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Abstract: Here, we prepared hydrophobic cryogel particles with monolithic supermacropores based
on poly-trimethylolpropane trimethacrylate (pTrim) by combining the inverse Leidenfrost effect and
cryo-polymerization technique. The hydrophobic cryogel particles prepared by adopting this method
demonstrated the separation of the stabilized O/W emulsion with surfactant. The prepared cryogel
particles were characterized in terms of macroscopic shape and porous structure. It was found that
the cryogel particles had a narrow size distribution and a monolithic supermacroporous structure.
The hydrophobicity of the cryogel particles was confirmed by placing aqueous and organic droplets
on the particles. Where the organic droplet was immediately adsorbed into the particles, the aqueous
droplet remained on the surface of the particle due to repelling force. In addition, after it adsorbed
the organic droplet the particle was observed, and the organic solvent was diffused into the entire
particle. It was indicated that monolithic pores were distributed from the surface to the interior.
Regarding the application of the hydrophobic cryogel particles, we demonstrated the separation of
a stabilized oil-in-water emulsion, resulting in the successful removal of the organic solvent from
the emulsion.

Keywords: hydrophobic cryogel particles; supermacropores; inverse Leidenfrost effect; droplet
method; separation of emulsion

1. Introduction

Water pollution caused by oil spill accidents and the leakage of industrial wastewater
causes serious environmental problems [1]. Wasted oil disperses as an emulsion in a
heterogenous system; therefore, the removal of oil is difficult compared to that of immiscible
oil, which spontaneously separates from aqueous solution [2]. Especially, oil-in-water
emulsion including surfactants can be regarded as a semi-equilibrium state with high
stability in the dispersed state, and it is difficult to remove its oil fraction from the system [3].
Thus, the oil–water separation process is important for treating oily wastewater containing
surfactants and other substances. As the major oil–water separation process, the gravity-
driven separation, centrifugal precipitation, coagulation, and chemical demulsification
are well known [4–7]. However, these separation techniques can be restricted because
of low-cost performance with complex treatment and high energy consumption [8]. The
membrane separation method uses hydrophobic materials to adsorb oil and are relatively
inexpensive, making them a useful method for oil-removing strategies compared to the
conventional treatment [9].
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Despite the fact that they were discovered more than 30 years ago, cryogels have
only recently gained widespread attention due to their extraordinary properties. Cryogels
are extremely tough gels that can withstand significant deformation, such as elongation
and torsion, and can be squeezed almost entirely without crack propagation [10–12]. In
recent years, many cryogenically structured polymeric materials have been of significant
scientific and applied interest in various fields, such as separation, waste-water treat-
ment, biotechnology, and tissue engineering [13–17]. Ihlenburg et al. demonstrated that
a sulfobetaine-based cryogel adsorbs methyl orange preferentially from mixed dye solu-
tions. Methyl orange (MO)/methyl blue (MB) mixtures can be separated by the selective
adsorption of the MO to the cryogels, while the MB remains in solution [18]. Cryogel is a
porous material obtained by the polymerization of the polymer precursor, a solution con-
taining monomers, a cross-linker, and polymerization initiators, under a frozen temperature
(cryo-polymerization) [19–21]. In the process of cryo-polymerization, the phase separation
occurs between the unfrozen region (concentrated monomers) and the frozen one (ice
crystals), both inhabited by the polymer precursor [22]. Polymerization can occur only in
the unfrozen regions of the system, where frozen solvent crystals act as porogens [10]. After
the polymerization, the porous structure in the range of the µ-meter scale can be obtained
by melting and drying porogen (ice crystals), which is referred to as a “supermacroporous
structure” [23]. The nature of the solvent, the type (monomer or polymer precursors), the
temperature of the cryogenic process, the rate of freezing/thawing dynamics, and some
other factors influence the properties of polymeric cryogels [24]. Therefore, it is necessary
to consider the polymer composition, such as hydrophobic monomers and hydrophilic
monomers, and the preparation method according to the purpose of application. Conse-
quently, the hydrophobic cryogel, which prefers oil to water, is useful for the adsorption
and separation of organic material from aqueous solutions [25].

The monolithic porous structure has a large specific area and high porosity; therefore,
it is applicable in chromatographic separations [26]. Since the monolithic porous structure
forms a hierarchical porous structure with an interconnected network of the polymer wall,
it supplies efficient diffusive mass transfer. The properties of monolithic porous structure
are classified into several parameters. For the application and optimization of monolithic
porous materials as separation substances, the characterization of their properties is re-
quired. The parameters include (i) the size distribution of the particle diameter, (ii) the
standard deviation of the particle diameter, (iii) the coefficient of variation of particle,
(iv) the bulk density, and (v) the size distribution of the pore size. Furthermore, the macro-
scopic shape of the cryogel’s (a) cylinder, (b) sheet, (c) disk, and (d) particle is an essential
factor in the design of separation devices such as the particle-packed column or mono-
lithic column chromatography. The various shapes of the cryogel can be conventionally
prepared by performing cryo-polymerization in a mold vessel. Cryogel particles can be
prepared by the polymerization method using emulsion as a mold; cryo-polymerization
occurs at a phase containing polymer precursor [27,28]. Due to the acceleration of cryogel
research, various preparation methodologies and polymer components have been devel-
oped [29,30]. The preparation of the feed system, freezing, incubating the gelation system
in a frozen state, and thawing the frozen sample are all required stages in fabricating the
cryogel [11]. As a different preparation method, we recently developed a combination
technique, i.e., the inverse Leidenfrost effect and the cryo-polymerization technique (the
iLF cryo-method) [31,32].

In this study, we first adopted the iLF cryo-method to create hydrophobic monolithic
supermacroporous cryogel particles. The cryogel particles revealed the narrow size distri-
bution of the diameter, and numerous pores with monolithic supermacroporous structures.
Furthermore, the properties such as hydrophobicity and adsorption preference were char-
acterized by using dyed solvents. Unlike the aqueous droplet, the organic droplet was
immediately adsorbed into the particles. The cross section of the cryogel particle after
the adsorption of the organic solvent showed that the entire particle was stained with
dye, indicating that the oil diffused thoroughly into the interior of the particle. For the
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separation of the oil-in-water emulsions stabilized with surfactants, the cryogel particles
successfully removed emulsions from the system.

2. Materials and Methods
2.1. Materials

Trimethylolpropane trimethacrylate (Trim), benzoyl peroxide (BPO), etlyl-4-dimethyla
minobenzoate (EDMAB), and nile red were purchased from Tokyo Chemical Industry
Ltd. Acetic acid, toluene, n-hexane, N,N’-methylenebisacrylamide (MBA), liquid paraffine,
sudan (IV), Coomassie brilliant blue G-250 (CBB), and polyoxyethylene sorbitan monooleate
(Tween 80) were purchased from Wako Pure Chemical Industry Ltd., (Osaka, Japan). Ultra-
pure water (conductive 18.2 MΩ cm) was purchased from a Merck Millipore. All materials
were used as received without further treatment.

2.2. Preparation of Hydrophobic Cryogel Particles

The hydrophobic cryogel particles were prepared as described in previous works [31,32].
Briefly, the cryogel particles were prepared via a 2-step process: (1) the preparation of frozen
droplets by utilizing the iLF effect and (2) cryo-polymerization under a frozen temperature.
Trim used as monomer (Figure 1) and MBA used as cross-linker were dissolved in acetic
acid. Then, BPO and EDMAB were added as initiators and the polymer precursor was
obtained. Subsequently, the obtained polymer precursor was dropped onto liquid nitrogen
and frozen droplets were prepared. These droplets were transferred to liquid paraffine
at −15 ◦C and polymerized overnight. After cryo-polymerization, hydrophobic cryogel
particles were washed with n-hexane and lyophilized.
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Figure 1. Chemical structure of trimethylolpropane trimethacrylate (Trim).

2.3. Observation of Macroscopic Shape

The overall cryogel particles in the bottle of glass were observed as photographic im-
ages by a charge-coupled device (CCD, iPhone 12 MJNJ3J/A) camera. In order to evaluate
the size distribution of particles, the diameter of particles was measured from optical mi-
croscope images. The mean diameter of the particles (Dv) and standard deviation (σ) were
calculated from the optical microscope images by using image J software. Furthermore, the
coefficient of variation (Cv) was calculated according to Equation (1).

Cv =
σ

Dv
× 100 [%] (1)

Here, the tapped bulk density (ρbulk) was calculated according to Equation (2).

ρbulk =
Wparticles

Vcylinder
[g/mL] (2)

The Wparticles and Vcylinder were represented as the weight of the particles and the
volume of the particles in the graduated cylinder, respectively. The scale of the graduated
cylinder with particles was read after tapping 100 times [33].
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2.4. Characterization of Porous Properties

The surface of the porous structure of the cryogen particle was observed by scanning
electronic microscope (Hitachi, SU3500, Tokyo, Japan, SEM), operated at 20 keV. As pre-
treatment, gold was coated on cryogel for 30 s by spattering. The pore diameters were
measured according to the size distribution that was analyzed using image J software.

2.5. Testing Hydrophobicity of Cryogel Particles

The hydrophobicity of cryogel particles was tested by using aqueous and organic
droplets. The water was dyed with CBB as a blue-colored aqueous solution, and the toluene
was dyed with Nile red as a red-colored organic solution. Then, the droplets placed on
the cryogel particles were observed. Subsequently, the adsorption behavior of an organic
solvent by cryogel particles was investigated. The red-dyed organic solution was separated
from the water collecting at the top, and the cryogel particles were added to the water. A
CCD camera was used to record the adsorption behavior over time three and ten seconds
after the particle was added. Furthermore, the cryogel particle was cut in half after being
adsorbed with the dyed organic solution, and the cross-section was observed.

2.6. Separation of Stabilized Oil-in-Water Emulsion

The oil-in-water emulsion stabilized with a surfactant was prepared by mixing 990 µL
of n-hexane, 100 mg of Tween 80, and 99 mL of ultra-pure water under ultrasonication at
room temperature (around 25–30 ◦C) and atmospheric pressure. After preparation, the
sample was stored for over 24 h at room temperature and atmospheric pressure. Then, the
stabilization of O/W emulsion (cloudy) was visually observed, and the light scattering
was confirmed via laser at dark place (Tyndall phenomenon). The characterization of the
emulsion after separation was recorded by photograph and using the optical microscope
image. To investigate the separation of stabilized oil-in-water emulsion by cryogel particles,
the organic phase of the emulsion was dyed with Sudan IV during the preparation of
oil-in-water emulsion [34]. Then, the emulsion was separated by mixing the emulsion and
cryogel particles in the glass bottle and kept for 3 h at room temperature. After that, the
particles were removed from the solution by filter and measured the UV-Vis spectra by
spectrophotometer (Shimadzu UV-1800, Kyoto, Japan).

3. Results and Discussion
3.1. Macroscopic Shape of pTrim Cryogel Particles

The pTrim cryogel particles were prepared by combining the inverse Leidenfrost
effect and cryo-polymerization technique (iLF cryo-method) [31,32]. By adding the water
droplets containing polymer precursor into an extremely low temperature bath, the inverse
Leidenfrost phenomenon was induced, and frozen droplets with a spherical shape were
formed on the liquid nitrogen. The frozen droplet was then polymerized under a frozen
temperature (−15 ◦C). After cryo-polymerization, the pTrim cryogel particles were obtained
by thawing and lyophilization. Figure 2 shows the photo image of pTrim cryogel particles
(Figure 2a) and the size distribution of the particles through the observation of an optical
microscope (Figure 2b). As shown in Figure 2a, the pTrim cryogel particles had a spherical
shape with a white color. Subsequently, after the diameter of more than 200 individual
particles was observed from the optical microscopic images, the size distribution was
then determined. Figure 2b shows the size distribution of pTrim cryogel particles. As
a result, the pTrim cryogel particle, prepared by our iLF-cryo method, was distributed
in the range of 700–2300 µm and has a high frequency of around 1600 µm. Herein, the
basic properties of pTrim cryogel particles were summarized in Table 1; the value of the
mean diameter, Dv, and its standard deviation, σ, were 1654 µm and 220, respectively.
Furthermore, the variation coefficient, Cv, was low, at a value of 13 %. Hence, pTrim cryogel
particles have a narrow size distribution, and the monodispersiblitiy of the particle was
high in comparison with that of the conventional droplet [35]. The tapped bulk density,
ρbulk, was calculated from the bulk-particle volume in a graduated cylinder and from the
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weight of the particle; the ρbulk value was 0.3 g/mL. Comprehensively, the macroscopic
properties of pTrim cryogel particles adopted by the iLF cryo-method were characterized
on the basis of the factors Dv, σ, Cv, and ρbulk.
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Table 1. Particle properties of pTrim cryogel particles.

DV
a [µm] σ b [-] Cv

c [%] ρbulk
d [g/mL]

1654 220 13 0.3
a Mean diameter of the particles, b stand devitation, c coefficient of variation, and d bulk density.

3.2. Characterization of Porous Properties

In general, cryogels have a monolithic porous structure with supermacropores in the
range of the µ-meter scale. During the cryo-polymerization process, the crystals supplied
from the solvent (i.e., acetic acid) were employed as porogens; the porous structure was
therefore formed. As shown in Figure 3, the porous structure of the surface pTrim cryogel
particle was observed via SEM analysis. The observations were performed for the surface
section of the pTrim cryogel particle, as described in Figure 3a. From the overall image, the
particles were found to have a rough surface (Figure 3b). Subsequently, the surface section
of the particle was observed from the high-magnification SEM image to characterize its
porous structure (Figure 3c). It was found that the pTrim cryogel particle had a monolithic
supermacroporous structure on its surface. Interestingly, the polymer wall of the porous
structure appeared to have a smooth surface. The fine morphology of the porous structure
(i.e., surface roughness, undulation) is changed by employing different porogens [36].
Herein, the pore diameter was measured from 47 pore diameters by a high-magnification
SEM image to characterize the porous property. As shown in Figure 3d, the size distribution
of the porous diameter was evaluated. The porous diameters were distributed in the range
of 1–12 µm, and the mean porous diameter dp was 4.7 µm. The results suggest that pTrim
cryogel particles have a unique porous structure on their surface that is monolithic with a
supermacroporous structure.
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3.3. Hydrophobicity of pTrim Cryogel Particles

The hydrophobicity of polymer particles can be investigated by confirming the be-
havior of aqueous or organic droplets when they are contacting the polymer particles.
When the aqueous droplet is placed on the hydrophilic polymer, the droplet penetrates the
hydrophilic polymer, while the organic droplet is repelled. In the case of the hydrophobic
polymer, where the aqueous droplet is repelled, and the organic droplet penetrates the
hydrophobic polymer. As shown in Figure 4, the hydrophobicity of pTrim cryogel particles
was investigated. Herein, the behavior of droplets, aqueous (dyed as blue), and organic
(dyed as red) was placed on the pTrim cryogel particles and observed (Figure 4a). As
the result, the aqueous droplet was repelled from the pTrim cryogel particles, whereas
the organic droplet penetrated the particles. As stated previously, the cryogel particles
presented here comprise pTrim and thus have a hydrophobic surface. Subsequently, the
adsorption of organic solvent in the oil–water system by pTrim cryogel particles was ex-
amined in Figure 4b,c. Cyrogel particles were added to water containing the red-dyed
organic solvent. As shown in Figure 4b, three seconds after the addition of the particles,
the particles floated to the liquid surface, resulting in aggregate formation. Furthermore,
the particles rapidly started to adsorb the dyed organic solvent. Eventually, the particles
were found to adsorb all organic solvents in the beaker after only 10 s (Figure 4c). After
the adsorption of organic solvent, pTrim cryogel particles were removed from the water
and cut in half; the appearance of cross section was then then observed (Figure 4d). It was
confirmed that the pTrim cryogel particle was colored red, including the interior side from
the image of the cross section. Hence, the adsorbed organic solvent was diffused through
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the interior of the particle. It is expected that the porous structure of the pTrim cryogel
particle has pores running from the exterior to the interior of the particle and monolithic
structure. These results are supported by the evidence that the monolithic porous structure
was formed in the pTrim cryogel particle (Figure 3). The pTrim cryogel particles were
thus shown to have the potential to be applied as a separation material because of their
permeability function with the expansive monolithic porous structure.
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3.4. Separation of Stabilized Oil-in-Water Emulsion

Based on the characteristics of pTrim cryogel and its fundamental properties, it is
possible to recover the oil-in-water emulsion from the aqueous solution. Typically, the
oil-in-water emulsion can be formed by dispersing and stirring a small amount of oil in
water. The formed oil-in-water emulsion is unstable in long-term and becomes a two-phase
system which is thermodynamically stable. However, via the adsorption of a surfactant on
the interface, the emulsion is stabilized and exists in a long-term heterogeneous system. It
is difficult to remove the organic solvent from the stabilized emulsion because the emulsion
does not spontaneously cause phase separation. Herein, the separation of stabilized oil-in-
water emulsion with surfactant was performed by using pTrim cryogel particles in Figure 5.
The emulsions were observed in a bulk-scale image and optical microscope images before
the separation, and in a bulk-scale image and optical one after separation (Figure 5a–d).
From bulk-scale images (Figure 5a,c), the solution was deeply cloudy in white before the
addition of the cryogel particles, while the solution became transparent after that. The color
change of these solutions indicates that the organic solvent was dispersed and became a
heterogeneous system as a colloidal state (before the addition of cryogel particles), and
then the colloid was removed (after the particle addition). As shown in Figure 5b,d, the
states of solution were observed by using an optical microscope, the emulsions with several
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µ-meter scales were dispersed in the solution (before the particle addition), and then there
was no colloidal emulsion (after the particle addition). It is possible that the slight turbidity
of the solution after the particle addition could be caused by dispersed microemulsions
that could not be observed with optical microscope. Subsequently, the separation property
of pTrim cryogel particles was evaluated from UV-Vis spectra of the emulsion in which
the organic phase was dyed with a probe Figure 5e. In the spectrum before the particle
addition, the characteristic absorbance peak derived from the dye dissolved in the organic
phase was detected. On the contrary, there was no absorbance peak in the spectra in the
supernatant after the particle addition. The separation was induced simply by adding
the cryogel particles with macroporous and hydrophobic nature through the interaction
between the hydrophobicity of pTrim and the organic solvent as colloidal state dispersed in
the solution. As a result, the separation of stabilized oil-in-water emulsion with surfactant
has been demonstrated.
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4. Conclusions

In summary, the pTrim-based cryogel particles were prepared by adopting our de-
veloped method, the iLF cryo-method. The optical microscope and SEM were used to
characterize the particle properties (i) Dv, (ii) ρ, (iii) Cv, and (iv) σbulk, and (v) the size
distribution of pore size. In addition, the cryogel particle was found to have a monolithic
supermacroporous structure. Subsequently, the hydrophobicity of cryogel particles was
tested by placing aqueous and organic droplets on the particles, where the aqueous droplet
remained on the surface of the particle by a hydrophilic repulsive force and the organic
droplet was immediately adsorbed into the particle due to the hydrophobic surface of the
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particles. Furthermore, it was found that the adsorbed organic solvent was diffused into
the entire particle by observation cross-section of the cryogel particle. The separation of
stabilized oil-in-water emulsion by using cryogel particles was performed. As a result, in
the case study, the efficient removal of stabilized oil-in-water emulsion has been demon-
strated. This cryogel particle material can be applied for the separation of oil phase in the
emulsion state.
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