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Abstract: Polysaccharides-based injectable hydrogels are a unique group of biodegradable and
biocompatible materials that have shown great potential in the different biomedical fields. The
biomolecules or cells can be simply blended with the hydrogel precursors with a high loading
capacity by homogenous mixing. The different physical and chemical crosslinking approaches
for preparing polysaccharide-based injectable hydrogels are reviewed. Additionally, the review
highlights the recent work using polysaccharides-based injectable hydrogels as stimuli-responsive
delivery vehicles for the controlled release of different therapeutic agents and viscoelastic matrix
for cell encapsulation. Moreover, the application of polysaccharides-based injectable hydrogel in
regenerative medicine as tissue scaffold and wound healing dressing is covered.
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1. Introduction

Polysaccharides (PSs) are abundant and reproducible natural polymers that consist
of monosaccharide units linked together through glycosidic bonds. These polymers can
have a linear or branched structure, with one type of monosaccharide building unit (ho-
mopolysaccharides), or contain two or more types of monosaccharide units (heteropolysac-
charide) [1]. Natural PSs have various extraction resources, such as marine algae, weeds,
plants, microbes, and animals (Figure 1). Meanwhile, semi-synthetic PSs such as chi-
tosan and cellulose ethers are produced by the chemical or enzymatic modifications of the
parent polysaccharides [2–4]. Moreover, PSs can be classified according to their charge
into positively charged polysaccharides, e.g., chitosan, negatively charged PSs, e.g., al-
ginate, heparin, hyaluronic acid, pectin carrageenan, and neutrally charged PSAs, e.g.,
dextran, cellulose, and starch. The variation in the PSAs chemical composition, degree
of polymerization, average molecular weight, and the diversity of the reactive functional
groups (hydroxyl, carboxyl, and amino) potentially impacted their chemical reactivity [5,6].
Additionally, their mechanical stability, physicochemical diversity, and broad-spectrum
biological activities such as microbial, antioxidant, anticoagulant, and antitumor certified
them as suitable candidates for biomedical applications [7–11].

Hydrogel is a crosslinked polymer with a three-dimensional, microporous network
structure that can retain water, swell, and de-swell without dissolving [12–14]. The presence
of one or more hydrophilic functional groups (OH, CO2H, SO3H, or NH2) along the hydro-
gel network grants the hydrogel the ability to absorb water. Moreover, the swelling rate of
the hydrogel depends on the degree of crosslinking, and the external environments, such
as pH, temperature, salts type, and concentration, mainly depend on the external environ-
ment [15,16]. Different techniques have been proposed for synthesizing and crosslinking
the hydrogels, which could proceed parallel to polymerization or after growing the polymer
chains. The degree of the polymer crosslinking controls these parameters in the hydro-
gel, such as the elastic modulus, swelling properties, surface morphology, and network
porosity [17,18].
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Figure 1. Natural polysaccharides: structural features and properties. 

Polysaccharides-based injectable hydrogels (PSIHs) are a class of hydrogels that un-
dergo sol-gel phase transition upon injection in response to physical, chemical, or biolog-
ical stimuli [19]. The external stimuli could be changes in ionic strength, temperature, or 
visible light UV exposure. Like other conventional hydrogels, they are characterized by 
their ability to absorb and retain water, flexibility, porosity, 3D-dimensional structure, hy-
drophilic or amphiphilic nature, and softness. Moreover, their injectability, biocompati-
bility, and bio-degradability grant the hydrogels the credential to be employed exten-
sively in various biomedical applications [20]. After loading the hydrogel precursors with 
the biologically active agent (e.g., drugs, proteins, enzymes, cells, vitamins, and natural 
extracts), they can be injected into living organisms through a tiny surgical hole using a 
syringe (Figure 2) [21]. In this review article, we intend to present the different methods 
used to fabricate injectable hydrogels based on polysaccharides and their applications in 
the encapsulation and release of therapeutics and regenerative medicine.  

Figure 1. Natural polysaccharides: structural features and properties.

Polysaccharides-based injectable hydrogels (PSIHs) are a class of hydrogels that un-
dergo sol-gel phase transition upon injection in response to physical, chemical, or biological
stimuli [19]. The external stimuli could be changes in ionic strength, temperature, or visible
light UV exposure. Like other conventional hydrogels, they are characterized by their abil-
ity to absorb and retain water, flexibility, porosity, 3D-dimensional structure, hydrophilic
or amphiphilic nature, and softness. Moreover, their injectability, biocompatibility, and
bio-degradability grant the hydrogels the credential to be employed extensively in various
biomedical applications [20]. After loading the hydrogel precursors with the biologically
active agent (e.g., drugs, proteins, enzymes, cells, vitamins, and natural extracts), they can
be injected into living organisms through a tiny surgical hole using a syringe (Figure 2) [21].
In this review article, we intend to present the different methods used to fabricate injectable
hydrogels based on polysaccharides and their applications in the encapsulation and release
of therapeutics and regenerative medicine.
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2. Factors That Determine the Injectability of Hydrogels

The hydrogel is considered injectable if it can undergo a reversible sol-gel phase
transition following the injection into the site of action in response to exposure to one
or more external stimuli (visible light, UV light, change in temperature or pH, enzyme
concentration) at the site of injection. Additionally, gelation kinetics (rate of transition from
solution phase to gel phase) is an essential parameter in determining the injectability of
the hydrogel. The viscosity and the ratio or concentration of the polymeric precursors,
in addition to the method of coupling or crosslinking, are factors that control the rate of
phase transition (gelation) and the degree of injectability. If the rate of phase transition is
very slow, it can result in leakage of the hydrogel precursors before coupling, and if the
rate is very high, it can cause clogging of the injection needle and inadequate dispersion
and distribution of drugs into the IHS. Moreover, the mechanical properties of hydrogels
strongly influence their ability to mimic tissues in biomedical applications IHs, which are
used as tissue scaffolds, should display robust mechanical strength and stiffness to tolerate
the repetitive mechanical deformation in vivo. Another critical factor is the hydrogel
porosity; highly interconnected and highly organized porous networks, which can be
micro- or nanoscale, according to the applications, are preferred for the hydrogel.

3. Preparation Techniques and Mechanism

Various approaches to preparing polysaccharide-based injectable hydrogels (PSIHs)
have been explored. Polysaccharides, with their biocompatibility, physiochemical structure
diversity, and flexibility for chemical modifications with additional functional moieties
or linkers, are considered perfect candidates for the fabrication of IHs and can easily
trigger the gelation process under physiological pH, body temperature, or UV exposure.
Generally, hydrogel crosslinking can occur via one or more mechanisms, either physically
or chemically, when the hydrogel precursors are subjected to an external stimulus (heat,
UV irradiation, or pH change) [22–25]. The rate of hydrogel injectability is controlled by
the chemical structure and concentration of the polymeric chains, the mechanism through
which the IHs are formed [26,27].

3.1. Physical Crosslinking

In hydrogels that physically crosslink, the crosslinking is processed by noncovalent
bonds. Physical crosslinking involves, e.g., electrostatic interactions (ionic and hydrogen
bonding), host–guest interactions, and hydrophobic interactions. IHs produced by physical
crosslinking in response to exposure to physical, photoinitiator, or chemical stimuli are
usually reversible and display responsiveness to stimuli [20,28].

3.1.1. H-Bonding

Hydrogen bonding has been promised as a common crosslinking strategy since it can
provide the possibility to prepare IHs with thermoelectricity and self-healing properties
at the same time [29–31]. IHs can be formed in response to the H-bonding between
the different functional groups (OH, CO2H, SO3H, or NH2, etc.) along the polymeric
chains [32,33]. For example, chitosan modified with adamantane (AD) underwent self-
crosslinking through the formation of inter-chains hydrogen bonding [34]. Geng et al. [32]
developed injectable, sprayable, and hemostatic hydrogels by mixing tannic acid (TA) and
O-carboxymethyl chitosan (CMCS) at different ratios; the hydrogel was spontaneously
formed without an external stimulus, in particular in the presence of benzene boroniconic
acid (BDBA) (Figure 3). The CMCS–TA–BDBA hydrogel is assembled via hydrogen bonds
between TA and CMCS; meanwhile, BDBA forms dynamic boronate ester bonds with TA.
The resulting CMC-based IH displays a rapid gelation rate (∼10 s) and self-healing ability
within 12 h at 25 ◦C. Moreover, the hydrogel demonstrated a biocompatibility profile when
tested against MCF-7 human breast cancer cells.
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Figure 3. Formation of CMCS–TA–BDBA hydrogel via hydrogen bonding and boronate ester bonds
with TA (adapted with permission from Geng et al., 2020).

3.1.2. Hydrophobic Interactions

This crosslinking approach is commonly used for the preparation of reversible IHs.
This mechanism works for amphiphilic polymers, which contain hydrophobic moieties
(gelators) that gelate upon increasing the temperature [35–37]. For example, Hsiao et al. [38]
reported the development of self-assembled injectable nanogels using amphiphilic
carboxymethyl-hexanoyl chitosan (CHC) with glycerophosphate disodium salt. The result-
ing nanogel was employed as a drug delivery carrier to control the delivery of Genipin. In
another study, Lu et al. [39] prepared pH-responsive in situ injectable hydrogels to encap-
sulate berberine. The hydrogel was formed by blending carboxymethyl hexanoyl chitosan
(CHC) with low molecular weight hyaluronic acid (LMW HA). The formed nanoparticles
self-assembled into injectable hydrogels by stirring (Figure 4). The hydrogel sustained the
release of berberine at pH 6.0 (simulating inflamed arthritic articular cartilage). Moreover,
the hydrogel showed biocompatibility when protecting the chondrocytes against sodium
nitroprusside-induced apoptosis. Moreover, the gels demonstrated slower biodegradation
rates between pH 5.0 and 6.0 compared to pH 7.4.
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3.1.3. Ionic Interactions

Ionic crosslinking between oppositely charged polymers (polyelectrolytes); cationic
polymers, e.g., chitosan polyethylenimine (PEI), with anionic polymers, e.g., sodium al-
ginate, carrageenan, tannic acid, chondroitin sulfate) [37]. In this type of IHs, the rate of
hydrogel injectability depends on the pH, the ratio between the oppositely charged precur-
sors, and temperature. For example, blending chitosan quaternary ammonium salt and
anionic sodium alginate generated a dual crosslinking hydrogel with excellent injectabil-
ity. The formed hydrogel showed a uniform 3D network structure, robust mechanical
properties, and good biocompatibility toward NIH-3T3 cells [40]. The injectable hydrogel
formed due to ionic interaction and hydrogen bonding between carrageenan, locust bean
gum, and gelatin successfully accelerated the in vitro wound healing in HUVEC cells and
tissue repairing [41]. Chen et al. fabricated a high-strength, tough, and self-healable IHs by
grafting poly (acrylic acid) into carboxymethyl cellulose (CMC), followed by crosslinking
with Fe3+ ions [42]. Similarly, the IHs prepared by ionic crosslinking of κ-carrageenan with
chitosan/nanohydroxyapatite were used as a platform to sustain the release of ciprofloxacin
(Figure 5) [43].
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3.1.4. Host–Guest Interaction (Inclusion Mechanism)

In this mechanism, one molecule has a cavity (host). Inside this cavity, the other
molecule (guest) is embedded. Macrocyclic compounds (e.g., cyclodextrins (CDs), cal-
ixarenes, and cucurbit[n]urils), crown ethers, catenanes, cyclophanes, pillararene, cryp-
tophanes, and porphyrins) demonstrated potential efficiency as the host for inclusion
complexation [44–46]. These macrocycles have unique internal and external properties that
can capture guest molecules and form inclusion complexes in the solvent [47]. Cyclodex-
trins (CDs) have a hydrophobic inner cavity and can host hydrophobic guest molecules
such as adamantane (Ad), azobenzene, etc. [48,49]. In this regard, Okubo et al. [50] inno-
vated thermoresponsive IHs based on the interactions between various cyclodextrins (CD)
and stearate-modified hydroxypropyl methylcellulose (HM-HPMC) through the inclusion
mechanism (HM-HPMC/β-CD). Based on the thermoresponsive sol-gel transition property,
the appropriate formulation was selected and studied for its ability to encapsulate and
control the release of insulin, a model drug, from the hydrogel after subcutaneous adminis-
tration. In another attempt, the host–guest inclusion complexation between polymerized
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β-cyclodextrin (CDP) and adamantane-conjugated Pluronic F127 (F127-Ad) developed
self-assembly thermoreversible, micels such as IHs as well, as shown in Figure 6. The
hydrogel revealed in vitro and in vivo long-term stability for up to 30 days and endowed
the sustained release of insulin and gelatin [51].
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3.2. Chemical Crosslinking

The injectable hydrogel is formed in the chemical crosslinking approach due to co-
valent bonds between the polymeric chains [21]. Michael-type addition, click reactions,
disulfide linkage, photopolymerization, hydrazone, and imine-linkages are involved in the
formation of reversible covalent bonds and formation of injectable hydrogels. The chemical
coupling and hydrogel formation are usually initiated upon the addition of nucleophile-
bearing small molecules or polymers with proper functionality. The chemical crosslinking
is generally triggered by external physical stimuli such as photoinitiation, heat, pH change,
or enzymatic reactions to induce the slinking between the polymeric chains [52]. Unlike
physical crosslinking, covalent crosslinking is more stable, especially in physiological con-
ditions, giving chemical crosslinking preference over physical crosslinking in controlling
drug release [34,37].

3.2.1. Schiff Base Coupling Reactions

The reaction between a primary amine-containing polymer or small molecule and
an aldehyde-containing polymer or small molecule results in the formation of reversible
imine, hydrazone, or oxime linkages (Schiff base bonding). Besides, the reaction is highly
selective and can process very smoothly at a fast rate without using a hazardous catalyst.
Therefore, the hydrogel can recover its integrity and shape if exposed to surface disruption
by an external force. In addition, the Schiff base or acyl hydrazone bonds are stable in the
neutral and alkaline pH, but they are easily hydrolyzed in acidic conditions at pH 5 or
less [53]. The well-known example of such a mechanism is the crosslinking of chitosan
by glutaraldehyde [54,55]. Moreover, because the imine and hydrazone linkages-based
IHs have the advantages of self-healing, sensitivity, and response to the pH changes, they
are potentially utilized as site-selective platforms for the smart localization and release of
different therapeutic agents [53,56,57], cell therapy [58,59], tissue regeneration [60,61], and
dressings for wounds [62–66]. As a representative example, the preparation of injectable
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hydrogels and their application as antibacterial, self-healing, and adhesive biocompatible
wound dressings were presented by Chen et al. [67]. Chen and his colleagues developed
a series of multifeatured injectable e-hydrogels via the imine linking between oxidized
konjac glucomannan and chitosan-free amine groups. The resulting hydrogels were 100%
cytocompatible with L929 fibroblasts, even after 72 h incubation. Additionally, the hydro-
gel demonstrated a remarkable ability in promoting the wound healing and inhibiting
the growth of Staphylococcus aureus and Escherichia by 96 and 98%, respectively [67]. In
another example, when the dialdehyde hydroxyethyl starch (AHES) condensed with both
doxorubicin (Dox) and the tumor homing cyclic RGD peptide [68] with the sequence
cyclo(Arg-Gly-Asp-d-Phe-Lys, it produced a dual-targeting-IH. The hydrogel selectively
localized Dox to the αβ-integrin receptor-over-expressing malignant melanoma (A375 cells)
and controlled its release in a pH-responsive manner (Figure 7) [69].
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The properties of hydrazone crosslinked hydrogels can be controlled by the number
of crosslinkable groups, the molecular weight of the polymer, the ratio of gel components,
and water content. Likewise, When dialdehyde gullen gum (GG) reacted with hyaluronic
acid (HA) modified adipic acid dihydrazide, it produced hydrazone crosslinked hydrogels.
The GG-HA-hydrogels demonstrated controllable injectability, swelling, and biodegrada-
tion rates, as well as tunable rheological properties, supporting their use in regenerative
medicine (Figure 8) [70].
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Figure 8. (a) Aldehyde-modification of GG (GGALD), (b) hydrazide-modification of HA (HAADH),
and (c) The chemical structure of hydrazone crosslinked GG-HA hydrogels (adapted with permission
from Karvinen et al., 2018).

3.2.2. Michael-Type Addition Reactions

Michael-type addition reaction is a thermodynamic nucleophilic addition reaction
to α,-unsaturated carbonyl linker. These α,-unsaturated carbonyl compounds involve the
nucleophilic addition reaction between carbanion of nucleophile-bearing polymers, such
as thiols or amines bearing polymers or molecules and polymer functionalized with α,
β-unsaturated carbonyl linker. The development of an injectable in situ forming hydro-
gel using the azo-type Michael reaction between amine-decorated hyaluronic acid and
vinylsulfone functionalized β-cyclodextrins encapsulating doxorubicin [71] in an aqueous
environment at 37 ◦C. The hydrogel sustained the release of Dox and inhibited the prolifer-
ation of 3D cultured-colorectal carcinoma in vitro and drastically reduced the xenograft of
human colon carcinoma in vivo without cytotoxic side effects on the heart (Figure 9). Addi-
tionally, thiolated dextran (Dex-SH) with a degree of substitution of 10 was synthesized
and used for in situ hydrogels formation with vinyl sulfone functionalized Pluronic 127
(PL-VS) or acrylate Pluronic 127 (PL-Ar). The dextran/pluronic hydrogels were formed
under physiological conditions upon mixing. The rheological studies showed that these
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hydrogels with a broad range of storage moduli of 0.3–80 kPa could be obtained by varying
the concentration of PL-VS or PL-Ar from 5 to 20% (w/v). [72]. When thiolated glycol
chitosan (GCH-SH) and vinyl sulfone-modified PEG (PL-VS) were mixed, the in situ IHs
were formed under physiological conditions and successfully applied as biodegradable,
non-toxic scaffolds for cartilage regeneration [73].
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Figure 9. Schematic representation for the preparation of injectable hydrogel via azo-type Michael
reaction between HA-EDA and β-CD-VS(Dox) (adapted with permission from Fiorica et al., 2021).

3.2.3. Disulfide Bridge

The disulfide bonds are formed by the reaction of thiol groups in the polymer chains
to form disulfide bonds in a mild oxidative environment [74]. The process of thiol oxidation
depends on the number of thiolate anions and the change in the pH [75]. For instance,
the coupling of N-acetyl-cysteine (NAC) to chitosan-g-poly N-isopropylacrylamide (CS-g-
PNIAM) and oxidation of the thiol groups under mild conditions resulted in the formation
of temperature-sensitive, pH-responsive IHs with improved mechanical properties com-
pared to non-crosslinked CS-g-PNIAM hydrogel (Figure 10) [76]. A series of injectable hy-
drogels were prepared via in situ disulfide bridge formation between cysteamine-modified
hyaluronic acid and carboxymethyl cellulose at 37 ◦C, without any chemical additive.
The crosslinking between hyaluronic acid and carboxymethyl cellulose took place within
1.4–7.0 min, and the resulting hydrogels displayed superior rheological properties, a high
swelling ratio, good stability, and a sustained release rate for bovine serum albumin
(BSA) [77].
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Figure 10. Formation of IHs via disulfide bonds between the free thiol containing polysaccharide
polymers. (A) copolymerization of N-isopropylacrylamide with chitosan and thiol modification
using carbodiimide (B) gelation mechanism; physical (helix-coil structure) and chemical cross-linking
(disulfide bond formation) (adapted with permission from Wu et al., 2018).

3.2.4. Crosslinking via Click Chemistry

Click chemistry is defined as the chemical reactions that take place spontaneously
between two different reactants at the mild condition in a highly selective manner affording
high product yields. This method includes different sub-categories such as alkyne-azide
click reactions, Diels–Alder (DA), cycloaddition, and thiolene addition reactions [78–80].

Alkyne–Azide

Cu(I)-catalyzed click reaction between molecule carrying azide end and terminal
acetylene moieties from another molecule forming 1,2,3-triazoles ring is an example of click
chemistry. This reaction has attracted attention because it can be achieved in mild conditions
with high substrate selectivity [81]. In this context, J. Zhang and his research colleagues
prepared a series of thermosensitive P(NIPAAm-co-HEMA)/cellulose hydrogels [82]. The
hydrogels were fabricated in situ upon simple mixing of alkyne-modified cellulose and
poly(N-isopropylacrylamide- co -hydroxylethyl methacrylate), (Figure 11).
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Figure 11. Schematic illustration for the Cu(I)-mediated cross-linking between P(NIPAAm-co-HEMA)
and cellulose (adapted with permission from Zhang et al., 2009).

Diels–Alder (DA)

The Diels–Alder crosslinking between furan-modified pectin (PF) and maleimide-
modified chitosan (CA) introduced a multifunctional platform that has been employed
in the suitable and selective delivery of 5-fluorouracil. Hence, the hydrogel showed self-
healing ability at 37 ◦C for 5 h. The cytotoxicity of the resultant hydrogels was found to be
90 after 24 h of cell culture and 80% after 72 h of incubation with mouse fibroblasts (L929).
The 5-FU loading efficiency was found to be 53.67–65.27%, while its release rate increased
by increasing the pH value (Figure 12) [83].
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Cycloaddition

An injectable hydrogel was prepared via the click-crosslinking of hyaluronic acid (HA)
modified with a bone morphogenetic protein-2 (BMP-2) and mimetic peptide (BP). The
hydrogel was employed as a scaffold for bone tissue engineering. The scaffold was pre-
pared simply by mixing HA-Tet and HA modified with cyclooctene-amine. The hydrogel
scaffold was stable for a longer period than HA both in vitro and in vivo, and provided a
biocompatible environment for the osteogenic differentiation of loaded hDPSC [84]. The
hydrogel formulation was prepared from HA-tetrazine (HA-Tet) and HA-cyclooctene (HA-
TCO). The scaffold was prepared simply by mixing HA-Tet and HA-TCO. The Cx-HA
hydrogel scaffold was stable for a longer period than HA both in vitro and in vivo, which
was verified via in vivo fluorescence imaging in real-time. BP acts as an osteogenic differ-
entiation factor for human dental pulp stem cells (hDPSCs). After its formation in vivo, the
Cx-HA scaffold provided a good environment for the hDPSCs, and the biocompatibility
of the hydrogel scaffold with tissue was good. Like traditional BMP-2, BP induced the
osteogenic differentiation of hDPSCs in vitro. The physical properties and injectability
of the chemically loaded BP for the Cx-HA hydrogel (Cx-HA-BP) were nearly identical
to those of the physically loaded BP hydrogels, and the Cx-HA-BP formulation quickly
formed a hydrogel scaffold in vivo. The chemically loaded hydrogel scaffold retained
the BP for over a month. The Cx-HA-BP hydrogel was better at inducing the osteogenic
differentiation of loaded hDPSCs because it prolonged the availability of BP. In summary,
They successfully developed an injectable, click-crosslinking Cx-HA hydrogel scaffold to
prolong the availability of BP for efficient bone tissue engineering (Figure 13) [84].
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Thiolene Addition

Q. Wang et al. [85], utilized thiolated cellulose nanocrystal (CNC-SH) as a nanofiller
and crosslinker for a 2% methacrylate-modified O-acetyl-galactoglucomannan (GGMMA)
hydrogel. CNC was isolated from the microcrystalline cellulose and oxidized to dialdehyde
CNC coupled to cystein via imine linages, which was followed by reductive amination
to generate the corresponding CNC-SH. The photo-initiated thiol-ene addition between
GGMMA and CNC-SH offered a high-efficacy photo-curable, interpenetrating, and in-
jectable hydrogel (Figure 14). The bioactive glass nanoparticle (BaGNP) was embedded
and loaded into the GGMMA/CNC-SH hydrogels, resulting in the sustained release of Si
and Ca ions in simulated body fluid in vitro.
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3.3. Enzyme-Mediated Reaction

Several research groups have studied the preparation of IHs through enzyme-mediated
crosslinking [86,87]. Hydrogen peroxide (H2O2) and horseradish peroxidase (HRP) en-
zymes are usually used to mediate the gelation process, which could be formed within
a few seconds to minutes by varying the concentration of H2O2 and HRP [88,89]. In this
context, a series of dopamine-modified carboxymethyl cellulose (CMC-DA) biodegradable
IHs was prepared by in situ enzymatic crosslinking in the presence of HRP and H2O2. The
CMC-DA hydrogel demonstrated, in vitro, good cytocompatibility against BMSC (with
viability over 90% within 5 days of culture) when evaluated using the three-dimensional
culture method. Moreover, The strong tissue adhesive ability offered by the hydrogel
was about 6-fold over the commercial fibrin glue promising their application as tissue
adhesive material [90]. Moreover, when hyaluronic acid conjugated tyramine (HA-TA)
and chondroitin sulfate-tyramine (CS-TA) crosslinked using HRP/H2O2, the IHs were
obtained within 15 s. The hydrogel was used for in situ encapsulation of mesenchymal
stem cells (BMSCs) and bone morphogenetic protein-2 (BMP2) [91]. Since the use of a
high concentration of H2O2 to catalyze the crosslinking reaction leads to the formation of
heterogeneous hydrogels, L. Wang et al. [92] designed a new method for the horseradish
peroxide peroxidase-mediated hyaluronic acid gel with tyramine. According to his method,
galactose oxidase (GalOX) was employed to catalyze the controlled production of H2O2
(Figure 15). This new tyramine-modified hyaluronic acid (HT) hydrogel exhibited good in-
jectability, favorable cytocompatibility, and efficiency in the encapsulation of bone marrow
mesenchymal stem cells (BMSCs), with a minor inflammatory response. The gelation time,



Colloids Interfaces 2022, 6, 78 14 of 34

swelling behavior, and degradation rate of the HT hydrogel could be modified by varying
the concentrations of HA and GalOX within a certain range.
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Figure 15. Synthetic scheme of; (a) the hyaluronic acid–tyramine (HT) conjugate and (b) hydro-
gel formation by dual-enzymatically crosslinked HRP and GalOX (adapted with permission from
Wang et al., 2020).

3.4. Photo Initiation

In this mechanism, the crosslink is simultaneously initiated by visible or ultravio-
let (UV) light for the hydrogel precursor bearing a methacrylate moiety in the presence
of the initiator [18]. In some cases, photo-crosslinking can be used as a second strategy
for gelation to improve the mechanical properties and stability of the IHs [93,94]. The
low penetration rate of UV light onto the polymer mixture is the major disadvantage
of this mechanism. Therefore, visible light has been used instead of UV light to ensure
a higher penetration ability and lesser damage to the tissue [95,96]. H. Zhao et al. [97]
developed hyaluronic acid (HA)/cellulose nanofiber (CNF) nanocomposite hydrogels by
photo crosslinking between methacrylated CNFs and methacrylated HA in the presence
of lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) as a photoinitiator. The
hydrogel offered in vitro good microenvironment that enhanced the bone marrow mes-
enchymal stem cells (BMSCs) survival and proliferation. Meanwhile, the dual crosslinking
strategy was employed to convert dopamine-modified hyaluronic acid (HA-DA) into the
injectable hydrogel. The black phosphorous nanosheets loaded with a Zr-based porphyrinic
metal−organic framework (PCN@BP) were integrated into the hydrogel and initiated the
photo-oxidative coupling of dopamine by generating reactive oxygen species (ROS) under
660 nm laser irradiation [86]. L. Wang and his collaborators [98], fabricated a series of IHs
with interpenetrating, adhesive, wounds healing, and hemostatic anti-bacterial properties
by dual crosslinking strategy. The first layer of the hydrogel was assembled between
catechol-modified methacryloyl chitosan and methacryloyl chitosan through catechol/Fe3+

chelation. Then, the second layer of crosslinking was achieved by the photopolymeriza-
tion of methacrylate along the chitosan chain. This dual crosslinking plane for chitosan
enhanced the hydrogel compressive modulus and ductility, as illustrated in Figure 16.
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Figure 16. Schematic illustration on the fabrication of a photo-crosslinkable, injectable chitosan-based
hydrogel with enhanced tissue adhesion and antibacterial activity.

4. Biomedical Applications of Polysaccharides-Based Injectable Hydrogels (PSIHs)

IHs prepared by using one or more polysaccharides offer the advantage of their ability
to simulate an environment that more or less mimics the extracellular matrix (ECM) and
can support the cell’s migration, growth, and proliferation. Therefore, PSIHs have received
immense attention for their applications in regenerative medicine and tissue engineering.
In addition, polysaccharide polymers are rich in different types of functional groups that
enable further modification and crosslinking to impart novel features to the resulting
hydrogels for a wide range of uses in biomedical and regenerative medicine.

4.1. Delivery of Chemotherapeutics

The major problem of current delivery systems is the non-selective and the burst or
the delayed release of therapeutic agents from the matrix [99], resulting in a reduction
of the therapeutic efficacy of the drug as well as undesirable biodistribution and organ
toxicity [100,101]. On the other hand, several approaches have been investigated to achieve
selective drug delivery [102,103] and control their release pattern [104,105]. The interest
in stimuli-responsive IHs as a delivery vehicle for different biologically active molecules
has been significantly growing over the last decade [106,107] due to their rapid response
to external stimulus and the capability to homogeneously integrate the active ingredients
within the hydrogel precursors before injection [108–111]. In addition, the encapsulation
of the active therapeutic does not need drash conditions that may affect the drug stability.
Moreover, IHs can be molded in vivo using a double-barrel syringe to extrude the hydrogel
components directly to the desired location [112]. Qu et al. reported the encapsulation
of Doxorubicin (Dox) into the IHs formed through dynamic covalent Schiff-base link-
age between N-carboxyethyl chitosan (CEC) crosslinked with dibenzaldehyde-terminated
poly(ethylene glycol) (PEGDA). The PEGylated chitosan-based IHs had excellent cytocom-
patibility on L929 cells and controlled the Dox release in pH-responsive pattern. Moreover,
the dox released from the hydrogel dramatically inhibited the proliferation of HepG2
cells at a concentration lower than 0.1 µg/mL compared to the untreated cells. When the
Dox concentration in the hydrogel increased from 0.1 to 0.25 µg/mL, its antiproliferative
potency against HepG2 cells was as efficient as that of free Dox. These in vitro findings
were further confirmed by the confocal microscopy study that showed the amount of live
and dead cells was proportional to the Dox concentration in the hydrogel [113]. Another
attempt to encapsulate and control the release of Dox was attained by its encapsulation
into an injectable composite hydrogel formulated via the hydrazone crosslinking between
hydrazide-modified carboxymethyl cellulose (CMC-NH2) and dialdehyde carboxymethyl
cellulose (CMC−CHO) containing poly (ethylene oxide)-block-poly (2-(diisopropylamino)
ethyl methacrylate) (PEO-b-PDPA) copolymers micelles. The IHs exhibited tunable degra-



Colloids Interfaces 2022, 6, 78 16 of 34

dation properties, pH sensitivity, and prolonged the release of Nile Red dye and Dox
drug [114].

On the other hand, PSIHs have been employed for the encapsulation and localization
of water-insoluble drugs such as curcumin [115–117]. For example, the encapsulation
and localization of curcumin into a novel IHs developed by simple Michael addition
crosslinking strategy between thioglycolic acid decorated chitosan (TCS) and poly(ethylene
glycol) diacrylate (PEGDA). The inactivated starch-coated lysozymes (α-amylase and
glucoamylase) were encapsulated into the hydrogel to increase the rate of the drug release
from the hydrogel and improve the anti-tumor activity. The in vivo anticancer activity in
HEPG2 tumor-bearing nude mice revealed the ability of the hydrogel system to effectively
slow down tumor growth and induce selective apoptosis in the tumor cells without any
detectable side effects (Figure 17) [118].
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buffer at 37 °C with shaking (100 rpm) (b); HepG2 cells viability determined using MTT assay when 
incubated with free curcumin, and curcumin loaded TCS/PEGDA injectable hydrogels with (TP3) 
or without lysozyme, (TP0) respectively. Values are normalized to controls (cells without exposure 
to curcumin or hydrogels). (c); H&E staining of tumor, heart, liver, lung, and kidney tissue sections 
from tumor-bearing nude mice (scale bar: 50 μm) (d) and Histological analysis by hematoxylin and 
eosin staining of tumor, heart, liver, lung and kidney tissue from tumor-bearing nude mice (scale 
bar: 50 μm) (adapted with permission from Piao Ning et al., 2022).  
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thylammonium chitosan chloride (HTCC) and polydextran aldehyde (PDA) offered dual-
function, a pH-sensitive injectable hydrogel that was used for the local delivery of vanco-
mycin. Interestingly, the hydrogels with higher vancomycin content extended the drug 
release up to 40 days at pH 7.2, reflecting the matrix’s ability to control the release of van-
comycin due to the reversible imine bonds formed between vancomycin and aldehyde 
groups along the dextran chains. The ability of the vancomycin-loaded gels to reduce the 
count of methicillin-resistant staphylococcus aureus (MARSA) upon subcutaneous implan-
tation in mice. When MARSA were injected directly onto the same site where the gel was 
implanted or at ∼a 1.5–2.0 cm distance, the gel showed (a 99.9999% reduction in MARSA 
count) compared to the nontreated tissue sample. Besides, the histopathology examina-
tion revealed that the group treated with vancomycin-loaded hydrogels had a slight in-
flammatory response at the infected skin site and the tissues surrounding the infected site 
compared to the control group (untreated hydrogel group), which suffered severe inflam-
matory responses. Interestingly, the active formulations that contain (PDA 2.5 wt%, 
HTCC 2.0% with 0.3 wt% vancomycin) showed no in vitro or in vivo hemolytic effect 
(Figure 18) [119]. 

Figure 17. Scheme of preparation of injectable hydrogel by Micheal addition crosslinking between
thiolated chitosan and poly(ethylene glycol) diacrylate (TCS/PEGDA) for localized intratumoral
delivery of curcumin (a); curcumin release behavior from TCS/PEGDA injectable hydrogel in PBS
buffer at 37 ◦C with shaking (100 rpm) (b); HepG2 cells viability determined using MTT assay when
incubated with free curcumin, and curcumin loaded TCS/PEGDA injectable hydrogels with (TP3)
or without lysozyme, (TP0) respectively. Values are normalized to controls (cells without exposure
to curcumin or hydrogels). (c); H&E staining of tumor, heart, liver, lung, and kidney tissue sections
from tumor-bearing nude mice (scale bar: 50 µm) (d) and Histological analysis by hematoxylin and
eosin staining of tumor, heart, liver, lung and kidney tissue from tumor-bearing nude mice (scale bar:
50 µm) (adapted with permission from Piao Ning et al., 2022).

4.1.1. Delivery of Antibiotic

The Schiff base crosslinking between the antibacterial N-(2-hydroxypropyl)-3-trimethy-
lammonium chitosan chloride (HTCC) and polydextran aldehyde (PDA) offered dual-
function, a pH-sensitive injectable hydrogel that was used for the local delivery of van-
comycin. Interestingly, the hydrogels with higher vancomycin content extended the drug
release up to 40 days at pH 7.2, reflecting the matrix’s ability to control the release of
vancomycin due to the reversible imine bonds formed between vancomycin and aldehyde
groups along the dextran chains. The ability of the vancomycin-loaded gels to reduce
the count of methicillin-resistant staphylococcus aureus (MARSA) upon subcutaneous im-
plantation in mice. When MARSA were injected directly onto the same site where the
gel was implanted or at ∼a 1.5–2.0 cm distance, the gel showed (a 99.9999% reduction in
MARSA count) compared to the nontreated tissue sample. Besides, the histopathology
examination revealed that the group treated with vancomycin-loaded hydrogels had a
slight inflammatory response at the infected skin site and the tissues surrounding the
infected site compared to the control group (untreated hydrogel group), which suffered
severe inflammatory responses. Interestingly, the active formulations that contain (PDA
2.5 wt%, HTCC 2.0% with 0.3 wt% vancomycin) showed no in vitro or in vivo hemolytic
effect (Figure 18) [119].
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the hydrogels. Bacterial count after 6 h when 150 μL of the pathogen (b); antibiotic release from the 
vancomycin-containing hydrogels (c); in vivo activity of the hydrogels. Evaluation of antibacterial 
activity upon injection of MRSA subcutaneously in mice (d) (*,** and *** denotes to significant error) 
(adapted with permission from Hoque et al., 2018). 
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Several studies have reported using smart hydrogels [103–105], particularly PSIHs 

for the immobilization of therapeutic proteins and growth factors [120–122]. Recently, X. 
Ma and his research group [123] reported the preparation of hydrazone-based IHs by cou-
pling hydrazide-modified poly (γ-glutamic acid) (γ-PGA-ADH) aldehyde with aldehyde 
hyaluronic acid (HA-CHO). The hydrogels were used as delivery platforms for bovine 
serum albumin (BSA). Meanwhile, the self-crosslinking between aldehyde-hyaluronic 
acid with 3’,3’-dithiobis (propanoic dihydrazide) conjugated hyaluronic, afforded a pH 
dual-responsive IH. Furthermore, the acyl hydrazone and disulfide linkages enabled the 
hydrogel’s acid-switchable, shape-recovery, and self-healing abilities, and controlling the 
release of BSA encapsulated in this hydrogel was accomplished by either the change in 
the pH- or glutathione-mediated intracellular reduction for the disulfide bonds [124]. IHs 
for the encapsulation of growth factors proved efficient in many preclinical and clinical 
studies due to their ability to protect proteins against enzymatic degradation 
[21,120,125,126]. For example, the delivery of growth factors, including the vascular en-
dothelial growth factor (VEGF) and recombinant bone morphogenetic protein 2 (BMP-2), 
by IHs, have been investigated by Divband et al. [127]. The hydrogels were prepared via 
the electrostatic interaction between cationic biguanidinyl chitosan and anionic carbox-
ymethyl cellulose. The tuned release profile of the growth factors from the hydrogel was 
consistent with the rate of human bone growth. Additionally, the Western blot and qRT-
PCR assays indicated that BMP-2/VEGF-containing hydrogel potently induced the osteo-
genic differentiation of dental pulp stem cells, evidenced by the increased expression of 
ALP, collagen 1, and osteocalcin genes [127] as shown in Figure 19. 

Figure 18. Schematic representation of the antibiotic loaded hydrogels (a); antibacterial activity of
the hydrogels. Bacterial count after 6 h when 150 µL of the pathogen (b); antibiotic release from the
vancomycin-containing hydrogels (c); in vivo activity of the hydrogels. Evaluation of antibacterial
activity upon injection of MRSA subcutaneously in mice (d) (*, ** and *** denotes to significant error)
(adapted with permission from Hoque et al., 2018).

4.1.2. Protein and Growth Factors Delivery

Several studies have reported using smart hydrogels [103–105], particularly PSIHs
for the immobilization of therapeutic proteins and growth factors [120–122]. Recently, X.
Ma and his research group [123] reported the preparation of hydrazone-based IHs by cou-
pling hydrazide-modified poly (γ-glutamic acid) (γ-PGA-ADH) aldehyde with aldehyde
hyaluronic acid (HA-CHO). The hydrogels were used as delivery platforms for bovine
serum albumin (BSA). Meanwhile, the self-crosslinking between aldehyde-hyaluronic
acid with 3′,3′-dithiobis (propanoic dihydrazide) conjugated hyaluronic, afforded a pH
dual-responsive IH. Furthermore, the acyl hydrazone and disulfide linkages enabled the
hydrogel’s acid-switchable, shape-recovery, and self-healing abilities, and controlling the
release of BSA encapsulated in this hydrogel was accomplished by either the change in the
pH- or glutathione-mediated intracellular reduction for the disulfide bonds [124]. IHs for
the encapsulation of growth factors proved efficient in many preclinical and clinical stud-
ies due to their ability to protect proteins against enzymatic degradation [21,120,125,126].
For example, the delivery of growth factors, including the vascular endothelial growth
factor (VEGF) and recombinant bone morphogenetic protein 2 (BMP-2), by IHs, have been
investigated by Divband et al. [127]. The hydrogels were prepared via the electrostatic
interaction between cationic biguanidinyl chitosan and anionic carboxymethyl cellulose.
The tuned release profile of the growth factors from the hydrogel was consistent with the
rate of human bone growth. Additionally, the Western blot and qRT-PCR assays indicated
that BMP-2/VEGF-containing hydrogel potently induced the osteogenic differentiation
of dental pulp stem cells, evidenced by the increased expression of ALP, collagen 1, and
osteocalcin genes [127] as shown in Figure 19.
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bilization strategy. Hyaluronic acid (HA) was decorated with adamantane (guest) and in-
teracted with HA modified with methacrylates and 6-(6-aminohexyl)amino-6-deoxy-β-
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Figure 19. Synthesis of cationic biguanidinyl chitosan and anionic carboxymethylcellulose and
its use in encapsulation of endothelial growth factor (VEGF) and recombinant bone morpho-
genetic protein 2 (rBMP-2) (*, ** and *** denotes to significant error) (adapted with permission
from Divband et al., 2021).

4.1.3. Encapsulation of Cells

There have been an increasing number of reports that detail the use of IHs as unique
intelligent materials for the encapsulation of cell therapeutics [128–130]. For example, the
IHs developed by a physico-chemical interaction between Fe3+ and an alginate/gelatin mix-
ture were evaluated for their capability to encapsulate murine bone calvaria pre-osteoblast
(MC3T3-E1) cells and support their survival, proliferation, and osteogenic differentiation.
The study revealed that cells’ proliferation ability was similar to that of cells cultured
on the standard tissue culture polystyrene (TCPS) dish. Likewise, the expression of the
runt-related transcription factor-2 (RUNX2) gene, alkaline phosphatase (ALP) activity, and
calcium precipitation rate were significantly higher for the cells engulfed in the hydrogels
rather than the cells cultured in the TCPS dish [131]. Meanwhile, Miller and his research
group developed a fibrous hydrogel following the advanced host–guest immobilization
strategy. Hyaluronic acid (HA) was decorated with adamantane (guest) and interacted
with HA modified with methacrylates and 6-(6-aminohexyl)amino-6-deoxy-β-cyclodextrin
(host). Moreover, the presence of methacrylate moieties on HA enabled photo crosslink-
ing for the hydrogel. Further electrospinning of HA produced nanofiber hydrogels with
robust mechanical integrity, good shear-thinning behavior, rapid self-healing, and cyto-
compatibility. The hydrogels strongly supported the viability of human mesenchymal
stromal cells (hMSCs) after 7 days of culture (>85%) compared to the nonfibrous hydrogel
(Figure 20) [132].
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Figure 20. The synthesis route of BMSCs-laden injectable hydrogel (a), MSCs osteogenic differenti-
ation within HA-CS hydrogels: The ALP activity of different groups (b), and the ALP staining (c); 
real-time PCR analysis: ALP, Col I, RunX2, and OCN expressions by BMSCs in the hydrogel after 
(d); incubation for 7 and 14 days; H&E staining of bone defect samples of different groups (e). Con-
trol group (1), control group at fourth week (2), the BMSCs-laden hydrogel encapsulated with BMP2 
group at 4th week (3) (** and *** denotes to significant error) (adapted with permission from Miller 
et al., 2021). 
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properties, mimic the extracellular matrix [133]. IHs can regulate cell functions while per-
mitting the diffusion of nutrients, metabolites, and growth factors [134]. According to 
Wang et al. [135], the IHs nanocomposite was prepared by coupling dialdehyde carbox-
ymethyl dextran with dopamine via the Schiff base. Nano-hydroxyapatite/poly(l-glu-
tamic acid) was loaded into the hydrogel and the resulting nanocomposite hydrogel suc-
cessfully healed the rat cranial bone defect. Introducing bisphosphonate ligands (BPL) 
and nano-hydroxyapatite (nHA) effectively promoted the viability, proliferation, migra-
tion, and osteogenesis differentiation of MC3T3-E1 cells. The polypeptide poly(L-glutamic 
acid) (PLGA) was used to mimic collagen. At the same time, the presence of catechol mo-
tifs, BPL, and aldehyde groups endowed the adhesion and angiogenic capabilities of the 
hydrogel. 

4.2.2. Wound Healing 
Wound healing films with rapid anticoagulant, antimicrobial, and healing abilities 

are promising directions for curing serious cutaneous defects, especially in diabetic peo-
ple and those with weak immune responses [136–138]. IHs capable of in situ gelation un-
der physiological conditions have attracted intense research interest. The preference for 
IHs as emerging materials for wound healing is attributed to their ability to maintain a 
moist environment surrounding the wound interface, absorb the exudate, inhibit micro-
bial infections, and allow the oxygen permeation to the covered tissue while cooling the 
surface of the injured area [139–141]. In this context, PSIHs have been extensively investi-
gated for the fabrication of wound dressing films due to their biocompatibility, biodegra-
dability, non-immunogenicity, and diversity in their physical properties and chemical 
structure [142–144].  

Wang et al. [145] reported the development of dual-crosslinked multifeatured hydro-
gel as a wound dressing. Dialdehyde chitosan underwent self-crosslinking via Schiff base, 

Figure 20. The synthesis route of BMSCs-laden injectable hydrogel (a), MSCs osteogenic differenti-
ation within HA-CS hydrogels: The ALP activity of different groups (b), and the ALP staining (c);
real-time PCR analysis: ALP, Col I, RunX2, and OCN expressions by BMSCs in the hydrogel after (d);
incubation for 7 and 14 days; H&E staining of bone defect samples of different groups (e). Control
group (1), control group at fourth week (2), the BMSCs-laden hydrogel encapsulated with BMP2
group at 4th week (3) (** and *** denotes to significant error) (adapted with permission from Miller
et al., 2021).

4.2. Regenerative Medicine
4.2.1. Tissue Regeneration

Multi-featured IHs, with their porosity and viscoelasticity, adhesion, and self-healing
properties, mimic the extracellular matrix [133]. IHs can regulate cell functions while
permitting the diffusion of nutrients, metabolites, and growth factors [134]. According
to Wang et al. [135], the IHs nanocomposite was prepared by coupling dialdehyde car-
boxymethyl dextran with dopamine via the Schiff base. Nano-hydroxyapatite/poly(l-
glutamic acid) was loaded into the hydrogel and the resulting nanocomposite hydrogel
successfully healed the rat cranial bone defect. Introducing bisphosphonate ligands (BPL)
and nano-hydroxyapatite (nHA) effectively promoted the viability, proliferation, migration,
and osteogenesis differentiation of MC3T3-E1 cells. The polypeptide poly(L-glutamic acid)
(PLGA) was used to mimic collagen. At the same time, the presence of catechol motifs, BPL,
and aldehyde groups endowed the adhesion and angiogenic capabilities of the hydrogel.

4.2.2. Wound Healing

Wound healing films with rapid anticoagulant, antimicrobial, and healing abilities
are promising directions for curing serious cutaneous defects, especially in diabetic peo-
ple and those with weak immune responses [136–138]. IHs capable of in situ gelation
under physiological conditions have attracted intense research interest. The preference
for IHs as emerging materials for wound healing is attributed to their ability to maintain
a moist environment surrounding the wound interface, absorb the exudate, inhibit mi-
crobial infections, and allow the oxygen permeation to the covered tissue while cooling
the surface of the injured area [139–141]. In this context, PSIHs have been extensively
investigated for the fabrication of wound dressing films due to their biocompatibility,
biodegradability, non-immunogenicity, and diversity in their physical properties and chem-
ical structure [142–144].

Wang et al. [145] reported the development of dual-crosslinked multifeatured hydro-
gel as a wound dressing. Dialdehyde chitosan underwent self-crosslinking via Schiff base,
forming the first hydrogel layer, and then phytic acid was crosslinked with the first layer
via hydrogen bindings, affording a dual crosslinked tunable IHs. The resulting hydrogel
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possessed inherent adhesion, self-healing, and antibacterial, good self-healing, and bio-
compatibility properties. These intrinsic properties endorse the two-layer hydrogel as an
excellent candidate for biological applications, especially for wound dressings. Similarly,
an injectable, antioxidant, conductive, self-healing, and antibacterial wound dressing hy-
drogel was fabricated by Schiff base coupling between quaternized chitosan-g-polyaniline
(QCSP) and benzaldehyde functionalized poly(ethylene glycol)-co-poly(glycerol sebacate)
(PEGS-FA). When the crosslinking ratio reached (1.5 wt%) the hydrogel (QCSP-PEGS-FA)
showed excellent in vivo coagulation (Figure 21) and significantly enhanced the wound
healing process in vivo abilities in full-thickness skin defect model compared to the QCS
without polyaniline/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film). The
biochemical analysis demonstrated the ability of the hydrogel to cure the injury through
upregulating the gene expression for growth factors, namely, VEGF, EGF, and TGF-β and
promoting granulation tissue thickness and collagen deposition [139].
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Figure 21. DPPH scavenging percentage by the hydrogels (a); weight ratio of the hydrogel in PBS 
at 37 °C for different time periods (b), rheological performance of the hydrogels (c), morphologies 
structure (d), self-healing property (e), anti-hemolytic ability (f), histocompatibility (g), antimicro-
bial activity (h–k) (adapted with permission from Zhao et al., 2017). 

Additionally, hyaluronic acid modified with 2-amino phenylboronic acid immedi-
ately gelated upon mixing with different amounts of tannic acid (TA) and afforded mul-
tifunctional dynamic hydrogels with features that promise their use as wound dressings 
for chronic wound healing. TA served as a reductant for the silver ion, hydrogel precursor, 
and adhesive agent. The hydrogel loaded with silver nanoparticles showed pH response 
and reactive oxygen species scavenging capacity, cytocompatibility with potent and 
broad-spectrum antimicrobial activity [144]. Yang et al. [146], reported the preparation of 
dynamic IHs using oxidized hyaluronic acid (HA-CHO,) which crosslinked with the free 
thiol groups in cysteine-grafted poly(γ-glutamic acid). The coupling is processed via thiol-
aldehyde addition (TAA) under physiological conditions. The hydrogel revealed good 
self-healing capability, adjustable viscoelasticity in vitro and in vivo degradation proper-
ties, and antioxidant activity. The hydrogel significantly enhanced in vitro and in vivo the 
process of wound healing in a full-thickness skin defect model by facilitating angiogenesis 
and collagen deposition compared to the commercial dressing (Tegaderm™).  

Recent studies are focusing on the innovation of wound dressing for healing chronic 
diabetic wounds. In this regard, K. Zhang et al. constructed a bioactive hydrogel in the 
“Pull–Push” approach for treating bacteria-infected diabetic wounds. The hydrogel was 
engineered via the Schiff base reaction between the cationic polymer polyethylenimine 
(PEI), tobramycin (Tob), and oxidized carboxymethyl cellulose (OCMC). Consequently, 
this multifeatured hydrogel (injectability, self-healing, and biocompatibility, pH sensitiv-
ity) exhibited remarkable capability of trapping the negatively charged biomolecules such 
as cell-free DNA, lipopolysaccharides, and tumor necrosis factor-α. This scavenging abil-
ity ameliorated the hydrogel anti-inflammation effects, sustained the release of Tob 

Figure 21. DPPH scavenging percentage by the hydrogels (a); weight ratio of the hydrogel in PBS
at 37 ◦C for different time periods (b), rheological performance of the hydrogels (c), morphologies
structure (d), self-healing property (e), anti-hemolytic ability (f), histocompatibility (g), antimicrobial
activity (h–k) (adapted with permission from Zhao et al., 2017).

Additionally, hyaluronic acid modified with 2-amino phenylboronic acid immediately
gelated upon mixing with different amounts of tannic acid (TA) and afforded multifunc-
tional dynamic hydrogels with features that promise their use as wound dressings for
chronic wound healing. TA served as a reductant for the silver ion, hydrogel precursor,
and adhesive agent. The hydrogel loaded with silver nanoparticles showed pH response
and reactive oxygen species scavenging capacity, cytocompatibility with potent and broad-
spectrum antimicrobial activity [144]. Yang et al. [146], reported the preparation of dynamic
IHs using oxidized hyaluronic acid (HA-CHO,) which crosslinked with the free thiol groups
in cysteine-grafted poly(γ-glutamic acid). The coupling is processed via thiol-aldehyde
addition (TAA) under physiological conditions. The hydrogel revealed good self-healing
capability, adjustable viscoelasticity in vitro and in vivo degradation properties, and an-
tioxidant activity. The hydrogel significantly enhanced in vitro and in vivo the process
of wound healing in a full-thickness skin defect model by facilitating angiogenesis and
collagen deposition compared to the commercial dressing (Tegaderm™).

Recent studies are focusing on the innovation of wound dressing for healing chronic
diabetic wounds. In this regard, K. Zhang et al. constructed a bioactive hydrogel in the
“Pull–Push” approach for treating bacteria-infected diabetic wounds. The hydrogel was
engineered via the Schiff base reaction between the cationic polymer polyethylenimine
(PEI), tobramycin (Tob), and oxidized carboxymethyl cellulose (OCMC). Consequently,
this multifeatured hydrogel (injectability, self-healing, and biocompatibility, pH sensitivity)
exhibited remarkable capability of trapping the negatively charged biomolecules such as
cell-free DNA, lipopolysaccharides, and tumor necrosis factor-α. This scavenging ability
ameliorated the hydrogel anti-inflammation effects, sustained the release of Tob loaded into
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the hydrogel, and greatly accelerated the rate of wound closure in Pseudomonas aeruginosa-
infected diabetic wounds [147].

4.3. Biosensors and Implantable Biomedical Devices

High-performance strain sensors have gained enormous importance for their applica-
tions in wearable devices, artificial intelligence, soft robots, and implantable biomedical
devices. However, the difficulties of high sensitivity, excellent mechanical properties,
strong adhesion, and self-healing abilities, and simplicity of construction [148–152]. The
integration of electric conductive polymers or nanofillers, such as polypyrene (PPy), poly-
thiophene [55], polyaniline (PANI), carbon nanotubes, and metallic nanoparticles into the
IHs, contributed to endowing the hydrogel with the electric conductivity permitting their
use in motion and strain sensors [153–156].

A novel dual ionic, conductive, self-healing IHs was produced by ion complexations
and hydrogen bonding between Fe3+, dialdehyde cellulose nanofibers (DACNFs), and the
carboxyl groups of acrylic acid (AA). When the hydrogels were configured for a wearable
test, some formulations demonstrated high stretching sensitivity with a gauge factor of
13.82 at a strain within 1.6%. The gauge factor (GF) decreased with the incremental strain
within 20%. While the GF was 0.696 between 20 and 300% strain, when it was 0.837 between
300 and 500% [157]. Additionally, Pan et al. [158] developed mussel-inspired injectable
nanocomposite hydrogels by the dispersion of proanthocyanins-coated cellulose nanofibrils
(CNF) into a guar gum (GG) and glycerol solution to prepare (PC-CNF-GG-glycerol). This
hydrogel exhibits great adhesion (7.9 KPa), UV-blocking ability (82%), and ion conductivity.
The strain sensor assembled from the hydrogel exhibited low-weight detection ability
(200 mg) and fast response speed (33 ms). It can also be used for preparing wearable,
portable, and editable electrodes. The new electrode can accurately detect human elec-
trophysiological signals. In another attempt, the multifeatured chitosan-based hydrogel
was fabricated via a Schiff base linkage and hydrogen bonds. The hydrogel demonstrated
desirable injectability, self-healing, and conductivity with pH sensitivity, and intrinsic
broad-spectrum antibacterial properties. Moreover, it accelerated the in vivo healing for
a full-thickness skin-wound model to confirm its outstanding effect on wound healing.
Moreover, the conductive chitosan-based hydrogel can be used as epidermal sensors that
distinguish various human activities in real-time during the time of wound healing [159].
In a different approach, Zhao et al. engineered motion sensors successfully from IHs
packed by embedding silver nanowires into methacrylate alginate film, which underwent
in situ gelations via photopolymerization under green light irradiation [160]. The resulting
sensors possessed characteristic adhesion ability on the skin and organs conformal adhe-
sion (0.24–1.53 kPa), and precise sensitivity for human motions and electrophysiological
signal (GF = 1.63 at a strain range of 0–100%). Moreover, the sensors showed good trans-
parency (~85% transmittance) and reusability, contributing to reducing electronic waste
and environmental burden (Figure 22).
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5. Status and Perspectives

Injectable hydrogels (IHs) have emerged as a smart class of biomaterials and revealed
significant advantages when employed in the pharmaceutical field, achieving site selec-
tivity and controlled release for the therapeutic agent in response to the change in the
physical stimuli (pH, temperature, or enzyme concentration). On the other hand, the robust
mechanical properties and shear-thinning of IHs proved superior performance when used
as scaffolds for regenerative medicine.

Most IHs can be prepared through physical or chemical crosslinking of the precursor
solutions when subjected to external stimuli. In this regard, the gelation rate and the degree
of injectability are the key factors that govern the suitability of the hydrogels for actual
applications. The injection rate of IHs is mainly affected by the viscosity of the hydrogel-
forming precursors. Highly viscous solutions will block the injection needle, while very
low viscous solutions will influence the gelation time. Multistimuli-sensitive IHs must be
developed to solve clogging issues during the injection, including the combination of pH
and temperature-sensitive copolymers.

The formation of IHs with the desired phase transition rate and combined with its fea-
tures the good self-adhesion and self-healing abilities are beneficial for tissue regeneration.

Electric conductivity, flexibility, and stretchability of IHs are the keywords for their
application as strain and motion sensors. While biocompatibility is a critical concern
since the polymers used to assemble the hydrogels and the IHs resulting from the poly-
mers’ crosslinking must not be cytotoxic or cause any devastating actions to the tissues or
whole body when injected in vivo. In this regard, researchers worldwide focus on using
polysaccharides to substitute petroleum-derived polymers partially or entirely. Moreover,
the biodegradation rate of IHs must be tuned according to the application requirements.
For instance, successful IHs used as scaffolds for tissue regeneration, wound healing, or
drug delivery platforms should exhibit a biodegradation rate that is proportional to the
growth and proliferation of the new cells. While IHs employed in drug delivery, their
biodegradability and clearance should not begin until they deliver the cargo to the target
tissue. Selecting a suitable polysaccharide polymer and applying two or more different
crosslinking mechanisms to ensure rapid responsiveness and hydrogel stability are highly
recommended, particularly for site-selective and controlled release of drugs from the HIs.

There are problems with in vivo IHs, should the stability and ability to encapsulate
the active therapeutics or cells should be taken into consideration. Among the proposed
solution to overcome the hydrogel stability is the design of dual or multi-crosslinked PSIHs
that can withstand the microenvironmental changes while releasing their payload in a
controlled manner.

Although the biocompatibility, structure diversity, and low cost of polysaccharides,
they suffer the problem of poor mechanical properties compared to synthetic polymers.
Therefore, the development of advanced hybrid hydrogels that combine in their composi-
tion both the polysaccharides and biocompatible synthetic polymers, e.g., polyurethanes,
polyester, and peptides, greatly improved the mechanical properties of the hydrogels while
retaining their biocompatibility feature.

Much progress has been made in applying IHs to treating diseases, repairing, and
regenerating tissues, sustained release of nutrients, and so on. However, some critical
problems still exist and restrict their applications. For instance, most of the physically
crosslinked IHs are temperature-responsive. Still, increasing the temperature above room
temperature during the subcutaneous injection might accelerate the gelation rate before
the infusion. Additionally, the interaction between the payload and the hydrogels, such as
electrostatic interactions, hydrogen bonding, hydrophobic chemical bonding, etc., must be
considered when designing the hydrogel to adjust the release kinetics.

Most biocompatibility studies focus on the evaluation of hydrogel toxicity. However,
toxicity studies on the fate of hydrogel biodistribution, its biodegradation products, and
their toxicity profiles must also be considered to ensure the long-term safety of the hydrogel
before and after biodegradation.
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Future studies and research should address the problems associated with using IHs.
This includes the fabrication techniques, the solvents used to dissolve the polymers, the
mechanical performance, the response to external stimuli, the stability in the bloodstream,
the production cost, and scaling up to credit IHs the qualifications needed for their actual
applications. Environmental concerns must be regarded during the fabrication of IHs.
Finally, progress in the field of material science and nanotechnology and the increasing need
for smart materials can effectively contribute to creating multifeatured, multifunctional IHs
to meet the growing demands. In addition, the development of IHs with more advanced
properties should be further explored to provide more options for various applications.

6. Conclusions

Injectable hydrogels (IHs) are an important class of materials in light of the drive
in the clinic toward minimally invasive procedures. Developments in polymer science
provide an opportunity for more sophisticated IHs with various and useful properties. As
is demonstrated in this review, exciting research is underway for many different systems.
Understanding the chemical mechanisms of different crosslinking mechanisms is of great
significance for designing smart injectable hydrogels for biomedical applications. Hydro-
gels with proper pH responsiveness, good biocompatibility, and injectability are required
for selective localization sites and to control the release of drugs into the target. Mean-
while, developing IHs with self-healing properties, bioprinting, adhesives, and a tunable
biodegradation rate allowed their application in wound healing and tissue regeneration.
Several research groups innovated smart injectable systems hydrogels by incorporating
several elements and applying dual crosslinking mechanisms to ensure robust mechanical
properties and superior sensitivity to external stimuli.
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