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Abstract: The thalamus, and its projections to the cerebral cortex, are crucial for regulating sleep
rhythms, such as sleep spindles, and for maintaining arousal and sleep homeostasis. Moreover,
they play a significant role in memory, executive functioning, and attention. Altered thalamocortical
circuitry caused by vascular lesions affects sleep–wake architecture and may contribute to cognitive
deficits observed in thalamic stroke patients. This review summarizes the biology of the thalamus
and current knowledge regarding the impact of thalamic circuitry on sleep regulation and cognition,
drawing from clinical and pre-clinical studies. Furthermore, deep brain stimulation and transcranial
magnetic stimulation are discussed as possible therapeutic approaches targeting thalamic circuits.
Understanding the role of the thalamus in sleep and cognition opens new avenues for developing
novel therapeutic strategies to improve sleep and cognitive functions in affected individuals.

Keywords: thalamus; cognitive functioning; sleep; memory; sleep spindles; slow waves; attention;
arousal; stroke; thalamic stroke

1. Introduction

Cognition refers to the ability of the brain to perceive, identify, memorize, and re-
member complex stimuli as a fundamental aspect of brain function. Conversely, cognitive
dysfunction is an umbrella term covering deficiencies in any cognitive domain (e.g., mem-
ory), usually defined as a decline in neuropsychological performance [1].

Cognitive functioning is linked to demographic, developmental, genetic, cardiovascu-
lar, and metabolic profiles, with cognitive dysfunction being most common in neurological
and psychiatric illnesses including brain injury, progressive neurological diseases, and
depression [2,3]. Cognitive dysfunction also manifests in diagnostically healthy individuals,
for example after sleep deprivation [4].

Sleep is another factor that is related to cognition and cognitive dysfunction: sufficient
sleep is necessary for normal cognitive performance, whereas sleep–wake disorders (SWD)
are associated with cognitive dysfunction [4]. While the specific functions of sleep are still
a matter of ongoing research, they may include memory consolidation, brain clearance,
anabolism, and plasticity [5,6]. Indeed, clinical studies have demonstrated the negative
impact of SWD (i.e., insomnia, sleep-disordered breathing (SDB), daytime dysfunction,
rapid eye movement (REM), sleep behavior disorder) and alterations in sleep duration on
cognitive abilities [7–9].
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Several brain circuits have been identified as being particularly significant for sleep–
wake and cognition. They include the reticular activating system (arousal, attention, sleep–
wake transitions, and circadian rhythms [10]), the cortical–hippocampal–cortical circuit
(sleep-dependent memory consolidation [11,12]), the basal forebrain circuit (REM sleep,
cortical activation, attention [13–15]), and the prefrontal–amygdala circuit (sleep-related
emotional reactivity, attention [16–18]).

Emerging research provides compelling evidence for the crucial role of sleep in plastic-
ity and memory consolidation [19–24]. Through a dynamic interaction between hippocam-
pal (HC) and neocortical networks, new memories, acquired during wakefulness, transform
into stable long-term representations during sleep. During NREM sleep, information flows
via complex loops characterized by the co-occurrence of slow waves (transient oscillatory
events between 1 and 4 Hz), spindles (oscillations between 10 and 16 Hz), and hippocampal
ripples. This process optimizes plasticity [25] and leads to long-term synaptic modifications,
often in a region-specific manner. Slow waves and spindles are known to be generated
and modulated by thalamocortical loops, which rely on a delicate balance of excitation and
inhibition in thalamic and cortical circuits. Furthermore, the coupling of hippocampal and
neocortical networks requires interregional cross-frequency coordination, incorporating
sleep oscillations such as slow waves and spindles in thalamocortical circuits, along with
hippocampal ripples driven by hippocampal–entorhinal cortex synaptic activity [26,27].
Despite accumulating evidence, gaps still exist in our understanding of the mechanisms
supporting memory consolidation. These mechanisms might include the propagation of
slow oscillations propagating from the anterior to the posterior cortex and the consistent
occurrence of spindles in centroparietal regions.

In summary, sleep, as an essential physiological process, has a paramount impact on
brain functioning. Impaired sleep may lead to cognitive dysfunction and impede restorative
processes, potentially contributing to chronic conditions. Recognizing the importance of
sleep and addressing SWD is crucial for sustaining optimal cognitive function and overall
well-being.

This review focuses on the thalamus and its associated neuronal circuits, with the aim
of providing a current synopsis of their role in sleep and cognition. Studying thalamic
lesions enables researchers to follow an experiment of nature that offers a unique view
for investigating sleep and cognition. Therefore, case–control studies involving patients
with isolated thalamic stroke were analyzed to determine the impact of thalamic vascular
lesions on sleep and cognition in humans. Additionally, the article explores the function of
thalamic circuits based on experimental studies. Finally, prospective therapeutic approaches
targeting the thalamus are discussed.

2. Thalamus and Anatomical Vascular Territories

The thalamus of mammals encompasses several groups of nuclei with predominant
specialized roles, including the anterior nuclei (cognition, sleep), medial nuclei (cognition,
sleep), ventral and lateral nuclei (motor and sensory processing), geniculate nuclei (vision
and hearing), pulvinar (attention and visuo-spatial orientation), and intralaminar nuclei
(pain and spatial orientation) [28–31]. The evolutionary development of the forebrain,
including the thalamus, occurred independently in various groups of vertebrates [32].
Nonetheless, mammals share a considerable proportion of structures (Figure 1A). The tha-
lamus is densely interconnected with the cerebral cortex in primates, forming reciprocal
relationships critical for consciousness, perception, and cognition [33].
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Figure 1. The thalamus in humans. (A) A 7T T1-weighted MRI of the human thalamus and main 

thalamic nuclei. Main thalamic nuclei across species: (i) anatomical parcellation from the human 

thalamus (adapted from [31]. (ii) Salamander (adapted from Wicht, 1988 [34]), and (iii) mouse 

(adapted from Jankowski, 2013 [35]) and human (adapted from Mai & Majtanik, 2017 [36]). (B) Vas-

cular supply of the thalamus. (C) Thalamic vascular territories. Abbreviations: A—anterior, CL—

centrolateral, CM—centromedial, ET—eminentia thalami, Gl—lateral geniculate, Gm—medial ge-

niculate, IL—intralaminar, LD—laterodorsal, M—medial, MD—mediodorsal, PF—parafascicular, 

Pua—pulvinar anterior, Pul—pulvinar lateral, Pum—pulvinar medial, R—reticularis, VA—ventral 

anterior, VLa—ventrolateral anterior, VLp—ventrolateral posterior, VPLa—ventroposterolateral 

anterior, VPLa—ventroposterolateral posterior, VPM—ventroposteromedial. 

Although specificities in connectivity or activity exist between species, these differ-

ences in complexity are thought to fulfill needs in the physiological regulation of each 

species. The pulvinar, for example, is the largest thalamic nucleus in primates, and it has 

evolved to be particularly large and complex in humans compared to other mammals [28]. 

The causes for this development are most likely related to the primates’ unique behavioral 

and cognitive abilities (e.g., visual information processing, coordination of responses to 

visual stimuli, and integration of visual data with other sensory modalities [37,38]). How-

ever, the precise roles of the pulvinar are still being researched. Similarly, the human pre-

frontal cortex is markedly larger than that of other primates and rodents and may be 

Figure 1. The thalamus in humans. (A) A 7T T1-weighted MRI of the human thalamus and main
thalamic nuclei. Main thalamic nuclei across species: (i) anatomical parcellation from the human tha-
lamus (adapted from [31]. (ii) Salamander (adapted from Wicht, 1988 [34]), and (iii) mouse (adapted
from Jankowski, 2013 [35]) and human (adapted from Mai & Majtanik, 2017 [36]). (B) Vascular supply
of the thalamus. (C) Thalamic vascular territories. Abbreviations: A—anterior, CL—centrolateral,
CM—centromedial, ET—eminentia thalami, Gl—lateral geniculate, Gm—medial geniculate, IL—
intralaminar, LD—laterodorsal, M—medial, MD—mediodorsal, PF—parafascicular, Pua—pulvinar
anterior, Pul—pulvinar lateral, Pum—pulvinar medial, R—reticularis, VA—ventral anterior, VLa—
ventrolateral anterior, VLp—ventrolateral posterior, VPLa—ventroposterolateral anterior, VPLa—
ventroposterolateral posterior, VPM—ventroposteromedial.

Although specificities in connectivity or activity exist between species, these differ-
ences in complexity are thought to fulfill needs in the physiological regulation of each
species. The pulvinar, for example, is the largest thalamic nucleus in primates, and it has
evolved to be particularly large and complex in humans compared to other mammals [28].
The causes for this development are most likely related to the primates’ unique behavioral
and cognitive abilities (e.g., visual information processing, coordination of responses to vi-
sual stimuli, and integration of visual data with other sensory modalities [37,38]). However,
the precise roles of the pulvinar are still being researched. Similarly, the human prefrontal
cortex is markedly larger than that of other primates and rodents and may be shaped by
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human-specific executive functions, emotions, and social interactions [39]. Additionally,
neuronal firing patterns may vary between rodents and humans, reflecting subtle differ-
ences in sleep–wake cycles. For example, the quicker sleep–wake cycle in rodents might
correspond to faster shifts in neuronal activity in the hypothalamus [40–42] in response to
metabolic need, which differs between species.

In terms of vasculature, the thalamus is predominantly supplied by small vessels
originating from the posterior communicating artery and the P1 and P2 segments of the
posterior cerebral artery [43] (Figure 1C). Despite the wide variation, thalamic vascular
supply is categorized into anterior, paramedian, inferolateral, and posterior territories [44].
The vascular supply of the thalamus in rodents follows similar principles. In mice, for ex-
ample, the thalamus is mostly supplied by the branches of the posterior cerebral artery;
however, the exact distributions of small branches may vary [44]. Furthermore, it should
be noted that the anterior choroidal artery is responsible for supplying the dorsal part of
the thalamus in mice, whereas this vascular supply is not observed in humans [44].

Despite the challenges arising from the lack of standardized nomenclature, particularly
with respect to the lateral nuclei, discrepancies in anatomical variation, the impact of
age-related microstructural degradation [36], and interspecies variations, investigations
involving human and animal subjects provide valuable insights into understanding the
role of the thalamus in sleep and cognition. Table 1 summarizes case–control studies in
thalamic stroke patients, whereas Box 1 and Figure 2 illustrate the principles applied to the
models of thalamic stroke in rodents.

Box 1. Stroke animal models.

The validation of animal models used to study brain disorders relies on (1) the ability of those models to re-capitulate human
disorders and physiological response to treatments; (2) the level of similarity between their symptomatology and that found in
humans; and (3) the analogy between the etiology of the disorder in mice and in humans. During the history of stroke research,
several models of this pathology have been developed, all pre-senting advantages and disadvantages. Stroke animal models
offer the opportunity for invasive measurements and interventions that are not feasible in human studies. Techniques such as
electrophysiology, optogenetics, pharmacological manipulations, and recently stroke lesions in the thalamus (Figure 2) can provide
detailed in-sights into thalamic activity and its impact on sleep and cognition. Lastly, animal models facilitate longitudinal and
developmental studies, enabling the investigation of dynamic changes in thalamic structure and function over time from the onset of
the stroke. Moreover, animal models permit the study of the thalamic vasculature, providing insights into the relationship between
thalamic blood flow, neuronal activity, circuit plasticity, and cognitive processes. By leveraging these advantages, animal models play
a crucial role in advancing our under-standing of the thalamus and its contributions to sleep, cognition, and vascular dynamics.
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Table 1. The overview of case–control studies in thalamic stroke (TS) patients compared to the control group investigating sleep and cognitive functioning.

Reference TS Control Time
Post-Stroke Sleep Symptoms Sleep

Assessment
Sleep

Alterations
Cognitive

Assessment
Cognitive Domains

Affected

Santamaria et al.,
2000 [45] Unilateral TS N = 13

Age- and sex-
matched

volunteers
N = 18 7–21 dps

Hypersomnolence,
daytime sleepiness,

altered level of
consciousness

PSG ↓ TST, ↓ NREM2,
↓ SS density - -

Hermann et al.,
2008 [46] Paramedian TS N = 31

Age-matched
patients with

PNS
N = 12 5–30 dps

Hypersomnolence,
psychomotor

slowing
PSG

↑ NREM1,
↓ NREM2,
↓ SS density,
↓ SS power

Attention, executive
functioning, verbal

memory, visual memory,
object naming

Attention, executive
functioning, verbal and

visual memory

Danet et al.,
2015 [47]

Unilateral
left TS N = 12

Age- and
education-
matched

volunteers

N = 25 <90 dps - - -
Executive functioning,
verbal memory, visual
memory, object naming

Verbal memory, executive
functioning, object naming

Kraft et al.,
2015 [48]

Isolated
unilateral TS N = 16

Age- and sex-
matched

volunteers
N = 52 1–132 mps - - - Computer-based

attention tests
Spatial bias,

processing speed

Wu et al.,
2016 [49] Minor TS N = 27

Age and
sex-matched
volunteers,
↑RDI in TS

N = 12 14 and
90 dps

Hypersomnolence,
daytime sleepiness PSG

↑ SL, ↓ SE,
↑ NREM1,
↓ NREM2,
↓ NREM3

Global cognitive
functioning,

verbal memory

Global cognitive
functioning,

verbal memory

Mensen et al.,
2018 [50]

Uni- and
bilateral TS N = 9 Young healthy

adults N = 9 5–8 dps - hd -EEG ↓ SS power - -

Jaramillo et al.,
2021 [51] Unilateral TS N = 12

Age-, sex- and
AHI-matched
extrathalamic
stroke patients

N = 11 3 dps Daytime sleepiness hd -EEG ↓ SWA Visual memory,
visuospatial functioning No significant differences

Temel et al.,
2021 [52]

Thalamic
hemorrhage N = 28

Age-, sex- and
AHI-matched

volunteers
N = 28 3–6 mps - - -

Global cognitive
functioning, verbal
memory, executive

functioning, verbal fluency

Global cognitive
functioning, verbal
memory, executive

functioning, verbal fluency

Scharf et al.,
2022 [53] Unilateral TS N = 37

Age- and
sex-matched
volunteers

N = 37 1, 6, 12,
24 mps

Hypersomnolence,
reduced vigilance - -

Attention, executive
functioning, verbal

memory, visual memory,
verbal fluency

Verbal memory, executive
functioning, verbal fluency

AHI—apnea-hypopnea index, dps—days post-stroke, ESS—Epworth Sleepiness Scale, hd-EEG—high-density EEG, mps—months post-stroke, PSG—polysomnography, SE – sleep
efficiency, SL—sleep latency, SS—sleep spindle, SWA—slow wave activity, TS—thalamic stroke, TST—total sleep time.
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Figure 2. Models of thalamic stroke in rodents. (A) Experimental manipulations. (i) Photothrom-
bosis. Opto-STROKE: This method involves injecting a photosensitive dye into the bloodstream
and then activating it with focused light to induce clot formation in a specific thalamic vessel. The
new approach to light-induced stroke allowing increased spatial resolution is opto-STROKE [54].
(ii) Chemical lesion: Direct stereotactic injection. Agents like excitotoxins (e.g., NMDA or quinolinic
acid) or thrombotic agents (e.g., endothelin) can be injected directly into the thalamus to create
localized lesions that mimic the effects of a stroke [55,56]. (iii) MCAo model: Middle Cerebral Artery
(MCA) Occlusion (MCAo) via a filament inserted through the external carotid artery to MCA origin.
Although the MCA primarily supplies the cerebral cortex, this method can affect deeper structures
like the thalamus, depending on the extent and duration of the occlusion [57]. (B) Schematic rep-
resentation of the stroke lesion across animal models shown in (A). (C) Key distinctions per stroke
model. Abbreviations: ACA—anterior cerebral artery, BA—basilar artery, CCA—common carotid
artery, ECA—external carotid artery, EEG—electroencephalography, EEG—electromyography, ICA—
internal carotid artery, MCA—middle cerebral artery, MCAo—middle cerebral artery occlusion,
MD—mediodorsal thalamus, PCA—posterior cerebral artery, PPA—pterygopalatine artery.

3. The Thalamus and Sleep

The thalamus plays a multifaceted role in sleep regulation and involves several com-
plex aspects (Figure 3A). Firstly, the thalamocortical circuitry is of paramount importance
for the generation and coordination of electroencephalographic (EEG) rhythms during
sleep. Sleep spindles, which are the cortical manifestations of thalamic neuronal oscilla-
tions, are affected in patients with thalamic stroke [58]. Section 5 provides details about the
effect of thalamic lesions on sleep spindles. According to studies conducted on humans,
the anterior, mediodorsal, and posterior thalamic nuclei are involved in spindle gener-
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ation [47–50]. However, little is known about the thalamic contribution to functionally
distinct sleep spindle subtypes, predominantly frontal slow (8–12 Hz) and predominantly
parietal fast (12–16 Hz) spindles [59,60]. Fast spindles have been linked to sleep-dependent
memory consolidation [60], whereas knowledge about slow spindles’ function is sparse.
The neuroimaging study by Schabus et al., which showed that thalamic peak voxels for
slow spindles were compatible with the mediodorsal nucleus, while peak voxels for fast
spindles were compatible with the ventral posterior lateral and pulvinar nuclei, lends
support to the heterogeneity in thalamic sleep spindle regulation [61].
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Figure 3. The functions of the thalamus. (A) The role of the thalamus in sleep. (B) The role of the thala-
mus in cognition. Abbreviations: A—anterior, CL—centrolateral, CM—centromedial, ET—eminentia
thalami, Gl—lateral geniculate, Gm—medial geniculate, IL—intralaminar, LD—laterodorsal, M—
medial, MD—mediodorsal, PF—parafascicular, Pua—pulvinar anterior, Pul—pulvinar lateral,
Pum—pulvinar medial, R—reticularis, VA—ventral anterior, VLa—ventrolateral anterior, VLp—
ventrolateral posterior, VPLa—ventroposterolateral anterior, VPLa—ventroposterolateral posterior,
VPM—ventroposteromedial. Parcellation adapted from Carrera [31].

Spindles originate mainly in the thalamus during sleep, and are modulated through
corticothalamic and intrathalamic mechanisms [62–70], while thalamic slow waves, large-
scale neuronal activity, are principally driven by global cortical activity [71]. Throughout
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the slow oscillations, neocortical and thalamic neurons fluctuate between periods of intense
synaptic activity (up states) and almost complete silence (down states) [72]. An exper-
imental study in naturally sleeping–waking rats showed that blocking thalamic output
to the neocortex markedly (up to 50%) reduced the frequency of slow waves; however,
the selective stimulation of thalamocortical neurons enhanced slow waves in a low delta
frequency band (0.75–1.5 Hz) [73]. Clinical studies in thalamic stroke lesions have further
contributed to the evidence for the role of the thalamus in sleep, which is emphasized
in Section 5 of this review. Moreover, the evidence from intracranial recordings from
human epilepsy patients demonstrated that slow oscillations in the anterior thalamus
precede neocortical slow oscillations, whereas concurrently recorded slow oscillations in
the mediodorsal thalamus are led by neocortical slow oscillations [74].

Thalamocortical networks, which include the reticular nucleus and the neocortex,
have been shown to enhance cortical slow oscillations and decrease arousal [75]. Alterna-
tive evidence suggests that the thalamus plays a regulatory role in the states of wakefulness
and alertness, operating within the context of the ascending reticular arousal system, which
serves as the primary network responsible for arousal in the brain [76]. During wakeful-
ness, this system originates in the brainstem and activates the thalamus and the cortex
via a well-defined ‘bottom-up’ pathway [76]. Local interactions may also be considered,
in which thalamic-layer-specific inputs into the cortex may reflect arousal degrees [77,78].
Recent studies suggest the existence of a less investigated ‘top-down’ pathway that also
contributes to arousal maintenance. This ‘top-down’ pathway includes the projections
from the neocortex (salience network), amygdala (to the medial geniculate nucleus), or hy-
pothalamus to the thalamus [76,78–83]. The mediodorsal thalamus, which is part of the
paramedian vascular territory, projects to the prefrontal cortex and has been identified
as a key effector in the arousal circuitry [84]. Additionally, glutamatergic neurons of the
paraventricular thalamus (PVT), a component of the mediodorsal thalamus, are highly
active during wakefulness [81]. PVT suppression reduces wakefulness, while PVT activa-
tion induces a transition from sleep to wakefulness [81]. The projections from the nucleus
accumbens and from hypocretin neurons in the lateral hypothalamus to PVT glutamatergic
neurons act as effector pathways for wakefulness [81]. It has been demonstrated that
stimulating the ventromedial thalamus causes awakening from NREM sleep and cortical
activation [85]. Furthermore, it has been demonstrated that a brainstem-to-mediodorsal
thalamic glutamatergic pathway mediates sound-induced arousal from slow-wave sleep,
enabling the transition to wakefulness [86]. Overall, the mediodorsal thalamus constitutes
a key diencephalic node that controls forebrain arousal.

Lastly, the thalamus might regulate circadian rhythms. Experimental studies have
shown that PVT is interconnected with the master circadian pacemaker, the hypothalamic
suprachiasmatic nucleus, and is densely innervated by orexinergic neurons, which play a
key role in arousal and state transitions [87]. Furthermore, PVT [87] and intergeniculate and
ventrolateral geniculate nuclei [88] all receive direct and indirect photic input that might
contribute to the transition to vigilance in response to light. Similar results were acquired
by Chrobok et al., who identified the lateral geniculate nucleus as a light-entrainable
oscillator, whose phase may be advanced by retinal input at the beginning of the projected
night [89]. Finally, in mice, the centromedial thalamus was found to modulate transitions
between sleep stages, transitions between sleep and wake, and brain-wide cortical activity
during sleep [90].

Albeit less investigated, the recent evidence points to the involvement of the thalamus
in the regulation of REM sleep, as it receives cholinergic activation from the brainstem
during this sleep stage [91]. In mice, the optogenetic activation of neurons in the anterior
dorsal thalamus increased the sleep spindle rate and the likelihood of transition to REM
sleep [92]. Moreover, imaging studies of sleep have shown high activity in the thalamus
during REM sleep [93–95], especially during phasic REM sleep [95,96]. Notably, projections
from the central medial thalamus to the prefrontal cortex have been found to modulate
parvalbumin cells in cortical layers 2/3, which are necessary for the consolidation of emo-
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tional memories during REM-sleep [97]. Although experimental findings suggest that the
thalamus is involved in the regulation of REM sleep, no significant differences in REM
sleep quantity have been observed in thalamic stroke patients [45,46,50,51]. The microar-
chitecture of REM sleep (e.g., saw-tooth waves) in thalamic stroke patients is still not well
characterized, and this topic may open new avenues for future research.

4. The Thalamus and Cognition

Clinical studies have greatly advanced our understanding of the role of the thalamus
in cognition and consciousness [42,57,60,65,93]. Section 5 provides insights into the impact
of thalamic vascular lesions on sleep and cognition.

Based on corroborating works in the clinical literature, experimental studies con-
ducted on rodents have demonstrated that lesions in the anterior thalamic nucleus result
in substantial deficits in reference, spatial, and working memory. Supporting the clini-
cal literature, experimental studies in rodents have demonstrated that the lesions of the
anterior thalamic nucleus led to substantial deficits in reference, spatial, and working
memory [98,99]. Consequently, the lesions of the anterior thalamic nucleus disrupted the
processing of environmental cues and the monitoring of the position of the animal within
the environment [100]. These spatial impairments align with the electrophysiological prop-
erties of the anterior thalamic nucleus, which contains cells encoding information about
spatial location [101–103]. A study in mice has confirmed that the anteroventral subdivi-
sion of the anterior thalamic nucleus is required during the maintenance phase of a spatial
working memory task. This function engages the anteroventral–parasubiculum–entorhinal
cortex circuit [101–103]. Moreover, the lesions of the anterior thalamic nucleus impair
performance when animals are expected to combine item memory with additional features,
like temporal order and location [104,105]. The anteromedial thalamus preferentially en-
codes salient memories and gradually increases correlations with the cortex to facilitate
the tuning and synchronization of cortical ensembles, as well as the gating of long-term
memory consolidation in the cortex [106].

Similarly, lesions of the mediodorsal thalamic nucleus in rodents cause impairments
in spatial and temporal discrimination [107], but temporal order memory impairments
following the lesions of the anterior thalamic nucleus emerge only in the presence of
multiple items [108,109]. While the lesions of the mediodorsal thalamic nucleus disrupt
performance in spatial and working memory tasks, this is due to strategic components of
the task rather than deficiencies in spatial memory [110]. Remarkably, memory deficits were
correlated with spindle and slow wave decline following opto-stroke [54]. This supports
the prevailing assumption that the mediodorsal thalamus plays a crucial role in working
memory due to its projections to the prefrontal cortex [111,112].

The thalamus regulates attentional selection, and all major components appear to be
involved. A functional magnetic resonance imaging study in healthy volunteers showed the
role of the ventrolateral and, notably, anterior thalamus in biasing attention [113]. Responses
in the ventrolateral and anterior thalamic nuclei tracked the learning of the predictiveness
of abstract associations and their application in directing attention [113]. Moreover, a study
in epileptic patients demonstrated that the high frequency electric stimulation of the
anterior thalamus improved attentional capture by emotional stimuli [114]. According
to an experimental study in ferrets, theta oscillations in the posterior thalamus play a
central role in orchestrating thalamic signaling during sustained attention [114]. Using
multi-electrode recordings in mice, Chen et al. demonstrated that the neurons of the
thalamic reticular nucleus, which are associated with sleep spindles, were also linked to
alpha oscillations during attention [115].

Figure 3 provides a simplified summary of the role of the thalamus in cognition based
on reports in human and animal models.
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5. Thalamic Stroke: A Model for Sleep-Dependent Plasticity and Cognition

Table 1 outlines how thalamic stroke can cause a wide range of SWD and cognitive
deficits. Given the profound impact that sleep and cognitive functioning have on the
recovery process and overall quality of life after stroke, medical practitioners could derive
significant advantages from understanding these symptoms.

Hypersomnolence is a distinguishing feature of sleep symptoms associated with
thalamic stroke. This phenomenon, which has been well-documented in multiple case–
control studies and case reports, is particularly prevalent in patients with anterior (80%)
and paramedian (50%) thalamic stroke [53]. In some cases, hypersomnolence may manifest
as up to 20 h of daily sleep behavior [116]. Moreover, patients with thalamic stroke may
exhibit the symptoms of excessive daytime sleepiness [117]. Specifically, an Epworth
Sleepiness Scale score in thalamic stroke patients was reported as a mean of 8–9 points,
compared to 5–6 in the control group (extrathalamic and no-stroke) [49,51]. The stroke
restricted to paramedian thalamus was described as being associated with severe arousal
disturbances. In the case of a patient with bilateral thalamic stroke, the arousal index, both
in NREM and REM sleep, was lower in acute stroke compared to 6 weeks post-stroke [118].

These sleep alterations were mostly linked with the features of non-rapid eye move-
ment (NREM) sleep in thalamic stroke patients. Individuals with paramedian thalamic
stroke and severe hypersomnia, for example, experienced a reduced quantity of slow-wave
NREM3 sleep [116]. The reduction in NREM2 and NREM3 in thalamic stroke patients was
also described in comparison to an age- and sex-matched no-stroke control group [45,49].
Overall, vigilance disturbances are more common in patients with bilateral paramedian
compared to unilateral paramedian thalamic stroke (92% versus 21%) [119].

There is consistent evidence that thalamic stroke alters NREM-sleep microarchitecture.
Several studies reported the decrease in slow spindle density and power in thalamic stroke
patients [45,46,50]. Sleep spindles were the most affected in frontal and central regions [46].
Mensen et al. showed that left-sided and bilateral lesions of the paramedian thalamus
affect sleep spindles to the larger extent compared to right-sided lesions using high-density
electroencephalography (hd-EEG) [50]. However, since the study is small (N = 9) and
the authors do not report the lesion volume, the effect of the lesion volume rather than
its laterality on sleep spindles cannot be ruled out. An additional hd-EEG study showed
the reduced overnight slow wave (SW) slope changes in thalamic versus extrathalamic
stroke [51]. Interestingly, the subjective sleepiness in these patients tended to be high in
patients with a pronounced reduction in overnight slope changes [51].

Considering the well-known role of sleep spindles and slow waves in neuroplastic-
ity [60,120], changes in NREM-sleep microarchitecture following thalamic stroke might
underlie the cognitive deficits described in these patients. However, the primary impact of
the thalamic lesion on these cognitive deficits remains unclear.

Among the most noteworthy cognitive manifestations in thalamic stroke are thalamic
amnesia and thalamic dementia. Thalamic amnesia, a memory impairment unique to
thalamic stroke, often results in deficits in verbal and working memory, but not in visual
memory [46,47,49,53]. Danet et al. showed that lesions of the mammillothalamic tract and of
the mediodorsal thalamic nucleus cause memory impairment, more severely in the case of
the mammillothalamic tract and less so in the case of the mediodorsal thalamic nucleus, thus
highlighting the role played by these two structures in memory circuits [47]. In addition,
verbal memory deficits have been attributed to lesions in anterior and inferolateral vascular
territories, whereas visual memory impairments have been reported in lesions affecting
posterior territory [43,46,48,53].

In contrast, thalamic dementia—typically caused by anterior or paramedian thalamic
stroke [46,53,121,122] —is characterized by temporal and spatial disorientation, behavioral
changes (e.g., agitation or apathy), the impairment of executive functions (e.g., abstract
thinking, working memory, cognitive flexibility), attentional deficits, and the relative preser-
vation of motor or sensory functions [46,121–125]. Such complex impairments accentuate
the role of the thalamus in diverse cognitive functions.
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Moreover, other deficits of high brain functions have been described in thalamic
stroke and have been attributed to specific lesion topography. Cohort studies have re-
ported instances of mood lability, including depression and anxiety in thalamic stroke
patients [46,121–125]. However, the evidence concerning the association of mood distur-
bances with thalamic stroke topography is limited. Liebermann et al. showed that patients
with lesions of the posterior thalamus had significantly more emotional disturbances and
elevated anxiety levels (Hospital Anxiety and Depression Scale, Anxiety Score) than pa-
tients with anterior lesions [126], whereas the recent study by Scharf et al. showed the
association of depression and anxiety (Hospital Anxiety and Depression Scale, Anxiety and
Depression Score) with anterior but not paramedian or inferolateral thalamic stroke [127].
These affective disturbances, while multifactorial, emphasize the role of the thalamus in
emotional regulation.

Lastly, disinhibition syndromes, including delirium or inappropriate behaviors, have
been reported in thalamic stroke, specifically paramedian stroke [31,128,129]. These data
indicated that the involvement of the dorsomedian nucleus, intralaminar nuclei, and medial
part of the ventral lateral nucleus in the modulation of social behaviors and impulse
regulation.

Mounting evidence points to the role of REM sleep in cognition and emotional regula-
tion. Although cognitive disturbances in thalamic stroke have been linked to the changes
in NREM-sleep, emotional disturbance might indicate the involvement of REM sleep.
While the studies in thalamic stroke patients did not demonstrate statistically significant
differences in the quantity of REM sleep, knowledge of the microarchitecture of REM sleep
in thalamic stroke patients is limited (as shown in Table 1). Future studies should focus on
the inclusion of REM sleep as a possible contributor to cognitive and emotional disorders,
especially in patients with medial and anterior thalamic stroke.

Despite the consistent evidence of the influence of the thalamic lesion per se on
sleep and cognition, recent advances in stroke animal models (see Box 1 and Figure 2)
allow precise experimental control and enable researchers to observe the effects of the
manipulation of specific thalamic circuits on sleep and cognition [54,92,130–132].

Lenzi et al. adopted the following approach, using an “opto-Stroke” model (shown
in Figure 2) to selectively induce a lesion in the medial thalamus [54]. Their study in
mice effectively replicated the reduction in NREM sleep and increased sleep instability,
common in patients with medial thalamic stroke [54]. Furthermore, a lesion in the medial
thalamus reduced alpha EEG power during transitions from wakefulness to NREM sleep
as well as a significant reduction in frontal sleep spindle power, which was positively
correlated with deficiencies in working memory [54]. Interestingly, there was no alteration
in motor performance and anxiety, highlighting the specificity of the effects related to
medial thalamic lesions [54].

These investigations underline the value of animal models in understanding the role
of the thalamus in sleep and cognition and offer the opportunity for invasive measurements
and interventions that are not feasible in human studies.

6. The Thalamus and the Interaction between Sleep and Cognition

The thalamus might modulate the association between healthy sleep and cognition.
Firstly, as previously mentioned, the thalamus participates in the regulation of local

sleep oscillations during NREM sleep, such as sleep spindles and slow waves. These local
sleep oscillations are associated with memory consolidation during sleep [133,134], learn-
ing [135–137], and executive functions [138,139], possibly providing the environment for
neuroplasticity and cellular homeostasis [70,140]. In a general sample of stroke patients,
Siccolli et al. described a correlation between the amount of slow-wave sleep and REM sleep
with attention at acute stroke and with verbal and visual memory at subacute stroke [141].
Despite not achieving statistical significance, a study in patients with isolated thalamic
stroke found deficits in the short-term visual memory of patients with diminished nighttime
slope changes, suggesting a central role of the thalamus in synaptic renormalization [51].
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Overall, thalamic stroke patients often exhibit incomplete neurological and functional
recovery [46,53]. Based on the findings from Jaramillo et al. [51], this could be pathophysio-
logically attributed to the reduced neuroplasticity related to changes in sleep. Hermann
et al. showed that patients with incomplete recovery from chronic stroke had a high need
for sleep both immediately after their stroke and after one year, even though there was no
association between stroke outcome and the severity of neurological symptoms, sleep effi-
ciency, and sleep architecture [46]. Anterior and paramedian thalamic stroke is associated
with the most significant changes in sleep (see above). However, Scharf et al. reported a
satisfactory cognitive recovery in patients with anterior and paramedian thalamic stroke,
whereas the recovery in patients with inferolateral thalamic stroke was incomplete [53].
This discrepancy could be attributed to different compensatory mechanisms (e.g., multiple
centers in the brain with homologous functions), or recovery potentials (e.g., good synaptic
plasticity due to the vascular collaterals). Moreover, the inferolateral region has been im-
plicated in the control of fast sleep spindle activity [61]. In turn, fast sleep spindle activity
has been shown to be essential for sleep-dependent neuroplasticity [142] compared to slow
spindle activity emerging from the mediodorsal thalamic nucleus [61].

Secondly, while REM microarchitecture was not reported in thalamic stroke patients,
evidence from translational studies points to the involvement of the thalamus in the
regulation of REM sleep [93,94]. REM sleep, in turn, provides an environment for the
synaptic remodeling essential to cognitive functioning by activating salient features such
as ponto-geniculo-occipital waves, theta synchrony, and the increased transcription of
plasticity-related genes [143].

Certain chronic sleep–wake disorders, such as insomnia [144], sleep-disordered breath-
ing [145], and narcolepsy [146], have been associated with long-term changes in the thalamo-
cortical circuitry that might lead to cognitive dysfunction, with sleep patterns and cognitive
changes resembling those seen in thalamic stroke patients. Excessive daytime sleepiness,
for example, is a common symptom of sleep–wake disorders. It is often accompanied by
attention deficits [147] and may foreshadow cognitive decline [148]. Plante et al. described
the association between excessive daytime sleepiness and the reduced resting-state con-
nectivity between the bilateral thalamus and left rostral striatum (caudate/putamen) [149].
Moreover, excessive daytime sleepiness was shown to be related to the disrupted dopamin-
ergic and serotonergic modulation of the thalamus [146,150].

Overall, this evidence emphasizes the crucial role of the thalamus in the modulation
of the association between healthy sleep and cognition through the regulation of local
sleep oscillations and through the contribution to synaptic remodeling and neuroplasticity.
Furthermore, the evidence from patients suffering from thalamic stroke and other sleep–
wake disorders further suggests that disruptions in thalamocortical circuitry may result in
cognitive dysfunction.

7. Thalamic Dynamics as the Window of Opportunity

Understanding the complex relationship between the thalamus, sleep, and cognition
provides us with valuable insights into potential therapeutic interventions for cognitive
impairment linked to sleep. Consequently, targeting the thalamus appears to be a promising
approach to enhance both sleep and cognition in neurological and psychiatric disorders.

Although existing drugs that influence major neurotransmitter systems in the tha-
lamus, such as GABA or glutamate, play vital roles in regulating cognition, sleep, and
wakefulness [151], there is still room to explore alternative clinical approaches that may
offer new options. Some examples are provided below.

Neuromodulation by Deep Brain Stimulation (DBS) involves the surgical implantation
of an electrode to transmit electrical impulses to specific parts of the brain. DBS has been uti-
lized to treat various neurological conditions (e.g., Parkinson’s disease and epilepsy) [152].
It may help to restore normal thalamocortical activity if applied to the thalamus, potentially
improving sleep and cognition. Buenzli et al. showed that DBS applied to the anterior
nucleus of the thalamus increased slow wave activity in NREM sleep [153].
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The experimental study in mice showed a proof-of-principle restoration of electro-
physiologic and behavioral measures of consciousness with a stimulation of intralaminar
thalamic nuclei after seizures [154]. Moreover, the stimulation of the auditory thalamus
could generate auditory percepts [155,156], and this finding is being investigated for poten-
tial treatments for conditions such as tinnitus [157].

Transcranial Magnetic Stimulation (TMS) uses magnetic fields to stimulate nerve cells
in the brain [158] and can be applied to target the thalamus. However, applying TMS to
deeper structures like the thalamus remains challenging, and hence continued research is
needed to develop effective protocols. A recent trial demonstrated an antalgic effect of TMS
for 10 consecutive days in patients with thalamic pain [159]. Moreover, potential alternative
targeting areas for TMS have surfaced. Targeting the cerebellum, which projects to the
thalamus, for example, showed promising results in the treatment of various neurological
and neuropsychiatric conditions, including ataxia, essential tremor, dystonia, depression,
schizophrenia, and autism spectrum disorders [160]. However, further research is needed
to uncover the therapeutic potential of TMS, including the optimal stimulation protocols
and long-term consequences.

Neurofeedback is a type of biofeedback that uses real-time displays of brain activity—
most commonly, EEG—to teach the self-regulation of brain function [161]. Individuals
who learn to consciously control their thalamocortical activity may potentially improve
sleep and cognition. Bearden at al. reported that biofeedback training improved EEG
characteristics in a patient with thalamic and cortical stroke [154,162]. The trial of the
real-time functional MRI neurofeedback showed an increase in the activity of mediodorsal
thalamic nuclei and posterior alpha EEG power [163].

8. Concluding Remarks

In conclusion, the thalamus is a true powerhouse for the regulation of sleep and
cognition, with involvements spanning across multiple aspects.

Clinical and experimental models have supported the role of the thalamus in the
regulation of sleep and wakefulness. Mounting evidence indicates its involvement in
the generation and synchronization of sleep rhythms, with the anterior and medial parts
recently being highlighted. Key studies have addressed the complex task of the circuit
dissection in order to distinguish the contribution of different thalamic nuclei to specific
cognitive domains, including sleep-dependent memory consolidation and emotional regu-
lation. Concurrently, functional imaging and clinical studies have further supported the
topographic role of different thalamic nuclei to these important physiological processes.

It is essential to recognize the large impact of thalamic dynamics on the regulation
of NREM sleep and sleep-dependent physiological processes. Nevertheless, recent re-
search has revealed a gap in our understanding of the involvement of the thalamus in
regulating REM sleep and REM-dependent cognitive functions, such as emotional regula-
tion. This knowledge gap presents an excellent opportunity for further exploration and
investigation.

Furthermore, the thalamus participates in arousal regulation through the ascending
reticular arousal system. The thalamus also influences circadian rhythms and facilitates
transitions between different sleep stages. It remains unclear whether sleep–wake alter-
ations in thalamic stroke are caused by a homeostatic sleep drive, sleep fragmentation,
or imbalances in neurotransmitter systems, like serotonin and GABA, that have a strong
impact on state transition. The field of stroke research, both clinically and experimentally,
offers a promising pathway for addressing these numerous unanswered inquiries.

The thalamus is essential for cognitive function. The anterior and mediodorsal thala-
mic nuclei are vital for memory and executive functioning, whereas other thalamic areas are
crucial for attention. Given the overlap in the functions of different thalamic regions, fur-
ther investigation into the specific involvement of thalamic nuclei in cognition is required,
especially with the rodent models allowing specific nuclei targeting.
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The interaction between sleep and cognition is complex, and disruptions in thalamo-
cortical circuitry associated with chronic sleep–wake disorders can contribute to cognitive
impairments and impede recovery from thalamic stroke. Since therapeutic approaches
targeting the thalamus hold promise in improving sleep and cognition in individuals with
neurological and psychiatric disorders, the detailed shifts in EEG dynamics following
thalamic stroke and their cascading effects on sleep and cognitive functions warrant further
exploration.

We are currently on the cusp of technological advancements that, when combined with
novel improvements in computational modeling, will enable us to predict recovery based
on EEG patterns and implement non-invasive therapeutic approaches. Sleep provides
an opportunity to improve plasticity and to restore proper brain dynamics observed in
neurological disorders.
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