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Abstract: Virtual reality (VR) is seen by some as a tool that may greatly improve, or even revolutionize
cognitive rehabilitation. VR offers distinct advantages compared to classic rehabilitation using paper-
and-pencil or computer-based training, such as immersion, the feeling of presence, embodiment
of virtual players, ecological and multisensory stimulation. We here review recent clinical studies
examining the effects of VR training in patients with stroke-induced cognitive deficits. Several trials
reported evidence that VR training improves general cognition compared to standard cognitive
training. However, the evidence remains controversial, as some of these studies had a high risk
of bias. Regarding mood, there is some indication that immersive training improves depression
scores in stroke patients, but the number of studies examining mood changes is very low. Finally, in
the domain of spatial cognition the development of specific intervention techniques such as virtual
prism adaptation provide avenues for clinical interventions, though well-controlled clinical trials are
lacking. Together, the available evidence suggests that VR has the potential to improve rehabilitation
particularly in domains requiring repetitive training in an immersed, ecological setting, or when
a mismatch between body frames and the environment is created. Controlled clinical studies are
required to examine the specific advantages of VR compared to classic interventions.
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1. Introduction

Physical rehabilitation after stroke uses virtual reality (VR) as an add-on to maintain
motivation and adherence, and add a playful component to repeated exercises, though newer
studies indicate that VR also may have direct beneficial effects on walking speed, balance,
and gait [1–5]. At face value, VR has several features that show distinct advantages for
rehabilitation: it brings some of the complexity of the physical world into the laboratory or
clinic; it often has greater ecological validity than paper-and-pencil exercises; it is a safe way
to expose patients to situations that are potentially dangerous (such as street crossing) or may
trigger anxiety; it can be used in small spaces yet provides access to a wide range of activities
and virtual spaces; stimulation in VR is multisensory, and it allows repetition of exercises
while varying the visual scene [6–9]. Additional advantages for rehabilitation are the online
presentation of helpful cues and the support of errorless learning, together with the provision
of rapid, real-time feedback about performance [10]. On the other hand, VR technology may
be expensive, difficult to adapt, not well accepted, and lead to motion sickness [11].

Cognitive impairments may benefit from additional aspects of VR, such as the in-
creased field of view for neglect rehabilitation, or ecological environments for rehabilitation
of memory or executive function [9,12]. Here, we review and discuss studies using VR to im-
prove cognitive function after stroke. The number of studies mentioning the terms ‘virtual
reality’ and ‘rehabilitation’ is currently growing exponentially (Figure 1), as is the number
of reviews and meta-analyses. However, many studies focus on physical rehabilitation, use
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VR as an addition to standard therapy, or are small pilot studies or non-randomized trials.
In addition, in the cognitive domain most clinical studies focus on patients with dementia
or mild cognitive impairment (MCI). The results of these studies have been addressed in
several reviews and meta-analyses [13–18]. We here discuss immersive VR applications for
the rehabilitation of cognitive functions by discussing randomized-controlled trials (RCTs)
of patients with acquired brain injury. Since most studies used cognitive screening tests or
examined visual-spatial skills, we focus our review on the effects of VR training on these
two aspects of cognition.
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2. Effects of VR on General Cognition

In recent years several clinical trials targeted cognition in stroke patients with specific
VR-based interventions. Some of these trials combined classic therapy with VR as an
addition. For example, Shin et al. [19] reported that VR, added to occupational therapy had
stronger effects on quality of life and depression in chronic stroke patients than occupational
therapy alone. Patients either participated to one hour per day of occupational therapy
targeting activities of daily living (ADL) and upper limb use, or 30 min of occupational
therapy and 30 min of VR games that required active arm and trunk movements. The
program was selected individually for each patient to address specific deficits of upper
limb function. Both groups received five weekly sessions for four weeks. Results showed a
significant decrease of depression symptoms in both groups, without a significant difference
between them. In addition, there was an improvement of self-reported quality of life, which
tended to be greater in the VR group. The authors interpreted the positive effects of VR on
mood as resulting from the experience of flow, interest, and positive feelings during the
playful, immersive therapy. Faria et al. [20] used a more general VR program that focused
on use of memory, attention, visuo-spatial and executive functions in daily routine. The
study involved 18 stroke patients without aphasia or neglect, who were randomly attributed
to a VR group or a cognitive training group (puzzle and problem solving, mathematics or
memory training). Patients in the VR group were required to accomplish everyday tasks at
locations in a virtual city (such as a bank or a post-office). After training for 12 sessions the
VR group significantly outperformed the control group on measures of general cognitive
function, attention, and verbal fluency. In addition, within-group comparisons indicated
improved visuo-spatial and executive functions only in the VR group. This small trial thus
indicated greater impact of a VR-based intervention on cognitive functions than simple
cognitive training. In a follow-up study the same authors [21] compared the VR program



Clin. Transl. Neurosci. 2023, 7, 3 3 of 12

with paper-and-pencil exercises and found greater improvement of general cognitive
functioning (assessed with the Montreal Cognitive Assessment, MoCA; [22]) in the VR
group. Similar results were reported by De Luca et al. [23] in a small study with 12 stroke
patients who were randomly assigned to a VR group or a group that trained diverse
cognitive tasks. VR consisted of several tasks probing memory, attention or visual-spatial
skills that were adapted for each patient. The authors observed a significant improvement
of a general cognitive measure (MoCA) and visual attention in the VR group only, which
was partly maintained at follow-up.

In a study by Maier et al. [24], an adaptive training using VR led to significantly lower
levels of post-stroke depression compared to a control group who solved cognitive tasks at
home. In addition, only the VR group showed improved performance in attention, spatial
awareness, and general cognitive function after the training. Finally, the trial with the
highest number of participants published so far included 90 stroke patients, who were
randomly assigned to a robotic rehabilitation group with VR, robotic rehabilitation without
VR and a control group with conventional cognitive rehabilitation [25]. The VR component
required patients to collect diverse objects and to avoid obstacles while walking on a
treadmill. After 40 therapy sessions, all three groups showed improvements in global
cognitive functioning, mood, executive functions such as perseveration, and activities of
daily living. A specific advantage of VR was observed in additional improvements of
cognitive flexibility, selective attention, and self-perceived quality of life. In addition, a
direct comparison between groups revealed that VR improved general cognition (MoCA)
and mood more than robotic rehabilitation without VR. It also resulted in faster visual
processing and visual search.

The two factors that appear to explain differences between studies are the number
of therapy sessions and immersion. While the former can easily be adapted, the latter
strongly depends on the available technology, with more modern systems being better
suited to generate stereoscopic vision and fluid displays. Immersion may be the only
factor that differentiates computer training from training in VR, and differences regard-
ing immersion may explain why some reviews and meta-analyses disagree regarding
the recommendations to be made for the addition of VR in rehabilitation settings. For
example, Maggio et al. [26] make a positive recommendation that is based on several pilot
studies, exploratory trials, or observational studies. In contrast, a systematic meta-analysis
performed in 2017 noted no specific advantages of training with VR (as compared to con-
ventional therapy) on measures of quality of life and independence in ADLs [27]. This is
consistent with disappointing findings from a meta-analysis that examined VR effects on
motor control, balance, gait and strength [28]. In addition to these studies we identified one
report that specifically focused on training of prospective memory through exercises with
increasing difficulty performed in a virtual environment [29]. The program required fifteen
patients with mixed cognitive problems to solve different prospective tasks that were cued
by external events (such as picking up a parcel), within a specific time interval. Ten hours
of training resulted in significant gains on a prospective memory test, supporting transfer
of training effects. However, the study did not involve a control group, which makes the
extent of improvement difficult to evaluate.

Several recent reviews and meta-analyses also examined the effects of VR interventions
on general cognition in patients with stroke. Unfortunately, there is no consensus among
these reports. For example, Wiley et al. [30] found standardized mean differences between
VR and control groups ranging between 0 and 0.56 for general cognition, memory and
language, none of these being significant. This confirms the conclusions from an earlier
Cochrane review [27] that VR does not add significant benefits to standard cognitive
rehabilitation. The latter review also observed a high risk of bias in many published
studies, due to underreporting of critical information. In contrast Chen et al. [31] observed
significant mean differences between VR and control groups for general cognition (MMSE:
2.84; MoCA: 2.51), the Trail Making Test (A: −20.6; B: −64.4, indicating much faster
performance in the VR group) and even latency of the P300 EEG potential (mean difference:
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−35.3, indicating shorter latency in the VR group). We found these findings difficult to
verify since many studies cited in the latter review were not accessible at the time of
writing. However, when considering the more recent clinical trials we find the conclusion
justified that VR interventions have slightly superior effects on general cognition than
conventional therapy. This is particularly the case when immersive systems are used,
as such systems generally have increased ecological validity of the task [4,32]. Such
systems are highly engaging and produce a sense of presence in the observer that may
concurrently stimulate attention, working memory and the awareness of space, which is
one of the main advantages of VR [33]. Whether these, or simply higher motivation are
the drivers of improvement in cognitive domains remains to be elucidated. In contrast,
a later study [34] did not find an advantage of dual-task training in VR compared to
visual scanning training. By 2017 the evidence for a specific advantage of immersive VR
training over traditional (paper-and-pencil, or computer-based) training was judged as
inconclusive [35,36]. However, it should be noted that the development of VR technology
is very dynamic, and systems that were used in studies published five years ago are
barely comparable to up-to-date technology. This is particularly the case of immersive
systems, which seem to have the greatest effects on measures of general cognition, mood,
or attention. These effects may strongly rely on motivational factors, engagement and
effort, compliance with the intervention, and increased alertness, which all may affect
outcomes of the intervention. Unfortunately, such factors are difficult to capture and are
not routinely examined in clinical trials. Future studies need to address these issues to
identify the working ingredients of VR interventions.

3. Effects of Training in Virtual Reality on Spatial Cognition

The three-dimensional, ecologically valid representation of space offered by immersive
VR presents a particular advantage for the assessment and rehabilitation of spatial cognition
and spatial memory [9]. For example, an early study by Kim et al. [37] showed that interac-
tive training in VR (such as catching virtual objects) resulted in better visual search and
lower values on a behavioral scale measuring spatial neglect than visual scanning training.
This study also demonstrated one of the major advantages of VR, namely immersion into a
virtual world where patients may interact with objects and directly experience feedback
about their actions. Other studies revealed positive effects of visual scanning training or
search in VR on neglect measured with specific neglect tests and observation in everyday
life [38,39]. However, the domain in which VR has shown the most elegant applications
is prismatic adaptation (PA). PA with wedge prisms is a non-invasive technique widely
used to study visuo-motor plasticity in healthy individuals, that is claimed to decrease
the right attentional bias observed in brain-damaged patients with neglect. Left optical
prisms displace the entire visual field and induce a rightward bias in manual reaching
or pointing to visual targets, which appears already after a few pointing movements [40].
After removal of the prisms, reaching initially deviates in the direction opposite to the
optical shift (here, towards the left side), a phenomenon called visuomotor after-effect. In
a classic PA paradigm, three phases can be distinguished: a phase composed of different
pre-tests, followed by a period of prism exposure (closed-loop pointing, i.e., pointing
while the arm and target are visible) and finally specific post-tests designed to reveal
PA after-effects and eventual transfer to visuo-spatial tasks. The primary measure of PA
after-effects is open-loop pointing (OLP), during which participants lack visual feedback
about arm position, i.e., they see the target but not their arm. In addition, various tests such
as bisection judgments can be performed at pre- and post-tests to study generalization of
adaptation effects in tasks different from the exposure context. The comparison of OLP bias
between pre- and post-tests is used to compute the amount of adaptation. The exposure is a
crucial period of a PA experiment during which participants wear the prisms and perform
pointing or reaching movements that provide error signals about their performance. We
will next discuss some results found with classic (wedge prism) PA, before presenting
principles and findings of PA in VR.
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4. Effects of Prism Adaptation on Spatial Neglect

Spatial neglect is a neurological syndrome affecting a large proportion of patients with
right-hemisphere stroke. Neglect is characterized by severe unawareness of visual, auditory,
or tactile stimuli in left space, together with a severe spatial bias to the right [41–43]. It
has highly negative impact on the independence in ADLs, the quality of life, and motor
recovery [44,45]. This syndrome is notorious for being difficult to treat, as the spatial
bias underlying neglect is not accessible to conscious awareness [46]. Therefore, cognitive
strategies (such as to direct attention ‘consciously’ towards the neglected side) may only
improve performance in the presence of external prompting. For example, when moving
on the ward with their wheelchair patients must often be reminded of impending obstacles.

The first report suggesting that adaptation to rightward-deviating optical prisms can
reduce left spatial bias in neglect on measures of cancellation, line bisection or drawing
was published in 1998 [47]. Since then, several clinical reports and randomized-controlled
trials (RCTs) have demonstrated beneficial effects of rightward PA measured in classical
neglect tests and in ADLs [47–49]. Significant improvement of neglect signs has been
observed after a single application of PA for a few minutes (3–5 min), while PA repeated
for two weeks led to long-term effects lasting up to 6 months [48–51]. However, neglect
does not improve in all treated patients, and clinical studies including several RCTs failed
to provide evidence for lasting effects of PA on its clinical manifestations [48,52–56]. In a
meta-analysis of eight RCTs [52–54,57–59], Li et al. [60] found five reports showing that
patients treated with PA showed significantly better scores in a neglect battery [61] than
the control group [49,53,58,59,62]. However, there were no significant differences between
groups in the three studies [52,54,58] that adopted the Catherine Bergego scale (CBS, [63]),
a clinical scale assessing neglect in daily life. Furthermore, Li et al. [60] found no significant
long-term (more than 1 month post-intervention) therapeutic effects of PA, based on the
results of three studies for which follow-up data were available [53,58,59]. More recently,
Mizuno et al. [64] performed a secondary analysis on ADLs examined in their own RCT
dating from 2011 [58]. They found that only two of 10 items of the CBS (gaze orientation
and exploration of personal belongings) were significantly improved in the prism group
compared with the control group. Finally, a more recent meta-analysis on 430 patients
found no evidence for a beneficial effect of PA on paper-and-pencil tests such as cancellation,
or ADLs measured with the CBS [65].

These inconsistencies may reflect different factors, such as differences in PA proce-
dures [66,67], treatment intensity or prism strength [68], patient selection or variability
of lesions [69,70]. Moreover, the sample size of individual studies was generally small
(from 13 to 20 patients in the treatment group). An additional problem—shared with most
studies evaluating behavioral interventions—is absence of adequate blinding. Indeed, it
is notoriously difficult—if not impossible—to conduct a completely blinded behavioral
intervention study, and PA does not make an exception. Since the compensation of the
PA-induced bias relies on conscious perception of the mismatch between target and hand
position, complete blinding with classic wedge prisms is virtually impossible. Though
several studies have tested control patients with sham prisms, the shape and weight of
wedge prisms (particularly those with high diopters) makes them easily identifiable for the
experimenter. Biases, such as experimenter expectations or placebo effects are therefore
difficult to exclude.

5. Mimicking Prism Adaptation with Virtual Reality

Our research group has recently developed a prismatic adaptation protocol using vir-
tual reality [71] that is based on the idea of applying a shift between true hand position and
the position of a hand-held controller whose image is perceived in the VR environment [72].
Similar applications have been proposed by other authors [73,74]. Modern VR systems
allow interactions with the virtual world through controllers that are held by the observer
and provide an image within VR that moves in coherence with the hand/arm movement.
The spatial coordinates of the controller can not only be accessed through the software
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(for example, when reading the ending position of a pointing movement) but may also be
modified in every direction and by any desired amount (see Figure 2A and related videos
at https://www.frontiersin.org/articles/10.3389/fnins.2021.658353/full#supplementary-
material; URL accessed on 25 October 2021). The resulting image is shifted, but still moves
in an entirely consistent way as the arm of the observer moves. We hypothesized that by
inducing a rightward shift we may mimic the effects of wedge prisms and thus induce a
compensatory adaptation of reaching or pointing movements towards the left.
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Figure 2. (a) Principles of virtual prismatic adaptation. Participants are required to point to the red
sphere. Only the white rod is visible for the participant, the image of the controller is only shown here
for illustration. Note the increasing mismatch between the controller and the white rod (upper image:
10th trial; lower image: 50th trial), requiring the participant to point further to the left. (b) Results
of open-loop pointing before (baseline) and after (adaptation) virtual prism adaptation. Note the
increasing pointing error with increasing mismatch. Decay was measured after a period of rest, and
recalibration indicates performance after pointing without a mismatch [adapted with permission
from Ref. [71], 2020, Taylor & Francis].

The advantages of VR for inducing adaptation effects are multiple. First, they allow
different degrees of deviation to be used within the same experimental design. Second, VR
makes it possible to apply much greater degrees of deviation than when prismatic glasses are
used, without inducing visual distortions. In addition, the deviation can be induced gradually,
making it difficult to be noticed by participants, which enables the planning of single-blind or
even double-blind studies, thus limiting certain confounding factors such as placebo effects.
This point is particularly crucial when studying the effectiveness of PA in the rehabilitation of
neglect and is difficult if not impossible to achieve with prismatic glasses.

In a proof-of-concept study [71] we examined the performance of four groups of healthy
subjects that were either not adapted (no shift), or adapted to a 10-, 20- or 30-degree shift.
Adaptation was induced progressively, by fractions of a degree in every additional pointing
movement, eventually reaching the desired shift after approximately 50 movements. As
expected, adaptation effects (measured as OLP performance) increased with increasing
shift (Figure 2B). Surprisingly, there was also a significant transfer to a line bisection task
in the 30-degree group, who tended to bisect lines further to the left after adaptation. In
addition, we found that the adaptation effects were very short-lived and disappeared almost
immediately after a brief period of recalibration (consisting of several pointing movements
without a lateral shift). Finally, participants were entirely unaware of the shift and the
gradual compensation of pointing movements. Our study thus suggests that it is possible to
reproduce adaptation effects observed when using prismatic glasses in VR.

One question arising from these results is whether PA in VR induces similar adaptation
effects (measured as errors in OLP) as standard PA. Adaptation effects in our study were
approximately 40–50% of the induced bias (i.e., ∼5 degrees with a 10-degree deviation,
∼9 degrees with 20-degree deviation and ∼12 degrees with a 30-degree deviation). Ramos
and colleagues [75] compared the performance of healthy subjects following exposure with
conventional prismatic glasses or by simulating a 10-degree deviation in virtual reality.

https://www.frontiersin.org/articles/10.3389/fnins.2021.658353/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.658353/full#supplementary-material
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They found that the after-effects were greater after simulating the deviation in virtual
reality, indicating that virtual PA may produce similar, if not better results than classic
PA. A recent study using virtual PA confirmed our finding of greater deviations in the
20-degree compared to a 10-degree condition, and reported that the post-PA adaptation
effect was related to right-hemispheric frontoparietal activation as measured with functional
near-infrared spectroscopy [76]. Another study also measured quick adaptation to a shift
25 degrees and additionally observed a transfer of adaptation effects from near to far space
and far to near space [74]. However, both studies induced a sudden shift and therefore
participants may have been aware of the adaptation.

A second question relating to virtual PA is whether adaptation effects are linked to
the visual modality or might have a supramodal component. The reason behind this
question is that neglect generally affects multimodal representations of space [77,78], and
some studies with neglect patients reported positive effects of PA on auditory neglect
signs, such as auditory extinction [79,80]. We therefore tested virtual adaptation effects of
healthy participants by varying modality (visual or auditory) and degree of shift (0-degree
or 30-degree) [81]. The visual condition was performed as shown in Figure 2A. In the
auditory condition participants did neither see the visual target, nor the position of the
controller (and consequently their hand). They were thus performing pointing movements
in a blank space, entirely lacking visual information. The shift was induced by giving
false feedback about the quality of pointing: subjects heard a voice through headphones
commenting on their performance. If they hit the target the voice said ‘Correct’, while
when they deviated the voice said, ‘More to the right’ or ‘More to the left’. The position of
the (invisible) controller in the 30-degree condition shifted gradually to the right, so that
a consequential leftward correction was required. Participants in the visual and auditory
30-degree group exhibited a gradual leftward shift during the adaptation procedure, of
which they were entirely unaware (Figure 3A). However, while this shift was very similar
in both conditions OLP testing revealed a significant adaptation effect only in the visual
group (Figure 3B). This finding indicates that the shift of PA affects visuo-motor, but not
auditory-motor integration. Since OLP testing was performed with a visual target this
absence of adaptation effects with auditory feedback may be due to a lack of transfer
between modalities. Alternatively, auditory adaptation may be fundamentally different
than visual adaptation, for example it may rely entirely on highly strategic processes.

On the basis of these results, we performed a study that tested the effects of virtual
PA in patients with spatial neglect [82]. Fifteen patients with left spatial neglect after a
right hemispheric stroke were tested in three adaptation sessions: no deviation, 15-degree
deviation or 30-degree deviation. The degree of deviation was chosen randomly and was
not known to the patient and the experimenter. The experiment was thus a double-blind
design, which was achieved by letting the software choose among the three adaptation
conditions. As expected, there were significant adaptation effects in the 15-degree and
30-degree condition, but no changes of OLP after the 0-degree condition (Figure 4). How-
ever, there were no transfer effects in line bisection or cancellation tasks performed in
virtual reality. Thus, while this study demonstrated the feasibility of virtual PA with neglect
patients, it also showed that a single session of PA is not sufficient to achieve transfer
of adaptation effects to visuo-spatial tasks. A recent computational model of PA effects
suggests the interplay between fast (strategic) adaptation and slower, more gradual ef-
fects [83]. These different processes reflect the implementation of inverse models [84,85]
at different hierarchical levels relevant for motor control (e.g., frontoparietal networks,
basal ganglia, cortico-cerebellar interactions). In this framework the gradual induction
of adaptation effects in our paradigm may reflect involvement of slow cerebellar effects,
rather than fast, strategic processes that are believed to be under cortical control. Since
none of the previous studies of PA in neglect applied gradual adaptation, it remains to
be determined whether different effects might be achieved when comparing sudden and
gradual adaptation directly.
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Figure 4. Adaptation effects of 15 patients with left spatial neglect (left), and absence of transfer to
line bisection (right) [adapted from Ref. [82], 2022, Taylor & Francis].

6. Conclusions

Although VR technology becomes increasingly accessible, it is more expensive and
requires greater technical skills than computer-based training (e.g., programming skills nec-
essary to elaborate adaptive training). Such an investment would be justified if VR training
showed far larger effect sizes than approaches that are easier to implement. However, the
results of clinical studies published so far do not support strong superiority compared to
classic rehabilitation techniques. In addition, immersive VR technologies currently do not
benefit from advantages such as simple setup, reduced therapist support, or the possibility
to be used in telerehabilitation.

Nevertheless, some recent clinical trials discussed in this article suggest that VR
training may affect general cognition, alertness, and spatial cognition in stroke patients.
Characteristics of VR that may drive such effects are repeated stimulation, high involvement
in an immersive environment, and the playful aspect [32]. All these factors may increase
attention, effort, motivation, and adherence to therapy, which may explain the positive
effects of VR on general cognition (even if the latter is measured with simple screening
tests, such as the MoCA).
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The sense of presence in an immersive stimulation is particularly relevant for the
therapy of impairments in which embodied representations contribute to recovery, such
as upper limb deficits, phantom pain or spatial neglect [33]. The development of specific
intervention techniques such as virtual PA may provide new avenues for the use of VR as a
rehabilitation method. One example of a future application is that the optical shift inducing
adaptation effects in virtual PA may differ among patients, thus providing the possibility
of individualized interventions. Current state of research focuses on the question whether
interventions using VR are beneficial, rather than whether different types of training that rely
on specific advantages of the VR medium are beneficial. Future studies should also evaluate
the specific factors that may lead to preference of VR over simple computer training.
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