
Youngest: 2900 + 40

1503–937
BCE

- - -

Current Wem Moss Pine 4330 ± 30
4100 ± 30

3015–2895
BCE
2860–2505
BCE

- - -

Hardy also recounted the discovery of a bronze looped palstave (axe) in 1927 CE by
Mr George Saywell whilst ‘digging turf’, and ‘lying on top of the roots of the old pine,
about 8 ft. from the surface’ [72] (p. 377). Typologically, this artefact dated to the Middle
Bronze Age archaeological period, ca. 1500 to 1000 years BCE, and the find spot was also
proximate to an earlier discovery (1889 CE) of a human ‘bog body’ [86]. The axe find,
in particular, provides intriguing evidence of human presence contemporary with the
bog-pine woodland, although to this author’s knowledge, no direct human impacts, such
as axe marks, have ever been found on pine macrofossils either here or further afield (UK
or elsewhere).

Hardy’s pine stump layer was initially dated to 2307 ± 110 BP (761–106 cal. BCE),
although the specific nature of the organic sample and stratigraphic information were
not provided [53]. Subsequently, dendrochronological investigations were undertaken
by Haslam who made ring-width measurements for 14 subfossil trees and constructed
a 96-year chronology, making observations on pine stump morphology, and also, on
their proximity to overlying Sphagnum macrofossils (a Sphagnum papillosum–Sphagnum
cuspidatum lawn community initiated ca. 2180 ± 50 BP or 397–3 cal. BCE), at a peat
depth of 40–44 cm [74]. Further dendrochronological studies were undertaken on subfossil
pine stumps revealed by peat cutting at varied locations throughout Fenn’s and Whixall
Mosses [13] and 6 radiocarbon assays on wood samples from dendrochronological records
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currently provide the best dating available for the Whixall Moss pine ‘layer’ (3140–2900 BP;
1505–930 cal. BCE) [76].
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Figure 7. The ‘classic’ date often linked to the Pine Decline of 4000 14C years BP or ca. 2835–2346 cal.
BCE [36] and the relative dating of P. sylvestris macro- and microfossils from (A) Shropshire (Salop)
and Cheshire—the Meres and Mosses region, (B) Lancashire and south Humberside, (C) Ireland
and (D) Scotland—N Scot refers to 11 sites providing dendrochronologically dated records from
Moir et al. [69] (Dating sources: [10,16,25,53,61–64,67–69,71,76,81,82,87], Drumaville—D. Brown pers.
comm., Wem Moss—this paper). 14C dating at Curlew Lane, Wem, Lindow and White Mosses
focussed on aging the youngest samples available; macrofossil analyses and dating were much more
extensive at White Moss (4-year research project); small diameter pine stumps from upper stratigraphy
at Lindow Moss (e.g., Figure 8—currently undated), are analogous to the final regeneration layers at
White Moss (WM—C). Comparisons of average ring-width indicate: wider rings and faster growth in
older tree-ring series (WM—A, oldest Lindow); narrower rings and more sensitive ring-width series
(WM—B, WEM, oldest Salop). Site locations are illustrated in Figure 3.

Wider Context

The pollen record from White Moss (Cheshire—Figure 3b) demonstrated that boreal
woodland dominated by P. sylvestris was likely to have occupied significant parts of the
Meres and Mosses region between 8625 ± 50 BP (SRR 3881: 7761–7544 cal. BCE) and
5890 ± 45 BP (SRR 3880: 4897–4616 cal. BCE); see the vegetation history summary in
reference [25] (Figure 5, p327), [87]. Discoveries of pine macrofossils at Davenham (mid-
Cheshire—Figure 3b) and at Curlew Lane (Lancashire—Figure 3a) are remnants of these
early-mid-Holocene woodlands, whose pre-eminence appeared to be checked shortly after
5890 ± 45 BP (4897–4616 cal. BCE) and again at 4280±45 (SRR 3879: 3022–2702 cal. BCE)
(White Moss pollen record from core T3.75) [25,87] (see Figure 7A).
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of peat containing bog-pine woodland at Lindow Moss, Cheshire (stem top broken by machin-
ery during mechanised peat extraction). Note the presence of seeker roots, a likely response to
prolonged waterlogging.

There has been considerable debate about the often-assumed extinction of native
Scots pine woodland throughout most of Britain and Ireland, and this is exemplified
in Shropshire. Pine pollen representation fell to background levels (ca. <1% TLP from
170 cm lake core depth upwards) at Crose Mere (5.5 km SW of Wem Moss—Figure 3b)
after 2310 ± 85 BP (763–164 cal. BCE, Q-1233) [78], whilst at Fenemere (11.5 km SSE of
Wem Moss—Figure 3b), a similar decline occurred at 1890 ± 50 BP (16–302 cal. CE, SRR-
2920) [79]. It has been suggested that this represented a dating discrepancy, due to pine
woodland persisting on more freely draining soils or ‘erroneous [at Crose Mere] due to
in-washed old carbon’ [88] cited by [74] (p. 121). The 14C age estimate (Q-1233), however,
centred on a lower core depth (c 200 cm) where small quantities of pine pollen were still
present [78] (p. 145), suggesting that the dates from Fenemere and Crose Mere might, in
fact, be broadly complementary.

Precise stratigraphic comparisons of key events in the pollen record are not only
compounded by the imprecision of 14C dating, but also by debates surrounding the levels
of pine pollen thought to be representative of local woodland. Initial criteria for the latter
have varied from 20–30% total land pollen (TLP) [36,67], as pine trees are wind-pollenated
and hence, copious producers of pollen [89,90]. Subsequently, these criteria have been
progressively revised downwards, for instance, with 5% TLP suggested by Bennett [91],
following the discovery of pine stomata in lake sediments with contemporaneous pine
pollen levels at 3–18% TLP [92]. Hall et al. [42] also found <2–3% pine pollen in peat
associated with in situ dendrochronologically-dated pine macrofossils, questioning the
wider applicability of previous research linking a pine pollen decline in northern Scotland
to the effects of Icelandic volcanism [41]. The volcanic impact debate was later elaborated
in a comprehensive review of the palynological evidence, although this failed to provide
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definitive answers [47]. In contrast, a well-replicated study from Scotland provided tanta-
lising evidence of local pine woodland demonstrated by the presence of pine stomata in
sediment from Loch an Amair and Dubh Lochan (Figure 3b), coinciding with pine pollen
abundance as low as 0.4% TLP, and as a result, potentially pushing back the date for the
first expansion of the native Caledonian pinewoods [70].

Whilst P. sylvestris has persisted as a native tree in its Scottish heartland, despite
human interference [93,94], a number of recent studies have thrown doubt on the complete
Holocene extinction of Scots pine elsewhere in Britain and Ireland. Analysis of topography,
pedology, and vegetation in northern England and southern Scotland suggested that pine
trees could have persisted in parts of these regions, despite a lack of preservational envi-
ronments, and therefore, of physical evidence [95]. In addition, palynological research in
the Burren, County Clare (western Ireland—Figure 3a) has provided possible evidence of
Scots pine survival throughout the later Holocene. An investigation of Aughrim Swamp
(Figure 3a) revealed continuous pine pollen representation to the present day (with one
small decline to 8% TLP) adjacent to mature pine woodland growing on limestone pave-
ment [59]. A subsequent core from the nearby Rockforest Lough (Figure 3a) demonstrated
sustained high levels of pine pollen (c. 40% TLP) from 1600 14C years BP to the present,
supported by historical documentary and macrofossil evidence (lake shore macrofossils
dating to ca. 3860 BCE, Neolithic; a lake core pine wood fragment and a pine needle (or
peat from a similar core depth—the paper lacked clarity in this respect) dated to ca. 840 CE,
early Medieval) [60]. Roche et al. concluded that the living trees were therefore likely
to be native, sustained in their karstic environment (free-draining substrate combatting
waterlogging elsewhere), and by local land ownership (Rockforest Estate) that prevented
the intensity of land clearance and tree removal that occurred elsewhere on the Burren.
These findings have, however, been questioned.

Other palaeoecological investigations from western Ireland have corroborated the
presence of the early Holocene pine woodland (Garrynagran, Figure 7C), the mid-Holocene
‘pine flush’ (macrofossils from Letterfrack and Derryeighter, Figure 7C), and pine pollen
ranging between 20–40% TLP, also noting the paucity of pine macrofossils after 4000 14C
years BP [61,96,97]. These studies have, however, also specifically referenced the research
at Rockforest, pointing out the possibility of long-distance pine pollen inputs, ‘taphonomic
processes’ connected with karst hydrology that might have biased the pollen data and
the limited macrofossil evidence (including possible discrepancies in the use of previous
macrofossil 14C dates). O’Connell and Molloy concluded that more substantive evidence
is required to confirm the survival of pine trees and woodland up to modern times [96]
(p. 23). Intriguingly, however, well-replicated palynological evidence from O’Connell et al.
also suggests a more protracted pine decline, with regional extinction of pine woodland
at ca. 3400 14C years BP and the ‘demise of pine as a minor woodland component’ after
ca. 2300 14C years BP, post-dating the existing macrofossil evidence [61] (p. 272 & p. 284,
Figure 7C).

In the Meres and Mosses region, a recent study of a peat core from Lin Can Moss
(Shropshire—17 km SW of Wem Moss—Figure 3b) has also revealed a continuous pine
pollen curve, although with low abundance (0.3–5.4% TLP), between 6060± (5198–4847 cal.
BCE) and 270 ± 30 BP (1510–1798 cal. CE) [79]. Sassoon et al. demonstrated the similarity
of Lin Can Moss pine record to previous palynological investigations in the Welsh Marches
(north-east Wales and western Shropshire), in contrast to the intermittent or fragmentary
representation of pine pollen elsewhere in Wales. As a consequence, Sassoon et al. specu-
lated that neighbouring hills and rocky outcrops, and possibly the wider area of the Welsh
Marches, could have been a refugial area for Scots pine, with ‘isolated trees [surviving] in a
mixed forest scenario’ [80] (p. 9), for reasons analogous to Rockforest in western Ireland.
These observations are of particular interest when considered alongside the macrofossil
record from Shropshire that not only includes the subfossil pine woodland at Wem Moss,
but also macrofossils post-dating 4000 14C years BP (Table 4, Figure 7A).
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The discussion has highlighted evidence for pine declines considerably later than
4000 14C years BP in the Meres and Mosses region of England and in western Ireland,
and also the possibility that living pine trees (in woodlands or as isolated individuals)
in various localities in Britain and Ireland may in fact be remnants of native populations.
The latter runs contrary to the standard interpretation that living pine trees (or increasing
pine pollen in upper peat stratigraphies) represent ‘romantic’ and other planting during
the later historic period, or twentieth century re-planting from imported stock [31,98].
The review in this paper of palaeoecological studies focusing on Scots pine in Britain
and Ireland highlights the need for future genetic studies on living pine trees in possible
refugial areas in Ireland, northern England and also the Welsh Marches. Modern ecological
studies on seeds and saplings originating from native Caledonian pinewoods have not
only generated genetic data, but also demonstrated subtle genetic variability, for instance,
between tree populations in the maritime west and the drier east of Scotland (including
better adaptations to waterlogging in wetter western areas) [99–101]. Despite the ‘large
and repetitive’ nature of the Scots pine genome, recent research has also been able to
differentiate Scottish and Finnish genotypes [102].

6. Conclusions

Analyses of subfossil pine stumps from Wem Moss produced two tree ring-width
chronologies spanning 198 and 208 years, respectively (dated by radiocarbon to 3015–2505 cal.
BCE), and these are likely to represent a continuum of mire-rooting woodland that died
off around 4000 14C years BP in response to climatic deterioration—a classic ‘Pine Decline’
scenario encountered in Britain and Ireland.

The extinction of Scots pine in Britain and Ireland at the Pine Decline, outside the areas
covered by today’s native Caledonian pine woodlands, has, however, been questioned
by ecological and palaeoecological studies from the Meres and Mosses region and further
afield. Parallel palynological investigations and dating of associated macrofossils from
western Ireland have demonstrated the possible survival of native pine trees at isolated
sites and the continuous presence of pine pollen at other isolated sites in the Welsh Marches,
has also highlighted this as a possible refugial area for pine. The review of previously dated
pine macrofossils undertaken in this paper lends additional support to these views, with
peatland complexes such as Fenn’s, Whixall, and Bettisfield Mosses demonstrably well-
suited to the persistence of bog pine woodland due to their larger geographical areas that
were capable of supporting more varied mosaics of mire vegetation and hydrology. Future
genetic comparisons of native Caledonian pine trees (Scotland) with other living trees
from areas such as western Ireland, the Welsh Marches, northern England, and southern
Scotland are recommended.

This research gives further credence to the survival of native Scots pine in isolated
localities in Britain and Ireland throughout the later Holocene and up to the present day,
also highlighting the difficulties associated in piecing together geographically disparate
vegetational records.
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35. Margielewski, W.; Krąpiec, M.; Kupryjanowicz, M.; Fiłoc, M.; Buczek, K.; Stachowicz-Rybka, R.; Obidowicz, A.; Pociecha, A.;
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