
Citation: Zhang, Y.; Wang, J. Cellular

and Molecular Mechanisms in

Idiopathic Pulmonary Fibrosis. Adv.

Respir. Med. 2023, 91, 26–48.

https://doi.org/10.3390/

arm91010005

Academic Editor: Sebastian

Majewski

Received: 16 November 2022

Revised: 6 January 2023

Accepted: 12 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Cellular and Molecular Mechanisms in Idiopathic
Pulmonary Fibrosis
Yihang Zhang 1,2 and Jiazhen Wang 1,3,*

1 Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan
Province and Education Ministry of People’s Republic of China, Henan University of Chinese Medicine,
Zhengzhou 450046, China

2 The First Clinical Medical College, Henan University of Traditional Chinese Medicine,
Zhengzhou 450046, China

3 Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
* Correspondence: jiazhen_wang@hactcm.edu.cn

Highlights:
What are the main findings?
• We reviewed the latest advances in aberrant molecular events and pathological alterations in

different cell populations in idiopathic pulmonary fibrosis.
• We comprehensively summarized the major inducers and signaling pathways of idiopathic

pulmonary fibrosis.

What is the implication of the main finding?

• It is of great significance to understand the pathological mechanism of idiopathic pulmonary fibrosis.
• To provide new inspiration for the prevention and treatment of idiopathic pulmonary fibrosis.

Simple Summary: Idiopathic pulmonary fibrosis is a global disease with unknown etiology. At
present, there is still a lack of effective treatment methods, and more in-depth research on this disease
is urgently needed. Based on this, we aim to summarize the molecular mechanism and pathological
changes of different cell subsets in IPF lung, and review the latest progress of various pro-fibrotic
signal transduction pathways in fibrosis, so as to provide key cells and pathways for future research
on pulmonary fibrosis, propose more meaningful research directions, and provide theoretical basis for
the study of idiopathic pulmonary fibrosis. It is of great significance to understand the pathological
mechanism and the prevention and treatment of the disease.

Abstract: The respiratory system is a well-organized multicellular organ, and disruption of cellular
homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead
to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there
is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated
cellular and molecular signals. Here, we review the advances in our understanding of the role of lung
tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune
cells, and endothelial cells. These advances summarize the role of various cell components and
signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further
study the pathological mechanism of the disease, provide new opportunities for disease prevention
and treatment, and is expected to improve the survival rate and quality of life of patients.

Keywords: idiopathic pulmonary fibrosis; alveolar epithelial cells; niche cells; cellular mechanisms;
molecular mechanism

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressively interstitial lung disease with
unknown etiology characterized by interstitial fibrosis, progressive decline of pulmonary
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function, dyspnea, and hacking cough [1]. Patients with IPF have a poor prognosis and
life quality with a median survival of 2 to 4 years after diagnosis and a higher mortality
rate than most patients with malignancies. The increasing morbidity and mortality of IPF
impose a severe economic burden on global healthcare [2,3]. The current clinical scheme for
IPF mainly includes pharmacologic and nonpharmacologic strategies. The former mainly
includes the antifibrotic drugs pirfenidone and nintedanib [4]. Although the two drugs
have a certain effect on delaying the decline of lung function, they cannot significantly
improve the survival and prognosis of the patients and are prone to developing drug
resistance and causing various side effects such as anorexia, vomiting, diarrhea, rash,
liver dysfunction, and atherosclerosis. The latter includes oxygen therapy, mechanical
ventilation, and lung transplantation. Among them, lung transplantation is currently the
most effective treatment for IPF, but only about half of the patients can survive for more
than 5 years after receiving lung transplantation. Moreover, due to the lack of donors, the
complexity of the surgery, and the high costs, very few patients can really benefit from lung
transplantation [5]. Therefore, it is necessary to understand the molecular pathogenesis of
IPF and explore potential therapeutic strategies to meet the unmet needs of IPF patients.

The pathological progression of IPF is a dynamic process involving complex interac-
tions among epithelial cells, mesenchymal stem cells (MSCs), fibroblasts, immune cells,
and endothelial cells. Single-cell RNA-sequencing analysis from multiple IPF samples
revealed that the proportion of airway epithelial cells increased in IPF, while the popu-
lation of alveolar epithelial cells decreased significantly [6–8]. Activated myofibroblasts
and invasive fibroblasts are gradually increased in IPF, and the expression of extracellular
matrix (ECM) genes in cells is increased [7,9]. Among the immune cells, the proportion
of alveolar macrophages, dendritic cells, and regulatory T cells increased in IPF, and the
number of monocyte-like cells and interstitial macrophages decreased [7,10]. Endothelial
cells are grouped differently, have different phenotypes, and have different proportions
of cells in IPF [11]. Compared with controls, MSCs in IPF exhibited reduced proliferative
capacity [12]. Cellular senescence, oxidative stress, endoplasmic reticulum stress, mitochon-
drial dysfunction, telomere shortening, and aberrant activation of the transforming growth
factor-β(TGF-β) pathway are all connected to imbalanced tissue homeostasis (Figure 1).
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Figure 1. Pathological changes in idiopathic pulmonary fibrosis. (A) Normally, various cells in the
lung work in their own right and work together to maintain lung function and function properly.
(B) When the lung is exposed to risk factors (e.g., cigarette smoke, genetic or epigenetic alterations, aging)



Adv. Respir. Med. 2023, 91 28

that cause repeated microdamage to the lung epithelium, inadequate metaplasia of epithelial cells,
disruption of the basement membrane, and imbalances in lung homeostasis, the balance between
lung and other environmental insults occurs. Aberrant vascular remodeling, epithelial–mesenchymal
crosstalk, fibroblast dysplasia, immune attenuation, provocation of profibrotic mediators, activation
of fibrotic pathways, deposition of extracellular matrix, and formation of fibrotic foci are induced
in this setting. Abbreviations: AT1, alveolar type I epithelial cells; AT2, alveolar type II epithelial
cells; ADI, alveolar differentiation intermediate; MSC, mesenchymal stem cells; EC, endothelial
cells; ER, endoplasmic reticulum; TGF-β, transforming growth factor-β; ECM, extracellular matrix;
EMT, epithelial–mesenchymal transformation; EndMT, endothelial–mesenchymal transition; VEGF,
vascular endothelial growth factor.

2. Alveolar Epithelial Cells in Pulmonary Fibrosis

An important contributor to the development of idiopathic pulmonary fibrosis (IPF) is
the alteration of the intracellular homeostasis of alveolar epithelial cells, which are mainly
composed of alveolar type I epithelial cells (AT1), alveolar type II epithelial cells (AT2) [13],
as well as abnormal basaloid cells, resulting in aberrant epithelial repair, myofibroblast
activation, and increased extracellular matrix deposition to form lung fibrosis [14].

2.1. Alveolar Epithelial Type I Cells

AT1 is morphologically flat and covers more than 95% of the surface area of the lung
epithelium, which together with the basement membrane, alveolar wall capillaries form
the air–blood barrier and are mainly responsible for gas exchange. Efficient gas exchange
relies on the intrinsic ion and fluid transport functions of AT1 cells [15]. In addition, AT1
expresses pro-inflammatory receptors, including toll-like receptor 4 (TLR4) and receptors
for advanced glycation end-products (RAGE) involved in innate immunity [16,17]. In
pulmonary fibrosis, AT1 has received relatively little attention because AT1 is generally con-
sidered to be a terminally differentiated cell that does not have the functions of proliferation
and differentiation itself [18,19]. However, in contrast to AT2, which is more responsive
to hyperoxic injury, AT1 cells rapidly shed after exposure to bleomycin (BLM)-induced
lung injury, and are completely lost during the subsequent fibrotic process [20]. There are
several lines of evidence supporting that AT1 cells may participate in pulmonary fibrosis.
RAGE, which is selectively expressed in AT1 cells and acts as a regulator of inflammation,
was found to either promote fibrosis or controversially repress the progression of lung fibro-
sis [21–24]. Caveolin-1, which encode a scaffold protein of caveolae and is mainly present in
AT1, could directly inhibit TGF-β signaling and frequently lost its expression in pulmonary
fibrosis [25,26]. Recently, the role of AT1 in alveologenesis and alveolar regeneration is
beginning to receive increasing attention. Studies have shown that Hopx+Igfbp2-AT1 cells
can be transdifferentiated into AT2 cells to participate in alveolar injury repair [27–30].
These studies have changed the view that AT1 is a terminally differentiated cell. Therefore,
the role of AT1 in pulmonary fibrosis needs to be further elucidated (Figure 2).

2.2. Alveolar Epithelial Type II Cells

AT2, defined as alveolar stem cells, has the ability of self-renewal and differentiation,
which produces pulmonary surfactant, reduces alveolar epithelial surface tension, and
prevents alveolar collapse. After alveolar epithelial cell damage, AT2 cells can rapidly
proliferate and differentiate into AT1 cells, thereby maintaining the integrity of alveolar
epithelial cells, which is necessary for maintaining alveolar homeostasis and promoting
alveolar regeneration [31]. Notably, a subset of AT2 cells expressing the transcriptional
target of Wnt signaling, Axin2, has been shown to play a leading role in alveolar regenera-
tion and repair, and can be rapidly mobilized, self-renewed, and differentiated into AT1
cells after injury [32]. Disruption of protein homeostasis, telomere damage, mitochondrial
dysfunction, and epigenetic changes lead to AT2 dysfunction, manifested as impaired stem
cell function, apoptosis, senescence, and pro-fibrotic signaling, which are closely related to
the development of IPF and which we will review in detail in this section.
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transport via aquaporins, ion transport via the cystic fibrosis transmembrane regulator and ATPases, 
and proinflammatory, pathway activating, immune, and other functions via a variety of protein re-
ceptors such as rage, which is localized to the basement membrane. Function is impaired or cells die 
when exposed to environmental insults. Abbreviations: RAGE, receptors for advanced glycation end-
products; MMP, matrix metalloproteinases; MAPK, mitogen-activated protein kinase. 
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Figure 2. Function of alveolar type I epithelial cells. AT1 in the lung is mainly responsible for gas
exchange, ion, and fluid transport, and can participate in cellular immunity. AT1 achieves fluid
transport via aquaporins, ion transport via the cystic fibrosis transmembrane regulator and ATPases,
and proinflammatory, pathway activating, immune, and other functions via a variety of protein
receptors such as rage, which is localized to the basement membrane. Function is impaired or cells
die when exposed to environmental insults. Abbreviations: RAGE, receptors for advanced glycation
end-products; MMP, matrix metalloproteinases; MAPK, mitogen-activated protein kinase.

During the initial injury phase, activated alveolar epithelial cells and recruited inflam-
matory cells release potent pro-fibrotic growth factors (e.g., TGF-β, tumor necrosis factor
α, platelet-derived growth factor PDGF) that induce injury and fibrogenesis [33]. These
growth factors, especially TGFβ, are involved in the damage and apoptosis of alveolar
epithelial cells, induction of epithelial–mesenchymal transformation (EMT) of alveolar
epithelial cells, activation and invasion of fibroblasts, and ECM deposition [34,35]. Human,
mouse, and rat alveolar epithelial cells display a pattern of mesenchymal gene expression
with the involvement of transcription factors when stimulated with TGFβ in vitro [34].
Sulforaphane (SFN) was found to enhance antioxidant capacity, reverse TGF-β-induced in-
terstitial changes, return cells to epithelioid morphology, and exhibit significant antifibrotic
effects on IPF patients, TGF-β-treated cell lines, and BLm-induced fibrosis in mice [36,37].
AT2 cells play a central role in the activation of TGFβ, which may be self-sustained by
elevated tension in the fibrotic lung [6]. Cell division cycle 42 (Cdc42) acts on the poly-
merization of actin in AT2 cells, and its deletion causes a sustained increase in mechanical
tension in AT2 cells, leading to activation of the TGF-β pathway, driving the comprehensive
development of fibrosis from the periphery to center, with low Cdc42 expression in IPF
patient samples [35,38]. Activation of TGF-β in AT2 induces the production of fibrosis,
which can be alleviated by inhibition of TGF-β transduction.

2.2.1. Protein Homeostasis Destruction

Stemness maintenance of stem cells depends on tightly controlled protein homeosta-
sis [39]. The role of the endoplasmic reticulum (ER) in vivo is to facilitate the folding and
transport of proteins to ensure the quality of proteins required for cellular homeostasis.
Protein misfolding triggers ER stress, leading to unfolded protein response (UPR), and
persistent ER stress causes cellular dysfunction and affects stem cell fate decisions [40,41].
The study found that during pulmonary fibrosis, ER stress marker aggregation and UPR
activation existed in AT2 cells. In BLM-injured mice, AT2 cells also exhibited ER stress,
and the ER stress activator tunicamycin exacerbates pulmonary fibrosis [42,43]. Deletion
of glucose-regulated protein 78 (GRP78), a key regulator of ER homeostasis, causes AT2
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cells to undergo ER stress, apoptosis, senescence, impaired stemness, and TGF-β/Smad
signaling activation; moreover, GRP78 is severely deleted in AT2 cells of IPF patients [44].
Wang further found that microcystin-leucine arginine (LR) can reduce TGF-β/Smad sig-
naling, regulate macrophage polarization, block EMT and myofibroblast differentiation,
and bind to GRP78 to inhibit the UPR signaling pathway, which contributes to alleviat-
ing pulmonary fibrosis [45]. ER stress and activation of UPR can cause AT2 dysfunction
and further promote the progression of pulmonary fibrosis, which can be alleviated by
inhibiting its activation.

2.2.2. Mitochondrial Damage

Mitochondria possess their own genetic material and genetic system. In addition to
providing energy for cells, mitochondria are also involved in processes such as cell pro-
liferation and differentiation, cell information transmission, and cell apoptosis, and have
the ability to regulate cell growth and the cell cycle. Impaired mitochondrial phagocytosis,
DNA damage, increased reactive oxygen species, growth disturbance, dysfunction, and
disturbance of homeostasis in AT2 cells all induce ER stress and programmed cell death
in AT2 cells, leading to the development of fibrosis [46,47]. Mitochondria were damaged
and deformed in AT2 cells in IPF compared with control lungs, showing enlargement,
swelling, and cristae rupture [48,49]. PTEN-induced putative kinase 1 (Pink1), an enzyme
that promotes phagolysis of damaged mitochondria, is downregulated in IPF patients,
and the degree of lung fibrosis is increased in Pink1-deficient mice, which is associated
with reduced mitophagy, accumulation of malformed mitochondria, ER stress, and in-
creased AT2 apoptotic senescence [43]. Activating transcription factor 3 (Aft3) is highly
expressed in fibrotic and aging lungs [48]. Conditional deletion of Aft3 in AT2 protects
mice from pulmonary fibrosis [50]. Mitochondrial (mt) DNA base excision repair enzyme,
8-oxoguanine-DNA glycosylase 1 (mtOGG1), can prevent mtDNA damage and apoptosis
in epithelial cells. It was found that OGG1-deficient mice had increased pulmonary fibrosis,
and IPF patients had increased lung mtDNA damage. mtOGG1 overexpression protected
mitochondrial DNA integrity in epithelial cells and weakened cell apoptosis [51]. Phos-
phoglycerate mutase family member 5 (PGAM5), an important regulator of mitochondrial
homeostasis in pulmonary fibrosis, impairs mitochondrial integrity at the functional and
structural levels. Ganzleben et al. found that PGAM5-deficient mice and human epithelial
cell fibrosis was significantly reduced [52]. These data suggest that improved mitochondrial
homeostasis has protective effects on AT2 cells and provides protection against pulmonary
fibrosis [53].

2.2.3. Telomere Shortening

Telomeres maintain the proliferative potential of stem and progenitor cells by provid-
ing a telomerase-dependent repeat expansion mechanism that protects chromosome ends
from replicative loss [54]. Telomere shortening impairs stem cell function and tissue regen-
eration [55]. Telomere shortening in the alveolar epithelium is a common factor in disease
progression, and telomere length measured in AT2 is uniformly reduced in IPF [56]. Telom-
eres are shorter in cells in fibrotic areas compared to non-fibrotic areas in IPF lungs [57].
IPF progression has been shown to be associated with mutations in the telomerase reverse
transcriptase family genes, telomerase RNA component (TERC) and telomerase reverse
transcriptase (TERT), which regulate telomere length and function [58]. Dysfunctions
such as telomere shortening resulting from gene mutations lead to cell cycle arrest, AT2
senescence, and impaired renewal capacity, which are risk factors for the development
of IPF [5,59,60]. Recent studies have found that POT1 p. (L259S) is defective in binding
telomere protrusion, nuclear accumulation, negative regulation of telomerase, and lagging
chain maintenance. Heterozygous mutations in this gene in IPF patients exhibit telomere
loss, lagging strand defects, DNA damage, and cellular senescence, and mutations in this
gene are thought to be a pathogenic driver of IPF [61]. Overexpression of E3 ubiquitin-
protein ligase FBW7 (F-box and WD40 repeat domain-containing 7, also termed FBXW7)
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inhibits the expression of telomere capping enzyme tripeptidyl peptidase 1 (TPP1), leading
to shortening of telomeres, senescence of AT2 cells, and promotion of the occurrence and
development of IPF [62]. Krüppel-like factor 4 (KLF4), a protein transcription factor, is
involved in a variety of cellular processes and plays an important role in the maintenance
of cellular stemness. The study found that the expression of KLF4 and TERT in IPF patients
and fibrosis mouse model AT2 is decreased, while the overexpression of KLF4 can increase
the expression of TERT and telomerase activity [63]. Therefore, maintaining the stemness
of AT2 stem cells by regulating telomere length and function may be a new way to alleviate
the development of fibrosis.

2.3. Abnormal Basaloid Cells

In recent years, studies using single-cell sequencing technology and lineage tracing
technology have found that there is a previously unknown alveolar differentiation interme-
diate (ADI, also called basaloid cells) population in the differentiation progress of AT2 cells
to AT1 cells during the repair of alveolar epidermal damage in mice [64,65]. ADI expresses
keratin 17/8 (KRT17/KRT8) but does not express the classic AT2 marker Surfactant Protein
C (SFTPC) and AT1 markers advanced glycosylation end-product specific receptor (AGER),
podoplanin (PDPN), and can further differentiate into mature AT1 cells [64]. In vivo and
in vitro functional experiments confirmed that intervention in the ADI-specific regulatory
network can promote or inhibit its differentiation into AT1 cells. Surprisingly, the popula-
tion of basaloid cells is significantly increased in IPF patients and highly enriched in areas of
severe fibrosis [7]. Furthermore, human basaloid cell populations can be transdifferentiated
into keratin 5 (KRT5)-positive basal stem cells and their progeny, which largely explains
why patients with IPF exhibit an alveolar-bronchialized phenotype [66]. In vitro organoid
and in vivo xenograft experiments further confirmed that human basaloid cell populations
can differentiate into normal alveolar epithelial cells or transdifferentiate into basal-like
cells to promote fibrosis in immunodeficient mice [66] (Figure 3).
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AT2 is damaged, pro-fibrosis factor TGF-β is released, which can affect the expression of pro-fibrosis
gene, produce endoplasmic reticulum stress, produce UPR, increase cell mechanical pressure, and
activate TGFβ-Smad2/3 pathway. Mitochondria in damaged AT2 were damaged and deformed, with
enlargement and swelling, ridge breakage, increased reactive oxygen species, inducing apoptosis and
senescence of cells. TERT and TERC mutated and telomere shortened and lost under the influence of
intracellular genes, which jointly promoted the development of pulmonary fibrosis. Abbreviations:
AT1, alveolar type I epithelial cells; AT2, alveolar type II epithelial cells; ADI, alveolar differentiation
intermediate; TGF-β, transforming growth factor-β; LR, leucine arginine; ER, endoplasmic reticulum;
UPR, unfolded protein response; ROS, reactive oxygen species; GRP78, glucose-regulated protein
78; SFN, sulforaphane; KLF4, Krüppel-like factor 4; TERT, telomerase reverse transcriptase; TERC,
telomerase RNA component; FBW7, F-box and WD40 repeat domain-containing 7; TPP1, tripeptidyl
peptidase 1; Aft3, Pink1, PTEN-induced putative kinase 1; OGG1, 8-oxoguanine-DNA glycosylase 1;
PGAM5, phosphoglycerate mutase family member 5.

3. Niche Cells in Pulmonary Fibrosis

Aberrantly activated alveolar epithelial cells may drive the fibrotic response through
interactions with niche cells. The proliferation of mesenchymal cells, activation of mes-
enchymal fibrocytes, recruitment of macrophages and innate lymphoid cells, and mes-
enchymal transition of endothelial cells can induce the formation of fibroblastic foci that
secrete excess extracellular matrix, leading to scarring and destruction of lung architecture.

3.1. Mesenchyma Stem Cell

Mesenchymal cells, also known as mesenchymal stem cells, are primitive seed cells
with self-renewal and pluripotent differentiation functions [67]. MSCs exist in the perivas-
cular niche in vivo and can participate in processes such as cell development, signal trans-
duction, and cell proliferation in vivo [68]. After local injury, MSCs can be activated and
recruited to the injured site, regulate local immune responses, inhibit activated fibroblasts
by secreting bioactive molecules (including anti-inflammatory cytokines and chemokines,
adhesion molecules, and growth factors), inhibit the apoptosis of epithelial cells and en-
dothelial cells, slow down epithelial–mesenchymal transition, promote epithelial tissue
repair, and establish a microenvironment that promotes regeneration [69,70]. Wnt is a
key regulator of MSCs and can be induced in IPF, and the sonic hedgehog (Shh) pathway
regulates stem cell differentiation. Through experiments, Cao et al. found that blocking the
Shh pathway or inhibiting the Wnt protein could prevent the transformation of MSCs into
fibroblasts and alleviate pulmonary fibrosis [67].

MSCs can promote tissue repair and immune regulation and inhibit pulmonary fi-
brosis through various cellular functions [71]. In terms of tissue repair, MSC-derived
extracellular vesicles (mEVs) can generate growth factors, proteins, lipids, mitochondria,
mRNA, miRNA, DNA, and organelles that can be transferred to damaged recipient cells,
thereby promoting re-epithelialization, metabolism, and angiogenesis, contributing to
repair [72]. Experiments have found that mEVs can restore adenosine triphosphate (ATP)
storage in recipient cells and repair cellular functions by transferring mitochondria from
MSCs to damaged cells [73]. In terms of immune regulation, mEVs can play a role by
reducing monocyte-induced inflammation, increasing macrophage phagocytosis, reduc-
ing neutrophil myeloperoxidase, and inhibiting T-cell proliferation [74]. The cell surface
protein Thy-1 is highly expressed in MSCs, mediates mEV expression of miRNAs (such
as 199a-3p, 630, 196-5p), and reduces lung fibrosis by inhibiting TGFβ activation and
differentiation of lung fibroblasts into myofibroblasts [75]. The levels of miR-199a-5p
in IPF patients and BLM-induced pulmonary fibrosis mice were significantly increased.
Shi et al. found that miR-199a-5p regulates MSC senescence in IPF patients by regulating
the Sirt1/AMPK signaling pathway, which can inhibit MSCs senescence and alleviate
fibrosis by downregulating miR-199a-5p expression [76]. MSCs exert immunomodulatory
anti-fibrotic effects by reducing the proportion of macrophages with pro-inflammatory
and pro-fibrotic cell phenotypes [77,78]. Demonstrated that simultaneous treatment with
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MSCs while inducing pulmonary fibrosis in mice with BLM, the model was reversed and
pulmonary inflammation as well as pulmonary fibrosis were attenuated [79]. In addition,
MSCs directly antagonize the fibrotic process by regulating the ratio of metalloproteinases
to tissue inhibitors, thereby reducing the content of collagen fibers, reducing collagen
deposition, and inhibiting pulmonary fibrosis [80,81].

Studies have shown that MSCs from IPF patients undergo aging, and the decreased
sedimentation capacity leads to DNA damage, mitochondrial dysfunction, and impaired
paracrine function, which increases pro-inflammatory responses and disease severity [82,83].
Based on the anti-fibrotic properties of MSCs, studies have shown that MSCs from different
sources can inhibit BLM-induced pulmonary fibrosis in mice and promote lung repair
through different mechanisms [84]. At the same time, MSC stem cell therapy has been used
in clinical trials, and under the condition of guaranteed safety, it has an obvious therapeutic
effect on mild to moderate IPF [79,85].

3.2. Fibroblasts

Fibroblasts, derived from embryonic mesenchymal cells, are widely distributed, par-
ticipate in tissue repair, and play a key role in regulating local responses. Activation of lung
fibroblasts involves a series of changes in cellular behavior, such as proliferation, migration,
and production of ECM, and ECM deposition is a fundamental feature of IPF [86]. The
ECM is mainly composed of collagen, elastin, and proteoglycan, which can increase lung
compliance, maintain lung tissue structure, and stabilize lung function in the equilibrium
state. In an imbalanced state, the composition of the ECM changes, and the amount of
fibrillar collagens, proteoglycans, as well as various glycoproteins, especially fibronectin,
increases, leading to tissue destruction or fibrosis [87–89]. Boyd et al. found that the
production of the ECM protease ADAMTS4 and inflammatory cytokines can induce lung
fibroblast damage and immune cell infiltration, which ultimately leads to lung dysfunc-
tion and lung microenvironment imbalance [90]. Heat shock protein 90 (Hsp90) regulates
multiple processes of fibroblast activation, and its biological activity depends on its ability
to bind and hydrolyze ATP. Studies have found that Hsp90 levels and related ATPase
activities are elevated in IPF lung and mouse pulmonary fibrosis models, and inhibition of
Hsp90 and related ATPase activities can attenuate fibroblast activation, migration, prolifer-
ation, invasiveness, attenuate ECM production, and alleviate pulmonary fibrosis, and its
inhibitors have been used in the clinical treatment of pulmonary fibrosis [91]. Reducing the
production of ECM and its proteases is essential to alleviate fibrosis.

After severe injury, fibroblasts prolifically expand and differentiate into myoblasts.
Activation of myoblasts, the main producers of ECMs, leads to excessive deposition of
ECMs, scar tissue hyperplasia, destruction of alveolar structures, and irreversible loss of
lung function [92]. Potential sources of activated myoblasts include mesenchymal stem
cells, epithelial cells, fibroblasts, endothelial cells, and pericytes, in which EMT is the main
process of myoblast formation. During EMT, epithelial markers E-cadherin and cytokeratin
decreased, while mesenchymal markers N-cadherin, vimentin, α-smooth muscle actin
(α-SMA) and fibronectin (FN) increased [93,94]. TGF-β signaling pathway promotes the
induction of EMT and the expression of fibrosis-related genes and is involved in the
progression of fibrosis. TGF-β mainly relies on the typical Smad signaling pathway: TGF-β
induces Smad2/3 phosphorylation to form a complex with Smad4 and translocation to the
nucleus to induce the expression of the transcription factor (Snail, Slug, Twist) and trigger
EMT. In addition, TGF-β signal transduction can also be used as a non-Smad signal pathway
to activate Ras-MAPK, PI3K-Akt, Par6-Smurf1, and other atypical EMT pathways [95,96].
Recent studies have found that abnormal iron metabolism leads to increased cytoplasmic
oxidative stress, which can lead to EMT through the activation of autophagy and the
expression of pro-fibrosis factors [97,98]. As more and more EMT pathways are being
discovered, we believe that inhibition of the TGF-β signaling pathway can inhibit EMT and
reduce myofibroblast activation, which may effectively assist the treatment of IPF.
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3.2.1. Telomere Shortening

Abnormally activated fibroblasts exhibit telomere shortening, metabolic changes, mito-
chondrial dysfunction, apoptosis resistance, autophagy defects, and senescence-associated se-
cretory phenotype (SASP) secretion, involving multiple molecular signaling pathways [99,100].
Telomere shortening leads to senescence and proliferative arrest of lung fibroblasts. Lung
fibroblasts isolated from IPF patients have shorter telomere lengths, and these cells exhibit
accelerated replicative senescence during primary culture [101], and telomere shortening is
more severe in fibroblasts from patients with genetic defects in telomere homeostasis [102].
Meanwhile, telomerase reverse transcriptase can increase the viability of lung fibroblasts,
which is beneficial to the development of fibrosis [103]. Piñeiro’s study found that fibrob-
last activation and collagen deposition were evident, and fibrosis was high in the lungs of
telomerase-deficient mice [55].

3.2.2. Metabolic Abnormality

Human metabolomic studies have shown that lung tissue from IPF patients exhibits
significant differences in energy metabolism, and metabolomic abnormalities in fibroblasts
lead to abnormal collagen synthesis and dysregulated airway remodeling [104]. Abnormal
glucose metabolism in fibroblasts and alterations in glycolysis contribute to the appearance
of features of pulmonary fibrosis [105]. In IPF lungs, upregulated TGF-β signaling in fi-
broblasts promotes glucose transporter 1 (GLUT1) mRNA expression through the Smad2/3
pathway, activates glycolysis, and the product lactate activates latent TGF-β by altering
microenvironmental PH, to meet the energy requirements of abnormal proliferation of
fibroblasts and ECM synthesis, and promote fibrosis [106]. Glutamine (Gln) metabolism is
required to promote amino acid biosynthesis, and in lung fibroblasts, TGF-β1 upregulates
glutaminase expression by activating Smad3 and p38-MAPK-dependent signaling to stim-
ulate glutamine breakdown, maintain cell growth and proliferation, and induce collagen
production [107]. At the same time, studies have found that α-ketoglutarate(α-KG), a
metabolite of glutaminase, can promote the active expression of jumonji domain-containing
protein-3 (JMJD3) in lung fibroblasts and combine with the apoptosis inhibitory proteins
X-linked inhibitor of apoptosis (XIAP) and survivin to promote the anti-apoptotic func-
tion of IPF fibroblasts [108]. Arginine is involved in collagen synthesis, apoptosis, and
ammonia removal, and inhibition of arginase can reduce collagen deposition and im-
prove lung fibrosis [109]. Nitrated fatty acids (NFA), agonists of nuclear hormone receptor
peroxisome-activated receptor γ (PPARγ), upregulate PPARγ and block TGFβ-induced
fibroblast differentiation, with anti-fibrotic effects [110]. In addition, glycine, arachidonic
acid, and succinic acid can all affect IPF through different pathways [111–113].

3.2.3. Mitochondrial Damage

Increased mitochondrial reactive oxygen species (ROS) production, mtDNA damage,
mitochondrial apoptosis, and senescence in lung fibroblasts can lead to abnormal mito-
chondrial function and promote fibrosis progression [114,115]. Studies have found that
mitochondria in IPF lung fibroblasts have structural abnormalities and an overall decrease
in mass and function [101,116,117]. Peroxisome proliferator-activated receptor γ coactivator
1-α (PGC1α) is a transcriptional coactivator that affects mitochondrial biogenesis pathways.
PGC1α expression is inhibited in human IPF fibroblasts. Knockout of PGC1α in lung fibrob-
lasts induced pulmonary fibrosis by enhancing fibroblast activation, senescence-related
gene expression, and soluble pro- and pro-senescence signals while reducing mitochon-
drial mass and function [118]. Signal transducer and activator of transcription 3 (STAT3)
plays a role in cell cycle progression, gene transcription, and mitochondrial respiration,
and is involved in coordinating cellular homeostasis, which is dysregulated during ag-
ing [119,120]. Mitochondrial respiration increased after oxidative-induced senescence in
fibroblasts, nuclear localization versus mitochondrial localization of STAT3 is observed,
and mitochondrial function is restored after STAT3 inhibition, suggesting that STAT3 may
serve as a potential molecular target to alter early senescence and restore normal fibroblast
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function [121]. In that sense, the structure, quality, and function of mitochondria can greatly
affect the function of fibroblasts and the development of IPF.

3.2.4. Apoptosis

Apoptosis, the autonomous and orderly death of cells controlled by genes to remove
unwanted or abnormal cells, has an important role in maintaining homeostasis and organis-
mal phylogeny. Studies have shown that fibroblasts are the most anti-apoptotic cells in the
lung [122], and fibroblasts in IPF lungs are resistant to apoptosis and have reduced apopto-
sis [101,123]. Cytochrome c, a key signaling molecule during apoptosis, was significantly
reduced in IPF fibroblasts. Luis found that this may be related to the reduction of mitochon-
drial electron transfer, oxygen consumption, and ATP synthesis [116]. A decrease in the
pro-apoptotic proteins Bak and Bax and an increase in the anti-apoptotic Bcl-2 family pro-
teins were found in IPF senescent fibroblasts [124]. Scutellarin can regulate the Bcl-2/Bax
signaling pathway, inhibit Bcl-2 expression, promote Bax expression, induce fibroblast
apoptosis, and alleviate lung fibrosis [125]. Fas is a transmembrane protein that binds to
FasL to initiate the transduction of apoptotic signals and induce apoptosis. Caveolin-1
(cav1) is involved in cell signaling in multiple cell types and functions as an anti-fibrotic
gene, and Cav-negative fibroblasts are highly resistant to Fas-induced apoptosis and have
a greater proportion of α-SMA positivity cells, and XIAP is a key component of fibroblast
resistance to Fas-induced apoptosis [122].

3.2.5. Autophagy

Autophagy can remove damaged or senescent cellular structures and maintain cel-
lular homeostasis, and senescence in IPF fibroblasts is closely related to autophagy defi-
ciency [126]. Fibroblasts have some classic autophagy pathways involved in the formation
of pulmonary fibrosis. PI3K-Akt-mTOR signaling and vimentin intermediate filaments
promote lung fibroblast proliferation and pulmonary fibrosis pathogenesis by inhibiting
autophagy. Janus kinase 2 (JAK2) and STAT3 inhibit autophagy, leading to abnormal
differentiation of fibroblasts and promoting fibrosis progression. Elongation factor-2 ki-
nase (eEF2K) and p38 MAPK activate autophagy and improve abnormal lung fibroblast
differentiation, exerting anti-fibrotic effects [127–131]. Autophagy-related biomarkers in
lung fibroblasts include apoptotic effector proteins Beclin1, LC3, and p62 [132,133]. As
a physiological autophagy inducer, spermidine enhances beclin-1-dependent autophagy
and autophagy regulators in IPF fibroblasts and in the lungs of fibrotic mice, significantly
reducing inflammation and collagen deposition [134]. Studies have shown that autophagic
activity is reduced in the lung tissue of patients with IPF [135,136].

3.2.6. Cellular Senescence

Cellular senescence is often accompanied by the generation of the senescence secretory
phenotype (SASP), which in IPF senescent fibroblasts includes pro-inflammatory cytokines
(e.g., TGF-, IL1β, IL-6, IL-18), chemokines (e.g., CXCL1), growth regulators (e.g., FGF, GM-
CSF), matrix metalloproteinases (e.g., MMP-2, MMP-9) [86,100]. IL-18 induces senescence of
lung fibroblasts in IPF by blocking the Klotho pathway [137]. Furthermore, the connective
tissue growth factor promotes senescence in lung fibroblasts by mediating the accumulation
of reactive oxygen species, resulting in the activation of p53 and p16 [138]. Marissa J. et al.
evaluated human and murine IPF samples versus control samples and found that p16
expression was consistent with IPF severity and that p16- and SASP-positive fibroblasts
aggregated in fibrotic lungs [139]. Recent studies have demonstrated that senescent or IPF
fibroblasts can inhibit the proliferation of alveolar epithelial cells, and senescent epithelial
cells in the process of IPF can also promote abnormal activation of lung fibroblasts by
increasing the expression of SASP [86,140]. The clearance of senescent cells and the blockade
of SASP are considered to be new ways of inhibiting IPF (Figure 4).
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Figure 4. Abnormal activation of fibroblasts in idiopathic pulmonary fibrosis. The abnormal activa-
tion of fibroblasts in the pathological formation of idiopathic pulmonary fibrosis mainly involves
the activation of TGF-β-related pathways JAK2-STAT3, pSmad2/3, and P38-MAPK. Mitochondrial
dysfunction leads to increased reactive oxygen species, SASP formation, and cell senescence. Metabo-
nomics such as abnormal metabolism of glucose and amino acids. Fas-FasL apoptosis pathway was
inhibited, the expressions of pro-apoptotic proteins Bak and Bax were decreased, and the expressions
of anti-apoptotic proteins Bcl-2 and XIAP were increased. The above work together to promote fibrob-
last proliferation and differentiation and induce fibrosis. Abbreviations: TGF-β, transforming growth
factor-β; SASP, senescence-associated secretory phenotype; ROS, reactive oxygen species; GLUT1,
glucose transporter 1; Gln, glutamine; α-KG, α-ketoglutarate; JMJD3, jumonji domain-containing
protein-3; XIAP, X-linked inhibitor of apoptosis.

3.3. Immune Cells
3.3.1. Macrophages

The capacity and specificity of the innate immune response are highly dependent on
the regulation and function of multiple cell types. Disruption of macrophage function
and excessive apoptosis can lead to abnormal repairs, such as abnormal activation of in-
flammatory mediators and growth factors, insufficient production of anti-inflammatory
macrophages, reduced response to pathogenic stimuli, impaired ability to promote reso-
lution, and impaired communication between macrophages and epithelial, endothelial,
fibroblast, and stem cells, all of which contribute to a persistent state of lung tissue damage
and promote the development of pathological fibrosis [141,142]. Macrophages can be di-
vided into two types according to anatomical location. One is alveolar macrophages (AMs),
which are innate immune cells and key regulatory effectors of tissue repair, regeneration,
and fibrosis [142]. AMs play a complex role in pulmonary homeostasis by maintaining
the concentrations of alveolar surfactant lipids and proteins. AMs also play an important
role in tissue damage control by removing extracellular debris and apoptotic cells and
producing anti-inflammatory cytokines such as IL-10 [143,144]. The phagocytic capacity of
AMs declines with age, leading to impaired clearance of pathogens in the lungs [145,146].
New studies have shown that histone deacetylase 3 (HDAC3) is a key epigenetic factor for
AMs maturation and homeostasis, and HDAC3-deficient AMs exhibit severe mitochondrial
oxidative dysfunction and cell death [147]. The other is interstitial macrophages (IMs),
which play an important role in immune regulation [148]. IMs are involved in the abnormal
activation of fibroblasts that produce ECM, an important driver of fibrosis. Macrophages
are important producers of matrix metalloproteinases (MMPs), which can degrade ECM,
but some of them, such as MMP12, have bidirectional regulation on ECM formation. IL-13
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can promote fibrosis by increasing macrophage metalloelastase activity [149,150]. The acti-
vating protein-1 (AP-1) protein can activate or repress gene transcription and participate
in the development of various chronic diseases by regulating cellular processes. Ucero
et al. found that the AP-1 transcription factor Fra-2 can specifically control the paracrine
profibrotic activity of macrophages through the transcriptional target ColVI. Fra-2 trans-
genic (Fra-2Tg) mice exhibit spontaneous pulmonary fibrosis, and administration of Fra-2
inhibitors reduces ColVI expression and improves fibrosis in Fra-2Tg mice and a mouse
model of pulmonary fibrosis [151]. Recent studies have shown that SARS-CoV-2 can
trigger a pro-fibrotic transcriptional phenotype in macrophages and induce pulmonary
fibrosis [152].

3.3.2. Lymphocytes

Lymphocytes are an important cellular component involved in the immune response
function of the body and play an important role in resisting external infections and mon-
itoring cell variation in the body. According to their migration, surface molecules, and
functions, they can be divided into innate lymphocytes, T lymphocytes (T cells), B lym-
phocytes (B cells), and natural killer (NK) cells. Innate lymphocytes (ILCs) interact with
epithelial cells, T cells, and myeloid cells in the lung to form an immune system net-
work [153]. ILCs are divided into three subgroups, in which ILC2s play a key role in
lung homeostasis, lung repair, inflammation, and immune response processes, and their
cellular dysfunction affects the progression of IPF [154]. Regnase-1 is considered to be
a key transcriptional regulator of the pro-fibrotic function of ILC2s and can inhibit the
mRNA expression of Gata3 and Egr1, the transcription factors that regulate fibrosis genes.
Regnase-1 deficiency can lead to spontaneous proliferation and activation of ILC2s in the
lung, enhancing the degree of fibrosis [155]. IL-5 produced by ILC2s can also play a role in
preventing lung injury or mediating repair. Hrusch et al. found that the expression of the
inducible T-cell costimulatory molecule (ICOS), which is important for maintaining lung
barrier function, was low and reduced ILC2s in IPF patients and the BLM-induced murine
fibrosis model, while mouse mortality was reduced after treatment with IL-5 [156]. These
data indicate that the immune regulatory function of ILC2s plays a role in relieving the
development of fibrosis.

3.3.3. T Cells

Among T cells, the role of Th1, Th2, and Th17 is the most studied in relation to
pulmonary fibrosis. Th1 cells and their secreted products are considered anti-fibrotic,
while Th2 responses lead to tissue damage and produce pro-fibrotic effects [157]. Th2
cell-derived cytokines, including IL-31, contribute to inflammatory and fibrotic remodeling
in lung tissue. The expression of IL-31 is elevated in human IPF lungs, and blockade
of IL-31 signaling inhibits collagen deposition, attenuates the decline in lung function,
and improves pulmonary fibrosis [158]. Th17 cells produce cytokines, such as IL-17, that
stimulate ECM production, collagen deposition, regulate TGF-β signaling, and induce
pulmonary fibrosis [159]. Studies have found that Th17 is the largest T-cell subset expressing
programmed cell death 1 (PD-1), and PD-1+ Th17 cells exist in pulmonary fibrosis of
different etiologies. PD-1 exerts profibrotic effects by enhancing STAT3 expression to
produce profibrotic cytokines, such as TGF-β and IL-17A [159,160]. T-cell immunoglobulin
domain and mucin domain-3 (TIM-3) is mainly expressed on the surface of activated Th1,
Th17, and macrophages, and is a novel immunomodulatory protein of the TIM family.
Experiments found that the expression of TIM-3 was significantly increased in fibrotic
lungs. Overexpression of TIM-3 can induce macrophages to secrete more TGF-β1 and IL-10,
aggravating the pathological changes in pulmonary fibrosis, and regulating the expression
of TIM-3 can regulate the development of pulmonary fibrosis [161]. The influence of
different subsets of T cells on IPF needs more research and exploration.
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3.3.4. B Cells

The B cells represent another branch of the adaptive immune system. Multiple studies
have demonstrated increased B cell activation in IPF lungs [162–164]. Activation of B
cells through pattern recognition receptors (PRRs) promotes the release of inflammatory
cytokines, chemokines, and metalloproteinases, contributing to the development of pul-
monary fibrosis. CpG and β-glucan stimulation of B cells through PRRs leads to activation
of the mTOR pathway, increased fibroblast migration and aberrant activation, and promotes
inflammatory and fibrotic changes in IPF patients [165].

3.4. Endothelial Cells

Endothelial cells (ECs) are one of the most important cellular components of blood
vessels and can synthesize and secrete mediators, such as chemokines and lipid media-
tors, which play a key role in angiogenesis, regulating immune responses, maintaining
tissue integrity, barrier function, and preserving cellular communication [166]. Abnormal
angiogenesis is a significant pathological feature of IPF. Vascular endothelial growth factor
(VEGF) can play a role in angiogenesis, anti-inflammatory, alveolar epithelial growth, and
proliferation, preventing epithelial and endothelial cell apoptosis to promote the repair
after lung injury and inhibit pulmonary fibrosis [167]. Studies have found that VEGF
expression is reduced in IPF patients and mouse models, and VEGF overexpression can
reduce mortality in mice with pulmonary fibrosis [168]. In addition, different subtypes of
VEGF have different regulatory effects on IPF, such as increased expression of VEGF-A165b
in IPF, and anti-VEGF antibody CBO-P11 can significantly reduce BLM-induced pulmonary
fibrosis [169].

ECs were divided into multiple subsets. By single-cell RNA sequencing analysis,
the subpopulation with high C-X-C motif chemokine ligand 12 (Cxcl12) expression and
low nitric oxide synthase 3 (Nos3) expression showed a pro-fibrotic phenotype that was
enriched in biological processes related to lung injury and fibrosis, suggesting its role in
recruiting monocytes, inducing fibroblast proliferation, and promoting the ECM, and may
play a key role in pulmonary fibrosis through potential cross-linking with AMs and stromal
cells [11]. In contrast, the subgroup with high Nos3 expression and low Cxcl12 expression
was denser in the control lung, expressing its role in regulating physiological functions
such as cell adhesion, proliferation, and the injury repair process [170].

Endothelial-mesenchymal transition (EndMT) is an important process of fibrosis devel-
opment in IPF. During EndMT, ECs lose the expression of vascular endothelial cadherin and
other specific markers, obtain fibroblast-like mesenchymal phenotype to express α-SMA,
vimentin, and type I collagen, which are further transformed into fibroblasts and promote
the development of fibrosis [92,94]. Jia et al. found that ECs decreased in BLM-induced
lung fibrosis, while fibroblast marker proteins increased. scRNA-seq revealed that genes
complement C3a receptor 1 (C3ar1) and galectin-3, which play a key role in EC dynamic
transition, were ubiquitously expressed by ECs in BLM-induced lung fibrosis, and ECM
deposition was reduced and lung fibrosis was relieved after inhibition of this gene expres-
sion [171]. Sterol regulatory element-binding protein 2 (SREBP2) can play a role in IPF by
modifying the EC phenotype. The expression of SREBP2 increased in lung samples of IPF
patients, and SREBP2 overexpression induces EndMT, leading to activation of TGF and
Wnt signaling, increased ECM deposition, and aggravation of pulmonary fibrosis [172]
(Figure 5). By this token, it seems that inhibiting the transformation of EC into fibroblasts
by hindering the EndMT process can slow the development of IPF.
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Figure 5. Role of niche cells in idiopathic pulmonary fibrosis. Niche cells play different roles in
the occurrence and development of idiopathic pulmonary fibrosis. (A) MSC-derived extracellular
vesicles (mEV) produce a variety of growth factors and genetic material, transfer to damaged cells
to repair cellular functions, and regulate intracellular signaling pathways (TGF-β, Sirt1/AMPK)
to play an immunomodulatory role. (B) Immune cells have bidirectional regulatory effects, and
their derived cytokines (IL-13, IL-10, and IL-17A) can not only promote the development of fibrosis
through the activation of TGF-β, Sirt1/AMPK, mTOR, and other pathways but also play a role
in immune regulation, tissue repair, and degradation of ECM. (C) The role of endothelial cells is
mainly reflected in barrier function and cell communication. VEGF promotes lung repair after injury,
but its different subtypes have different regulatory effects on IPF. For example, subgroups with
high expression of Cxcl12 and low expression of Nos3 show pro-fibrosis phenotype. Endothelial–
mesenchymal transition is an important process in the development of fibrosis. In this process,
C3ar1 and galectin-3 are the key genes, TGF and Wnt signals are activated, ECM deposition is
increased, and pulmonary fibrosis is aggravated. Abbreviations: TGF-β, transforming growth factor-
β; ECM, extracellular matrix; AMPK, adenosine 5′-monophosphate (AMP)-activated protein kinase;
VEGF, vascular endothelial growth factor; EndMT, endothelial–mesenchymal transition; PRR, pattern
recognition receptors; MMP, matrix metalloproteinases; TIM-3, T-cell immunoglobulin domain and
mucin domain-3; PD-1, programmed cell death 1; SREBP2, sterol regulatory element-binding protein
2; C3ar1, C3a receptor 1; Cxcl12, C-X-C motif chemokine ligand 12; Nos3, nitric oxide synthase 3.

4. Cellular Crosstalk

In conclusion, in the process of IPF development, different cells have their own roles
(Table 1), and intercellular crosstalk is ubiquitous. As one of the cells that play a major
role in IPF, once the alveolar epithelium is damaged, AT2 proliferates and differentiates
into AT1, which can secrete a variety of cytokines and chemokines while repairing the
damage, stimulate the recruitment and activation of immune cells at the injured site, and
promote the abnormal activation of lung fibroblasts and the transformation of myofibrob-
lasts [45,173,174]. Fibroblasts are mainly transformed from epithelial cells, mesenchymal
cells, and endothelial cells through EMT and EndMT pathways [94]. Dysfunctional fibrob-
lasts, in turn, inhibit the proliferation and differentiation of alveolar epithelial cells, induce
inflammation in the cellular microenvironment through the secretion of pro-inflammatory
cytokines, promote the accumulation of immune cells, and impede tissue repair [175,176].
The dysfunction of immune cell function and excessive cell apoptosis can lead to abnormal
repair and damage of the immune network, resulting in communication barriers between
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epithelial cells, endothelial cells, fibroblasts, and stem cells, leading to persistent injury
of lung tissue and promoting the development of pathological fibrosis [141,165]. ECs
transform into mesenchymal cells and further into fibroblasts during EndMT. Endothelial
cell dysfunction leads to irreversible vascular remodeling and increased vascular resistance
in fibrosis, leading to the development of pulmonary hypertension, promoting the trans-
formation into mesenchymal cells, and increasing fibrogenesis. Its fibrogenic subgroup
can recruit immune cells, crosslink stromal cells, induce fibroblast proliferation, promote
ECM deposition, and promote the development of fibrosis [11,177]. MSC can inhibit ac-
tivated fibroblasts, inhibit apoptosis of epithelial cells and endothelial cells, slow down
epithelial–mesenchymal transformation, regulate immune cells to play their role in immune
regulation, promote tissue repair, promote microenvironment regeneration, and alleviate
fibrosis through derived extracellular vesicles and secretion of cytokines [69,178].

Table 1. Effects of various cells in IPF.

Cells Function and Mechanism Effects in Lung Disease Ref.

AT1
Gas exchange, Ion and liquid

transport, Congenital
immunity

Compositional gas barrier, Involved in
inflammation [15–17]

AT2 Self-renewal and
differentiation, Damage repair

Impaired stem cell function, Pro-fibrotic
signaling, ER stress, Telomere attrition,

Mitochondrial dysfunction, Differentiate
into fibroblasts

[31,33,39–41,46,47,54–56]

Abnormal basaloid
cells Transdifferentiation Alveolar bronchogenic phenotype [64,65]

MSC
Self-renewal and

differentiation, Damage repair,
Immunoregulation

Secreted bioactive molecules, Inhibited
fibroblast activation, Inhibited cell

apoptosis, Reduced
epithelial-mesenchymal transition

[67–71]

Fibroblasts Tissue repair

ECM deposition, Differentiate into
myoblasts, Telomere shortening,

Metabolic abnormality, Mitochondrial
damage, Resistance to apoptosis,
Autophagy, Cellular senescence

[86–89,92–96,99,100,104,114,
115,122,123,126]

Immune Cells Damage repair,
Immunoregulation

Promote the release of inflammatory
factors, ECM deposition/Degradation

of ECM
[141,142,153,154,157,162–164]

ECs Angiogenesis, Damage repair,
Immunoregulation

Anti-inflammation, Inhibited cell
apoptosis/Differentiate into fibroblasts [92,94,166,167]

Abbreviations: AT1, alveolar type I epithelial cells; AT2, alveolar type II epithelial cells; MSC, mesenchymal stem
cells; ECs, endothelial cells; ER, endoplasmic reticulum; ECM, extracellular matrix.

5. Discussion and Perspectives

Idiopathic pulmonary fibrosis is a global disease with an unknown etiology that has
been widely explored. In recent years, our insights into the pathogenesis of IPF have
been profoundly revolutionized by the use of emerging technologies such as single-cell
sequencing. This review summarized the molecular mechanism and pathological changes
in different cell subsets in the IPF lung, highlighting that aging, apoptosis resistance, au-
tophagy defects, organelle dysfunction, metabolic abnormalities, and epigenetic changes
are the main inducing factors of IPF, whereas the TGF-β/Smads pathway, Fas/FasL apop-
totic pathway, and PI3K/Akt signal transduction pathway also play important roles in the
development of IPF. This complex network is jointly involved in the progression of IPF
disease, which is of great significance for understanding the pathological mechanism of
the disease and the prevention and treatment of the disease. In the future, we will focus
on the regulation mechanism of TGF-β-related pathways and the effect of intercellular
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communication on fibrosis, especially the effect of niche cells on the maintenance of alve-
olar stem cell function. In the future, the challenge will be to regulate cell morphology
and function with pro-fibrotic signaling pathways in vivo, combined with targeted cells
and key pathway therapeutic drugs, hoping to bring safe, novel, and effective treatment
opportunities for idiopathic pulmonary fibrosis.
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