
Citation: Baig, N.; Sajid, M.; Salhi, B.;

Abdulazeez, I. Special Wettable

Membranes for Oil/Water

Separations: A Brief Overview of

Properties, Types, and Recent

Progress. Colloids Interfaces 2023, 7, 11.

https://doi.org/10.3390/

colloids7010011

Received: 27 September 2022

Revised: 6 January 2023

Accepted: 17 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

colloids 
and interfaces

Review

Special Wettable Membranes for Oil/Water Separations: A Brief
Overview of Properties, Types, and Recent Progress
Nadeem Baig 1,* , Muhammad Sajid 2, Billel Salhi 1 and Ismail Abdulazeez 1

1 Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and
Minerals, Dhahran 31261, Saudi Arabia

2 Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia

* Correspondence: nadeembaig@kfupm.edu.sa

Abstract: Periodical oil spills and massive production of industrial oil wastewater have impacted the
aquatic environment and has put the sustainability of the ecosystem at risk. Oil–water separation has
emerged as one of the hot areas of research due to its high environmental and societal significance.
Special wettable membranes have received significant attention due to their outstanding selectivity,
excellent separation efficiency, and high permeation flux. This review briefly discusses the fouling
behavior of membranes and various basic wettability models. According to the special wettability,
two major classes of membranes are discussed. One is superhydrophobic and superoleophilic; these
membranes are selective for oil and reject water and are highly suitable for separating the water-in-oil
emulsions. The second class of membranes is superhydrophilic and underwater superoleophobic;
these membranes are highly selective for water, reject the oil, and are suitable for separating the oil-in-
water emulsions. The properties and recent progress of the special wettable membranes are concisely
discussed in each section. Finally, the review is closed with conclusive remarks and future directions.

Keywords: environment; water; interface; emulsions; superhydrophobic superhydrophilic

1. Introduction

Water is the fundamental essence of life. The quality and sustainability of life on
earth are only possible with a continuous water supply. The division of the water on the
planet is amazing: 97.5% of water is present in the ocean, and, due to high salinity, unfit
for daily purposes, and out of 2.5% of the freshwater, only 1% of water is accessible [1,2].
Rapid urbanization is enhancing water demands quickly. For instance, in cities, the global
papulations increased from 0.8 billion to 4.4 billion from 1950 to 2020, reaching up to
6.7 billion, which would be 68.4% of the expected population in 2050 [3]. Thus, clean water
access has become a critical challenge for the future. The severity of the situation can be
assessed from the following statistics [4]:

I. More than 2 billion people live in water stress regions, and this is expected to increase
dramatically in future;

II. 1 billion people are suffering to get safe and clean drinking water;
III. The usage of contaminated water is the reason for the death of 3.4 million people

each year;
IV. Millions of people collecting water from a distance of at least 6 km.

The reclamation of the water may help in reducing the stress of water scarcity and
also have a positive impact on the aquatic environment. Oil pollution is one of the leading
causes of water contamination. There is no doubt that catastrophic effects on the marine
environment have been observed after several reported periodical oil spill incidents [5].
Designing membranes with an excellent capacity to separate oil and water is highly sig-
nificant [6–8]. Oil spills in water are not simple chemistry as it is a mixture of several
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components and a wide range of toxic ingredients. The oily wastewater from the industries
conducts a range of aliphatic and aromatic organic compounds [9]. It severely impacts the
food chain as the algae productivity is severely affected by the spilled oil, which ultimately
negatively impacts the food chain. Adding oil-contaminated water or spilling oil in the
water dangerously increases the organic matter in the water, and microorganisms consume
excessive oxygen, which may prove fatal. The amount of dissolved oxygen may drop to a
low level from the required concentration of 2 mg/L, which may cause lethal consequences
for the aquatic environment [10]. Due to the deadly impact of the oily wastewater, the oil
and water separation received significant importance [11,12]. Several traditional oil/water
separation technologies, including electrochemical, filtration, flotation, gravity-based sepa-
ration, centrifuge, and burning methods, are adopted to remove the oil from the water [13].
The burning of the oil may result in the formation of secondary environmental pollutants.
Furthermore, the conventional methods are tedious, time-consuming, and may require
manual operations [13,14]. Another major challenge associated with traditional methods is
the incomplete separation of the oil/water mixtures. The oil may remain in the water, or
the water may stay in the oil while separating the oil–water mixtures. Thus, more efficient
methods are required for the oil/water mixture separations [15].

According to the droplet size, oily wastewater can be classified into immiscible and
emulsified oil/water mixtures. The free oil/water mixture term is used when the diameter
is greater than 150 µm, and the dispersion term is used when the diameter is in the range
of the 20–150 µm, and the oil/water mixture is called emulsified when the diameter is
less than 20 µm [16]. Separating the emulsified oil/water mixtures is a critical industrial
and environmental challenge [17,18]. Conventional methods, including skimming and
flotation, can remove the free and dispersed oil. In contrast, the oil that is stabilized with
the help of surfactants cannot be removed by traditional gravity-based techniques due
to the long settling time and surfactant stabilization. Thus, efforts have been made to
treat the emulsified oil using demulsifiers to break the emulsions, and later, gravity-based
separation is conducted. However, adding extra chemicals to treat the emulsified oil is
considered environmentally unfriendly and expensive [19].

Recently, membranes have received significant attention in separation science [20–25].
Membranes are considered effective for separating oil/water mixtures due to their low
energy cost, high separation efficiencies, satisfactory flux, and compact design [26–29].
Nano-structured polymer-based membranes are reported to treat oily wastewater [30]. The
size exclusion principle is insufficient to form high-performance membranes for oil/water
emulsions separations. More rigorous control of the surface chemistry is required when
dealing with the oil/water separations. Recently, special wettable materials have been
receiving significant attention for separating oil and water [31–33]. The special wettability
and the controlled pore size can help to design membranes that provide high separation
efficiency, excellent permeation flux, and low fouling tendency. The special wettable mem-
branes are defined according to the characteristics of the surface and their response toward
oil and water. Thus, the special wettable membranes can be superhydrophilic, superhy-
drophobic, superoleophilic, and superoleophobic, and these behaviors of the surfaces can
be tuned by controlling the surface chemistry and its texture [34,35]. The membranes
that are superhydrophilic and underwater superoleophobic selectively allow the water
to pass and reject the oil [36]. These membranes are more effective for the separation
of the oil-in-water emulsions. The membranes that surface behaves superhydrophobic
and superoleophilic are preferred for separating the water-in-oil emulsion [37]. Several
reviews have been written on special wettable materials and membranes for oil and water
separations [38–44], and this field is continuously evolving [45–49]. This review briefly
discusses the recent progress on membrane fouling, wettability models, and various types
of special wettable membranes.
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2. Fouling of the Membranes

It is well-known that the fouling of the membranes is one of the critical challenges [50–52].
The industries using the membrane-based process spend substantial time and economic
resources cleaning these membranes. The fouling of the membranes can happen in several
ways, such as (Figure 1) [53]:

(a) Complete pore blocking;
(b) Intermediate blocking;
(c) Standard blocking;
(d) Cake layer formation.
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The Netherlands). All rights reserved.

The bigger particles can completely block the pore, stopping the permeation through
the membrane’s pores. Complete pore blocking can also be called pore sealing. It is a
general perception that in complete pore blocking, the particle settles and completely blocks
the pore’s opening without overlying other particles. The complete pore blocking reduced
the number of channels for permeation [54], which significantly impacted the flux of the
membrane. In intermediate blocking, the partial development of foulants on the pores’
surface causes the pores’ narrowing. The particles accumulate on the surface, and some
may cause complete blocking in intermediate blocking, and it is also responsible for the
flux decline.

The standard blocking causes the narrowing of the channels by adhering to the small-
sized particles or droplets inside the pore. In other words, pore constriction has happened
during the standard pore blocking. Due to the particles’ deposition inside the membrane’s
pores, the overall pore volume is reduced. The pore volume decrease is directly related to
the volume of the deposited particles inside the pore [55]. A uniform cake layer is formed
on the entire membrane surface due to the accumulation and deposition of the particles,
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which are bigger in diameter than the membrane pore size. The cake layer is usually formed
when the pores are already blocked with the initial stage of fouling, or the membrane is
dense, and no pore is available for blocking. In cake filtration, a secondary membrane layer
is formed on the membrane surface due to the accumulation of multiple layers of particles.
The cake filtration may enhance the concentration polarization, which affects the rejection
efficiency of the membranes and significantly decreases the membrane flux due to the
hydraulic resistance created by the cake layer [54,56]. The cake fouling is not impermeable
and can be reversed with suitable treatment, such as backwashing and flushing [57].

In several studies, during the separation of the oil/water emulsions, the fouling
has been mentioned with the above one or two mechanisms; however, the fouling that
happened during the liquid–liquid separation is not simple and sometimes tough to define
with the above mechanisms. Emulsified liquid droplets are different from solid particles.
The oil droplet or emulsified liquid size and shape depends upon several factors, including
the shear rate, interfacial tensions, and composition of the liquid phases. The oil droplet
or other liquid droplets can deform, break, or coalescence Thus, oil fouling differs from
solid particle fouling as the emulsions are liquid droplets that can easily diffuse to form a
continuous compact layer near the membrane, which is sometimes tough to remove with
simple cleaning methods. A more in-depth understanding of liquid fouling is required to
deal with membrane fouling during oil/water separation.

Thus, chemical cleaning is recommended to restore the membrane’s flux. Cleaning of
the membranes is usually proposed according to the type of membrane. The membranes
used for the oil and water separation can be ceramic [58] or polymeric [59]. The various
chemicals have been applied, which include the SDS, Na2CO3, HCl, H2SO4, EDTA, NaOH,
HNO3, H3PO5, and their combinations for the cleaning of the membranes. It has been
found that the combination of the SDS and the EDTA found effective in cleaning the fouled
membrane [60]. With suitable modification, the effectiveness of the cleaning agent can be
improved for certain oil/water separation membranes [61]. The membranes developed
with special wettability can offer better anti-fouling characteristics [62]. Therefore, better
engineering and more control of the surface chemistry are required to produce high-
performing anti-fouling membranes.

3. Contact Angle and Wettability Models

All materials have a particular wettability pattern according to their intrinsic surface
behavior [63,64]. The material’s wettability depends upon the chemical composition and
the surface morphology of the materials [65]. The wettability of the surfaces is usually
controlled by introducing surface roughness [66] and certain functionalities, which produce
special wettable surfaces that are responsive to certain liquids [67]. The contact angle is one
of the critical parameters to measure the wettability of the solid surface quantitively [68] due
to its simplicity and ease in apprehending the wettability by the contact angle measurement
while evaluating the affinity between the liquids and the solid surfaces [69] The wetting
behavior of the surfaces or materials can be categorized into four types [70]:

(a) Hydrophilic: The water contact angle should be in the range of 10◦ < θ < 90◦;
(b) Hydrophobic: The water contact angle should be in the range of 90◦ < θ < 150◦;
(c) Superhydrophilic: The water contact angle should be in the range of 0◦ < θ < 10◦;
(d) Superhydrophobic: The water contact angle should be in the range of 150◦ < θ < 180◦.

Various theories or definitions of the contact angle keep evolving with time (Figure 2).
The mathematical equations keep moving to the next stage with more insight into the special
wettable surfaces. Thomas Young has given the contact angle quantitative expression for
smooth and flat surfaces [71].

cosθ = (γSV − γSL)/γLV (1)
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In Equation (1), the γSV, γSL, and γLV represent the interfacial tension between solid–
vapor, solid–liquid, and liquid–vapor. Young equation revealed the contact angle for the
smooth surfaces. However, surfaces are usually not smooth and may have some roughness.
There was a need to develop the contact angle model on rough surfaces. A Wenzel model
was introduced by Robert N. Wenzel [72] for rough surfaces, and it was assumed that the
liquid under the observation of contact angle is wholly entered into the grooves of the
rough substrate. The water drop is pinned on the surface and unable to roll on the surface.
The following equation measures the contact angle in the Wenzel model.

cosθw = rcosθ (2)

In Equation (2), the θ and θw represent the Young and the Wenzel contact angle. The
“r” represents the roughness factor. From the Wenzel model, the liquid should penetrate
the grooves of the solid surfaces, but this model cannot fit those rough surfaces where the
liquid does not enter the grooves of the rough surfaces. For chemically inhomogeneous
surfaces, the Cassie–Baxter model was proposed and shown in Equation (3).

cosθCB = f 1cosθ1 + f 2cosθ = f (cosθ+ 1)− 1 (3)

In Equation (3), the θCB represents the Cassie–Baxter contact angle, and f indicates the
liquid–solid contact surface area fraction. As in the case of the Cassie–Baxter contact angle,
the air is trapped between the liquid and solid substrate as the surface is inhomogeneous.
Due to this, the water drop rolls easily as it is not pinned or entered into the groove of the
surface and contact angle hysteresis is usually small in this case.

4. Brief Discussion of Polymers Used in Oil/Water Separation

Polysulfone (PS) and its derivatives are among the most important and commonly
utilized membrane materials [73–76]. This is because they are chemically, thermally, and
oxidatively stable and have high mechanical strength. The properties of polysulfone or
polyethersulfone membranes can be tuned using different additive materials [77]. Tradi-
tional PS membranes are synthesized via the phase inversion process. As a solvent, PS can
be mixed with different common solvents, including DMF, DMAA, DMSO, formylpiperi-
dine morpholine, and N-methylpyrrolidone (NMP) [78], and some green solvents, such as
Rhodiasolv PolarClean, can also be used [79]. Due to hydrophobicity, these membranes are
fouled quickly while separating the oil-in-water emulsion separation. Hydrophilic organic
or inorganic materials are incorporated through several routes to make them suitable for
oil/water separation applications. Hydrophilic polymers can be mixed into the casting
solutions to prepare the mixed matrix membrane for oil/water separation applications.
Bentonite, a hydroaluminosilicate that aggressively absorbs water, is used to increase mem-
brane hydrophilicity [80]. Similarly, the hydrophilic magnesium dihydroxide particles
mixing with the polyether sulfone hollow fiber membranes have lowered the water con-
tact angle from 69.5◦ to 16.4◦. The permeability of the produced hydrophilic membranes
was increased from 39 to 573 LMH, and oil retention nearly approached 100%. Electron
microscopy confirmed membrane morphological alterations [81]. Sulphonated Carbon
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Soot-Polysulphone Membranes separated diesel-in-water emulsions with a separation
efficiency of 99.9%, water flux of 314 LMH, and exhibited an excellent flux recovery of
92% [82].

PVDF is another polymer that has been extensively explored for oil–water separation
applications. PVDF is a semi-crystalline polymer having the repeating unit of (CH2-CF2)n
and possesses good mechanical, chemical, and thermal stability [83]. Similar to PS, the
PVDF is also facing the problem of rapid fouling during the treatment of the oil-in-water
emulsions due to its hydrophobic nature. The hydrophilicity and anti-fouling behavior
of the PVDF membranes can be improved using physical and chemical methods [84].
Sometimes, the coating enhances the membranes’ anti-fouling behavior but decreases the
membranes’ flux due to adding the extra barrier layer. Therefore, during the modifica-
tion process, it is essential to use such strategies which reduce the additional permeation
resistance, and it can be controlled by decreasing the coating layer thickness, develop-
ing new hydrophilic materials with inherently high-water permeability, and avoiding
the blocking of membrane pores to maintain the membrane efficiency [85]. Blending the
PVDF with the amphiphilic hyperbranched-star polymer improved the protein resistance
and the hydrophilicity of the membranes [86]. It has been that membranes coated with
titanium dioxide (TiO2) are very permeable and fouling-resistant [87]. Similarly, Tan-
nic acid-graphene oxide (TA-GO) and titanium dioxide (TiO2) were co-deposited on an
electrospun PVDF membrane as part of a surface modification process based on metal
polyphenol coordination. To prevent membrane compacting, TiO2 was injected between
GO layers. TA and Fe3+ enhance interlayer force via covalent, cation, and coordination
bonds. The designed membrane has shown a strong flux of 243.11 LMH and excellent
oil rejection of greater than 98%) [88]. By molecular grafting with three amino silanes,
researchers construct superamphiphilic and superoleophobic PVDF membranes. Due to
chemistry, nanostructuring, and roughness, molecular grafting gave new characteristics.
After grafting, membranes showed dry and wet in-air superamphiphilicity. In water, the
membrane is superoleophobic and repels oil droplets. Under oil, the membrane displayed
superhydrophobicity but still permitted water droplet attachment. After construction, mod-
ification, and physicochemical characterization, membranes were evaluated for oil/water
separation. The functionalized membranes rejected >99% oil and recovered flux. These
results indicate the potential for molecular membrane grafting for separation and purifica-
tion [89]. The properties of the PVDF can be tuned for desired applications using a range
of polymeric aninorganicic materials, including amino silanes [89], alkylamines [90], and
titanium oxide [91], hydrophilic layers, dopamine [92], cellulose [93], and another polymer
mixing [94].

Apart from the PS, PES, and PVDF, other polymers, such as PAN, PVA, polyether
ether ketone, and polybenzimidazole, were also used for the oil and water separation. Only
those polymeric membranes are considered effective for industrial applications with long
shelf life and anti-fouling. These membranes can be used for a longer time for industrial
applications. For instance, PEEK has excellent potential to develop solvent resistance
membranes. The combination of the PANI/PEEK significantly improved the pure water
permeation flux to 302.5 LMH under optimal testing circumstances; PANI/PEEK membrane
exhibited excellent anti-fouling behavior and flux recovery rate [95]. From this discussion,
it can be concluded that a range of polymeric and ceramic materials are available to explore
for oil/water separation applications.

5. Types of Special Wettable Membranes

The solid particles are usually separated on the principle of the size exclusion principle
as the solid particles have well-defined boundaries. However, the separation of the oil–
water emulsions is entirely different compared to the solid particles. Under pressure, tiny
droplets can be squeezed in the dispersed phase and deformed, which may make them able
to pass through pores that are smaller than their sizes [96,97]. It is indicated that making the
tight membrane and high operating pressure may not solve the challenge of low separation
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efficiencies. Therefore, the special wettable surfaces are receiving significant attention along
with the controlled pore size to deal with the oil/water mixtures and emulsions [98]. Based
on the special wettability, these materials can be grouped into two major groups (Figure 3):

(a) Superhydrophobic and superoleophilic materials;
(b) Superhydrophilic and underwater superoleophobic materials.

The concept and details of these materials and membranes are briefly discussed in the
following subsections [99].
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5.1. Superhydrophobic and Superoleophilic Membranes

The long-lasting superhydrophobic surfaces have received significant attention due
to their high demands in the range of applications [99,101,102]. The superhydrophobic
coating/surfaces have high needs in waterproof clothing, anti-icing, self-cleaning, trans-
parency, gas permeability, anti-corrosion, drag reduction, fog harvesting, stain resistance,
and oil/water separation applications [103–105] (Figure 4). Super-hydrophobic membranes
and materials are receiving unprecedented attention for oil–water separation [106,107].
Superhydrophobic membranes are famous for water-in-oil emulsions compared to oil-in-
water emulsions [108]. The superhydrophobic membranes also remove the water from the
lubricating oil [109].

In some reports, it has been mentioned that the hydrophobic surface is not sufficient
to prevent the water from passing. With just a hydrophobic surface, both water and oil can
pass [110]. In the case of the water-in-oil emulsion, the water is the dispersed phase, and
the oil is the continuous phase. Thus, such membranes are favorable, which selectively
allow the passage of the oil and reject the water. Therefore, the superhydrophobic surfaces
have a strong affinity for the oil and demonstrate a solid repellence to water.

Furthermore, the anti-fouling behavior of the membranes significantly increases as the
low surface energy surface intrinsically rejects the water and is not allowed to settle down
on the surface while separating the water-in-oil emulsions [111]. As discussed, designing
the superhydrophobic surfaces requires some basic surface roughness requirements and
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controlling the membrane surface’s chemical composition to produce a low-energy surface.
The combination of both result in a superhydrophobic surface that strongly repel the water
and allow the oil to spread and penetrate the membranes quickly. The roughness can be
produced by several means, including electrochemical methods, chemical etching, physical
deposition, spraying, or growth of nanoparticles on the surface [112,113]. In Figure 5, the
mesh functionalization procedure is explained to produce low surface energy on the surface
of the mesh. In general, first, the activation and reactive groups are generated on the surface
of the mesh, which can help produce the necessary roughness on the surface. Then, the
surface is linked with the long-chain alkyl groups to lower the surface energy. In Figure 5A,
the water drop behavior before functionalization is shown where the water drop has a
strong affinity for water. After functionalizing the surface, it becomes superhydrophobic
and strongly repels the water (Figure 5B) [114]. The rational functionalization of the surfaces
even can convert the super-hydrophilic surfaces to superhydrophobic ones and become
effective for the selective separation of oil from the water [103]. For instance, a composite
membrane consisting of microcrystalline cellulose and PVDF was prepared by directly
mixing. Then, functionalization with the lauric acid by grafting method has shown the
water contact angle of 153◦ ± 2◦ with a separation efficiency greater than 99% [115].
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Zhanjian Liu [116] reported the electrospun membranes with a water contact angle
of 171◦ and achieved an excellent tensile strength of 5.225 MPa. Similarly, the electrospun
polyimide (PI) nanofibrous membrane is prepared, rough surfaces are produced with the
help of the tannic acid metal complex, and superhydrophobicity is achieved by modifica-
tion with the PDMS. The designed superhydrophobic electrospun membrane has shown
a high flux of 6935 LMH with a high separation efficiency of 99%. It also possesses addi-
tional UV shielding and self-cleaning characteristics, making it appropriate for oil/water
separation [117]. Deke Li [118] has developed a superhydrophobic membrane using the
PDMS for oil/water show, which also shows the flame Retardancy behavior.
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Figure 5. Response of water drop controlled by auto-controlled micropipette on the surface of
the (A) SSM and (B) PA-TAS-SA-SSM. (a) Waterdrop produced by the micropipette, (b) Waterdrop
approaching the surface, (c) Waterdrop contact with the surface, (d) Drop pressing on the surface,
(e) Auto controlled micropipette moving up, (f) Continuation of upward movement, and (g) Auto-
controlled micropipette pulled over. (C) Schematic stepwise illustration of the fabrication of the
PA-TAS-SA-SSM [114]. Reprinted with permission from Ref. [114]. Copyright 2021 Elsevier Ltd. All
rights reserved.

Apart from designing the superhydrophobic and superoleophilic membranes, there is
a need to develop such membranes which can withstand harsh acidic and basic conditions.
Tingting Fan et al. [119] prepared superhydrophobic-superoleophilic polyphenylene sulfide
membrane, which can stand in extreme conditions, has also shown excellent rejection of
water greater than 99.9% (Figure 6). The surface topography and the surface chemistry can
also be controlled with the help of 3D printing. Three-dimensional printing was used to
develop the superhydrophobic micro-/nanoporous membranes using fluoropolymer ink.
The fluoropolymer enhanced the tendency of the membranes to stand with the abrasions.
By changing the porogen ratio, the pore size of the membranes can be tuned from 30 to
300 nm [120].

Gravity-driven superhydrophobic membranes are also receiving significant atten-
tion due to their cost-effectiveness and ease of operation. The gravity-driven behavior is
only possible when the surface possesses special wettability. Yi-Ting Tsai et al. [121] have
designed the electrospun nanofibrous membranes using the blend poly(methyl methacry-
late)/polydimethylsiloxane. The designed membranes have shown the excellent capability
to separate and breakdown the various emulsions, such as water-in-hexane, water-in-
hexadecane, water-in-diesel, and water-in-soybean, under gravity with incredible separa-
tion efficiencies of 99.0%, 99.5%, 99.25%, and 97.75%, respectively. It has been found that
the methyl group presence rejects the water and prevents them from passing through the
membrane, which results in the breakdown of several complex oils (Figure 7).
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Figure 6. (a) Diagrams illustrate the effect of bottom surface structure of M-0 and M-4 on the
hydrophobic; (b) Photograph of pure water and oil droplets on the M-4 bottom surface; (c) Optical
photograph and SEM image of lotus leaf [119]. Reprinted with permission from Ref. [119]. Copyright
2019 Elsevier B.V. All rights reserved.
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Figure 7. Optical micrographs of the feed emulsions (top part) and permeates (bottom part) using
PMMA/60PDMS nanofibrous membrane under the sole influence of gravity [121]. Reprinted with
permission from Ref. [121]. Copyright © 2023 Elsevier B.V. All rights reserved.

Several membranes have been reported to separate the layered oil/water mixtures.
Ying Su et al. [122] reported the superhydrophobic and superlipophilic nanofiber membrane
that was decorated with a pine needle-like structure. The pine needle-like structure was
grown with the help of the TiO2 nanorods using the hydrothermal method. This sort of
structure results in increasing the surface roughness of the membranes, and, later on, the
superhydrophobicity and super-lipophilicity were achieved using fluorination treatment.
The fluorination treatment produced the membrane with an oil contact angle of 0◦ and a
water contact angle of 155.0◦ (Figure 8). The separation efficiency was greater than 99%.
The comparison of the various superhydrophobic membranes for oil/water separation can
be seen in Table 1.
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Figure 8. (A) (a) The state of water droplets and oil droplets (n-hexane) on the surface of the
PNF@TNs-PFDS, the water, and the oil droplets were dyed to blue and red, respectively; (b) The
WCA of PNF membrane; (c) PNF@TNs-PFDS fiber membrane; (d,e) SEM images of robust pine
needle-like TNs; and (f) Photograph of pine needle. (B) Oil/water separation process of (a) heavy oil
and (b) light oil [122]. Reprinted with permission from Ref. [122]. Copyright 2021 Elsevier B.V. All
rights reserved.
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Table 1. Comparison of the performance of the Superhydrophobic membranes for oil/water separation.

Membranes Filtration Type Emulsion
(Water-In-Oil or

Oil/Water Mixtures

Pressure
(Bar)

Water Contact
Angle

Flux
(Lm−2h−1)

Separation
Efficiency

Ref.

Superhydrophobic
isotactic polypropylene
microporous membranes

Microfiltration Oil Used: n-hexane,
chloroform, and
kerosene

0.9 153◦ 1230 ± 42 - [111]

PDMS/TA-Mn+/PI
nanofibrous membrane

Microfiltration Oil Used:
dichloromethane,
chloroform,
1,2-dichloroethane,
bromobenzene, and
tetrachloromethane

Gravity 153.64 ± 1.6◦ 6935 99% [117]

PMMA/60PDMS
nanofibrous membrane

Microfiltration Oil Used: Hexane
hexadecane Diesel,
and Soybean

Gravity 154◦ 99.5% [121]

PML membrane Microfiltration Oil Used: Xylene,
kerosene

Gravity 153◦ ± 2◦ 130–8800 99% [115]

poly(vinylidene fluoride-
co-hexafluoropropylene)
(PVDF-HFP) nanofiber
(PNF) membranes

Microfiltration Oil Used:
Dichloromethane,
n-hexane, kerosene
and toluene

Gravity 155.0◦ 9845 99.99% [122]

Nano-structured
ZnO/CuO mesh
membrane

Microfiltration Oil Used: Chloroform
and n-hexane

Gravity 161.2◦ ± 1.5◦ above 2000 >99.9% [123]

BN-CuSA2 membrane Microfiltration Oil Used:
dichloromethane
kerosene

Gravity 162.3◦ 1667.63 >95% [124]

CNTs Reinforced Porous
Electrospun
Superhydrophobic
Membrane

Microfiltration Oil Used:
dichloromethane,
chloroform,
1,2-dichloroethane,

Gravity 152◦ 9270 >99% [125]

Carbon fiber membrane Microfiltration Oil Used:
Dichloromethane,
petroleum ether, ethyl
acetate, carbon
tetrachloride, toluene

Gravity 155.9◦ 3590 98% [126]

polyurethane acrylate
-based superhydrophobic
membranes

Oil Used: Hexane 0.02 - - ∼97% [127]

One of the critical challenges associated with superhydrophobic and superoleophilic
membranes is limited recyclability [128]. The membranes may lose their special wettability
after some cycles, affecting their separation performances. Therefore, more robust and
technically stable superhydrophobic and super-oleophilic membranes are required, which
can sustain for a longer time and do not lose their special wettability after multiple cycles.
Researchers have recently been trying to develop inorganic and organic hybrid special wet-
table membranes that demonstrate better chemical stability while separating the oil/water
mixtures. Fluorine-based linkers or organic moieties are frequently used to produce super-
hydrophobic and super-oleophilic surfaces, and fluoro moieties or polymers are considered
a serious environmental hazard. The fluoro modification is expensive and may also release
highly toxic and perfluoroalkyl sulfonates or carboxylates into the ecosystem [129]. It
is highly undesired that the fixation on one environmental or industrial problem intro-
duces a second one. The fluorine-free systems are highly desired for oil/water separation
applications. However, there are several examples in which fluorine-free methods have
been used for oil/water separation [123,130–132]. More significant efforts are required in
this direction to introduce more robust and environmentally friendly surfaces to treat the
oil/water mixtures.

5.2. Superhydrophilic and Underwater Superoleophobic Membranes

Industrial processes, such as petroleum refining, petrochemical manufacturing, and
metal finishing, all generate wastewater consisting of oil-in-water (O/W) emulsions daily.
Disposal of oily wastewater presents environmental and financial challenges; hence materi-
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als and procedures that efficiently separate oil from water are required. The membranes-
based technologies are becoming famous for treating oily wastewater [133]. Membrane
function is severely diminished when oil and surfactants adsorb onto the membrane surface
and/or into the membrane pores. Recently, oil removal from water using hydrophobic
and oleophilic materials have attracted much attention [134,135]. It has been thoroughly
covered in the previous section. However, the superhydrophobic and Superoleophilic
membranes are more effective for separating the water-in-oil emulsions [136]. These mem-
branes may fail or perform poorly when dealing with oil-in-water emulsions. Therefore,
superhydrophilic and underwater superoleophobic membranes are required to address the
abovementioned issues.

The superhydrophilic and underwater superoleophobic hydrogel-coated mesh were
designed to separate the oil and water mixtures. It can separate the various oil/water
mixtures, including vegetable oil, gasoline, diesel, and crude oil/water, with a separation
efficiency of >99%. The underwater superoleophobic interface with minimal oil drop
affinity prevents the coated mesh from clogging, making it reusable. It is a novel attempt
to harness wettability to build next-generation oil/water separation materials, which
might be used in industrial oily wastewater treatments and oil spill clean-up. The PAM
hydrogel-coated mesh demonstrates underwater superoleophobic behavior with an oil
contact angle (OCA) of 155.3◦ ± 1.8◦ (Figure 9). When hydrogel coatings touch oil droplets,
water is trapped in the rough nanostructures, forming an oil/water/solid interface. These
trapped water molecules reduce oil droplet-to-surface interaction and improve separation
efficiency [137].
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Figure 9. PAM hydrogel-coated mesh oil/water experiments. Mesh pores are 50 µm. (a) Coated mesh
was fixed between two glass tubes, and crude oil and water were added to the upper tube. (b) Water
penetrated the coated mesh whereas oil remained in the upper glass tube. (c) The oil rejection
coefficient of PAM hydrogel-coated mesh for various oils. (d) As-prepared PAM hydrogel-coated
mesh demonstrates remarkable wettability with underwater superoleophobic and low oil-adhesion
qualities [137]. Reprinted with permission from Ref. [137] Copyright 2011 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim.

Oil–water emulsion separation was made easier by the super-hydrophilic/underwater
superhydrophobic properties of the TiO2@GO/PEN fiber composite membrane, enhancing
its anti-fouling capabilities [138]. The hydrothermal technique followed by UV-initiated
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polymerization was used to create CuO@PAA composite membrane on the copper mesh.
Inorganic CuO rods improved PAA hydrogel’s stability and abrasion resistance, whereas
water absorbent PAA resin increased its underwater oil repellence. As predicted, the
CuO@PAA composite membrane separated kerosene-water, hexadecane-water, soybean
oil–water, and rapeseed oil–water mixtures with high efficiencies above 99.90% and ex-
cellent water permeation flux of 5700 LMH With a kerosene contact angle of 160.4◦, the
CuO@PAA membrane proved superoleophobic underwater (Figure 10). CuO@PAA mem-
brane separated oil–water mixtures continuously without fouling.
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Figure 10. Separation efficiencies of CuO@PAA membrane for various oil–water combinations
(a–c) and water penetration fluxes (d). Insets 10a, b, and c show oil–water combinations and filtered
water; 5d shows hexadecane, soybean oil, and rapeseed oil on CuO@PAA membrane in water [139].
Reprinted with permission from Ref. [139]. Copyright © 2023 Elsevier B.V. All rights reserved.

Therefore, the kerosene droplet could quickly separate from the surface at a tilting
angle of 2◦ without leaving any residue, indicating a weak adhesive force between the sur-
face and the oil droplet. In addition, the water contact angle of the CuO@PAA membrane
was 0◦. It proves that the CuO@PAA membrane was superhydrophilic and had a high-
water absorption capacity, which was advantageous for its oil-repellent properties [139].
Recently, a workable self-assembly method was used to synthesize a biodegradable and
biomimetic composite membrane with a 2D Voronoi-like BC nanonet skin layer and porous
starch fiber matrix. The as-fabricated composite membrane displayed exceptional selective
super-wettability due to the cooperative action of the sub-micron-scaled pore size and
superhydrophilicity 0◦/superoleophobic 150◦ of the hydrated nanonet skin (Figure 11).
Moreover, the composite membrane might serve as a better platform for the separation of
immiscible oil–water mixtures and oil–water emulsions due to the permselective intercep-
tion effect of the nanonet skin layer and the high porosity structure [140].
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Jin et al. suggested an electrostatic spinning strategy to construct a superhydrophilic/
underwater superoleophobic PSA/PVP nanofibrous membrane for oil–water emulsion
separation. This superhydrophilic/underwater superoleophobic nanofibrous membrane
demonstrated exceptional separation efficiency of 99.7%. Adding 3% PVP to the PSA
membrane increased pure-water flux by 835% compared to a pure PSA nanofibrous mem-
brane (220 LMH). The underwater contact angles for all the tested membranes were above
150◦. The developed membranes have shown remarkable cycle stability and extraordinary
resistance to organic solvent corrosion, indicating their tremendous potential for use in
the oil–water separation of wastewater in harsh environments [141]. Xie et al. presented
the development of an environmentally friendly and very durable RGO composite mem-
brane for oil/water separation via intercalation of nanoparticles [142]. More recently, the
one-step co-deposition of polydopamine and chitosan-tripolyphosphate (CS-TPP) nanopar-
ticles utilizing the ion gel approach made the nylon membrane very hydrophilic and
underwater superoleophobic [143]. With an undersea oil contact angle (UOCA) of 179.6◦,
the obtained superhydrophilicity CS-TPP@PDA@nylon membrane demonstrated good
anti-fouling performance by combining the hydrophilic coating of polydopamine and the
hydrophilic nanoparticles produced by the ion gel approach. The oil-in-water emulsions’
average particle size was 50.9 to 1832.0 nm; the designed membranes were able to sepa-
rate all the 12 emulsions with a separation efficacy of 97.5%, and for chloroform-in-water
emulsions, the separation efficiencies were more than 99.94%. Table 2 summarizes some
characteristics and oil–water separation performance of underwater superhydrophilic and
superoleophobic membranes and materials.

Through this discussion, it is clear that the separation capabilities of conventional
membranes for the treatment of oily wastewater are weak, and they have a short life cycle
because of their rapid fouling. Studies in the literature have generally concentrated on
constructing sophisticated membranes with excellent separation performance, including
high water fluxes, high rejections, and exceptional anti-fouling capabilities. Special wet-
table membranes have shown a strong tendency to replace conventional membranes for
oil/water separations. Special wettable membranes are receiving great importance due to
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their high fluxes, excellent rejections, and enhanced anti-fouling behavior. Although exten-
sive research has been conducted to develop special wettable membranes, much room is
still left to introduce the facile route and stable materials for designing the next-generation
membranes. For the scaleup of the special wettable membranes to treat the oily wastewater,
membranes must sustain for a longer time in harsh physical and chemical conditions.

Table 2. Comparison of the performance of the superhydrophilic and superoleophobic membranes
for oil/water separation.

Materials/Membranes Filtration Type Emulsion
(Oil-In-Water or

Oil/Water Mixtures)

Pressure
(Bar)

Water Contact
Angle

Underwater Oil
Contact Angle

Separation
Efficiency

Ref.

polyacrylamide
(PAM)
hydrogel-coated
mesh

Microfiltration Oil used: Gasoline, diesel,
vegetable oil, hexane, and
petroleum ether

Gravity 0◦ 155.3◦ ± 1.8◦ 99% [137]

CuO@polyacrylic
acid(PAA)

Microfiltration Oil used: kerosene–water
mixtures

Gravity 0◦ 160.4◦ 99.90%, [139]

Polysulfonamide/
Polyvinylpyrrolidone
Nanofibrous
Membranes

Microfiltration Oil used: n-hexane Gravity 0◦ 150◦ 99.7% [141]

biomimetic
BC/starch nanonet
membrane.

Microfiltration Oil used: diesel, vegetable
oil, hexane, petroleum
ether, and silicon oil

Gravity 0◦ 150◦ 99.996% [140]

TiO2@GO/PEN FCM Microfiltration Oil used: petroleum ether 0.4 0◦ 162.5◦ 99% [138]

FOGE-TA-SSM Microfiltration Oil used: kerosene,
cyclohexane, n-hexane,
n-dodecane, and
petroleum ether.

Gravity 0 155 99% [144]

AL/RGO@PDA Microfiltration Oil used: soybean oil,
engine oil, n-hexadecane,
kerosene, and
trichloromethane

- 0◦ 151◦ 99.10% [142]

PVP-UiO-66-
NH2/PAN

Microfiltration Oil used: n-hexane Gravity 0◦ 165.4◦ 99.2% [145]

The
polyaniline-coated
alumina membranes

Microfiltration Oil used: diesel 1.5 0◦ 150◦ 97% [58]

CFHP/PDA-coated
membrane

Microfiltration Oil used: dichloromethane
(DCM), petroleum ether,
chloroform, gasoline,
hexane, and
methylbenzene

Gravity 0◦ 150◦ 99.96% [146]

ceramic membrane
with TiO2 nanowire

Microfiltration Oil used: Diesel 0.1–0.3 <5◦ 158◦ 97% [147]

MXene@TiO2/PEN
membrane

Microfiltration Oil used: Isooctane 0.4 0◦ 155◦ 99.13% [148]

CS-TPP@PDA@nylon
membrane

Microfiltration Oil used: Methyl silicone
oil, colza oil, or diesel oil

Gravity 0◦ 179.6◦ 99.94% [143]

PVDF@ZnO
membrane

Microfiltration Oil used: n-hexane, petrol,
toluene, and diesel

Gravity 0◦ 162◦ 99% [149]

6. Brief Discussion of the Mechanism of the Oil/Water Separation by Using Special
Wettable Membranes

Two important phenomena govern the membrane-based separation of oily wastewater:
the size exclusion principle and the surface wettability of the membrane [150–152]. While
the former plays a significant role in solvent passage through the membrane channels, the
latter determines the affinity of the surface for water or oil molecules. The size exclusion
principle provides an avenue to discriminate between oil and water molecules based
on size. Tiny water molecules tend to pass through depending on the pore size, while
bulky oil molecules are blocked. However, in some instances, dispersed oil droplets can
squeeze and penetrate through the pores and stop the water molecules from passing
through a phenomenon known as pore plugging [153]. When this happens, a decline in
flux and oil rejection is observed. Thus, controlled just by the size exclusion, the fouling
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of the membrane would be faster. Thus, to minimize this, the surface roughness and
the surface energy of the oily wastewater treatment membranes must be controlled to
either make them hydrophilic/oleophobic or hydrophobic/oleophilic. Even the stratified
oil/water mixtures in which the droplet size is greater than 20 µm can be easily separated
using superwettable materials with a pore size greater than a few tens of micrometers. In
superhydrophilic surfaces, the water droplet spreads rapidly and passes due to its strong
interaction with the surface where the oil is rejected. The superhydrophilic surfaces of
the membranes usually possess high surface energy polar groups, including the sulfonic
acid, hydroxyl, aldehyde, amino, and carboxyl groups [154]. The superhydrophobic and
superoleophilic designed membranes work exactly opposite to the superhydrophilic and
underwater superoleophobic membranes as these membranes possess low surface energy,
which allows the rapid spread of the oil on it and blocks the water. Thus, the special
wettable membranes can easily filtrate or adsorb the relevant phase according to the
designed surface wettability [34]. However, special wettable surfaces with loose pores
are more suitable for the stratified mixtures, but when the emulsified droplet size is tiny,
the special wettable membranes with the loose pores may not much effective. Therefore,
more rigorous control of the pore size is also required, along with the special wettability, to
achieve the required separation efficiency.

7. Challenges and Future Perspective

From the discussion, it is clear that extensive research is going on in the treatment of
oily wastewater, which usually represents the oil-in-water emulsion. Special wettable mem-
branes are also dealing with the subject of water-in-oil emulsions, which have industrial
significance. Apart from the extensive progress in the field, many challenges are associated
with the special wettable membranes for oil/water separations. Challenges are always
opportunities to solve the problem effectively and bring the special wettable membranes
to the next stage and near the industrial and environmental demands. Numerous studies
in literature have shown that special wettable membranes have been designed that work
under gravity with exceptionally high flux. However, the membranes that show high
flux under gravity are usually more effective for treating the layered oil/water mixtures
but may not be much effective for separating the emulsions. Therefore, more rigorous
control of the pore size is required to have a synergistic effect of special wettability and
the size exclusion principle to treat the emulsified oil/water feed [155]. One advantage
of special wettable membranes over adsorbent is separating the layered oil/water mix-
ture is that the adsorbent can saturate after some time, then the adsorbent should be
regenerated for the next cycle [156] and special wettable membranes are advantageous
for continuous oil/water separation, but one of the major challenges is associated with
the fouling of the surface. Even during the layered oil–water separation, some challenges
may appear apart from their special wettability. For example, in gravity-based separation,
while using the superhydrophobic membranes, the water may make the first layer due to
gravity and prevent the passage of the light oil. This issue can be resolved by appropriately
designed separation assembly. The surface energy is usually lowered by using the fluorine-
containing organic linker to enhance the superhydrophobicity of the membranes. The
fluorine-containing linkers may be responsible for secondary environmental contaminants.
Therefore, there is a need to find environmentally friendly low surface energy materials
to tune the characteristics of the membranes. The special wettable membranes are less
explored for complex systems, such as produced water, highly viscous components, and
different surfactant stabilized oils, in which surfactant can also perform its role in fouling
the membrane surface.

Furthermore, more efforts are required to design the solvent resistance membranes
as some polymeric membranes lack the appropriate chemical stability. For instance,
poly(ethylene terephthalate) offers good resistance to various solvents, chlorine, and
acids [157]. Chinmoy Bhuyan et al. designed the organic solvent-resistant cellulose
nanofiber-poly(ethylene terephthalate) nanocomposite membrane and used it to treat
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the petroleum industry wastewater [158]. Sustainable sources have also been used to
develop the NF membranes, which is a new direction to design the membranes using
environmentally friendly processes [159]. Similarly, sustainable sources have been used
to develop hydrophobic thin film composite NF membranes, which offer good solvent
resistance [160]. Furthermore, the stability of the membranes for oil/water separation can
be enhanced by crosslinking the polymers [161].

Therefore, more efforts are required to investigate the mechanisms of the separation of
the membranes for complex oil/water systems, and more evaluation of the membranes is
necessary for real oily wastewater instead of simulated ones to see the industrial practicality
of the special wettable membranes.

8. Conclusions

In summary, this review discusses the recent progress of special wettable membranes
for the oil/water separation application. Oily wastewater has become a severe environmen-
tal concern due to rapid industrialization and periodical oil spills. The membranes faced
various kinds of fouling during the operation, such as complete blocking, intermediate
blocking, standard blocking, and cake layer formation. The fouling with the oil is more
complex as the liquid drops under pressure can squeeze and merge to make a tighter layer
which results in a sharp decline in flux, and high pressure can have a negative impact on
the separation efficiency as the liquid drop under pressure can squeeze and pass through
the pores which are smaller than droplet size. Special wettability of the membranes is
one of the critical solutions to enhance the performance of the membranes. The various
wettability models based on the contact angle have been presented, including the Young
model for smooth surfaces, the Wenzel model, and the Cassie–Baxter model for rough
surfaces. Based on wettability, membranes can be divided into two major categories. One is
oil selective, which is defined by its superhydrophobic and superoleophilic nature. These
membranes selectively allow the oil to pass and reject the water. The second category
of the special wettable membrane is the water selective, which is superhydrophilic and
underwater superoleophobic. This sort of membrane selectively allows the water to pass
and reject the oil. Although extensive work can be seen in the literature, the stability of the
special wettable membrane is still a concern for the scale-up of these membranes.
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