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Abstract: The alarming increase in pesticide residues poses a major threat to aquatic and natural
habitats. Therefore, it has become essential to design extremely operationally and economically
advantageous systems for the removal of carbofuran pesticides from wastewater. Here, an aluminum-
based metal-organic framework (MOF), MIL-53-NH2, and its modified forms, MIL-53-NH-ph, MIL-
53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu, have been successfully synthesized. Full
characterization using IR, 1HNMR, XRD, and SEM was carried out. The prepared MOFs have been
utilized as effective adsorbents for carbofuran in aqueous solutions. The various factors affecting the
adsorption process (pH, time, and adsorbate concentration) were also investigated. Spectroscopic
approaches were used to investigate the adsorption mechanisms. A mixture of π-π stacking contact,
coordination bonding, and hydrogen bond formation can be connected to the current process. The
adsorption of carbofuran from aqueous solutions was best described by pseudo-second-order kinetics
and Langmuir equilibrium isotherm models. MIL-53-NH2, MIL-53-NH-Ph, MIL-53-NH-Ph-Fe, MIL-
53-NH-Ph-Zn, and MIL-53-NH-Ph-Cu demonstrated adsorption capacities of 367.8, 462.1, 662.94,
717.6, and 978.6 mg g−1, respectively.

Keywords: free metal center; aluminum-organic frameworks; carbofuran; adsorption; wastewater

1. Introduction

Worldwide, huge quantities of pesticides are used to control plant diseases. They are
used to kill or prevent pests from harming plants. Pesticide use causes a slew of issues
for both the environment and humans. As a consequence they contaminate water and
soil and cause many diseases in birds, plants, animals, and humans, including cancer,
diabetes, reproductive, respiratory, and neurological disorders [1]. Carbofuran, also known
as 2,3-dihydro-2,2-dimethyl-7-benzofuranol methyl carbamate, is a widely used chemical
in agriculture. The toxicity of carbofuran to mammalian systems has been demonstrated
and it causes concern [2]. The metabolic pathway of carbofuran in organs such as the
brain, liver, muscles, and heart was studied to identify its toxicity for both humans and
animals [3]. Water contaminated with substantial levels of carbofuran makes drinking
water with these residues extremely dangerous [4].

Adsorption and bioremediation are ideal procedures for removing carbofuran from
wastewater because they are ecologically benign, cost-effective, and produce fewer harmful
by-products. Metal-organic frameworks (MOFs) have been employed to improve the
recovery of pesticides from wastewater by adsorption. MOFs are porous three-dimensional
frameworks with open channel systems made up of a metal ion core linked to an organic
linker made up of organic molecules [5]. Nowadays, improving the physical and chemical
stability of MOFs is necessary to increase their use in water treatment [6]. As a result,
finding stable MOFs has become increasingly desirable. MIL-53(Al) is a new adsorbent
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that has an octahedral AlO4(OH)2 node and phthalate groups as a linker. MIL-53(Al) has a
three-dimensional network structure with a one-dimensional open channel [7]. Due to the
huge surface area of this MOF, redesigned pores, and free active sites, pesticides have been
successfully removed from wastewater using this MOF [8].

Ethion pesticide was removed from wastewater using copper-based MOFs (Cu-
BTC) [9] and its adsorption capacity was found to be 0.317 mol g−1. However, when ZIF-8
and ZIF-67 were used, the adsorption capabilities were increased by 2.29 and 1.73 times,
respectively [10]. The MOFs were applied in powder form and suffer from reusability
issues, so, in an attempt to facilitate the adsorption process, Cu-BTC was integrated into
cotton fabric, and, thereby, demonstrated significant ethion pesticide adsorption capacity
and reusability (Table 1). In addition, Cu-BTC was added into cellulose acetate, which
demonstrated improved dimethoate insecticide adsorption capability [11].

Table 1. Adsorption of pesticides from wastewater with MOFs.

Pesticide MOFs Surface Area
(m2 g−1) pH Adsorption Capacity

(mol g−1) Reference

Diazinon MIL-101 (Cr) 2600 7 0.855 [12]
Ethion Cu-BTC 980 7 0.317 [9]

Prothiofos ZIF-8 (Zn) 1800 7 1.07 [11]
Ethion ZIF-8 (Zn) 1800 7 0.726 [10]

Prothiofos ZIF-67 (Co) 1250 7 0.761 [10]
Ethion ZIF-67 (Co) 1250 7 0.549 [10]

Glyphosate UIO-67 (Zr) 2172 4 3.18 [13]
Dimethoate Al-MOF 1260 7 2.24 [14]

Ethion Cu-BTC@cotton 750 7 0.474 [15]
Dimethoate Cu-BTC@ cellulose acetate 965.8 7 1.694 [11]

Prothiofos insecticide was removed from wastewater with ZIF-8 (Zn) and ZIF-67 (Co),
and the metal node in the network was shown to play an important role in the removal
process [10]. MIL-53 MOFs with various amino ratios have recently been employed to
extract dimethoate from wastewater. When the fraction of the amino group was raised,
its maximum adsorption capacity increased, demonstrating that the amino group in the
Al-MOF considerably enhanced the dimethoate adsorption ability [14].

In this study, we present a water-stable MOF MIL-53-NH2 and modified forms (MIL-
53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu), which were
synthesized and characterized to be used as effective sorbents for carbofuran. Furthermore,
the effects of adsorbate concentration, time, and pH on the adsorption process were investi-
gated, and the adsorption mechanism was evaluated by various spectroscopic techniques.

2. Experimental Section
2.1. Materials

The aluminum chloride (AlCl3.6H2O) (99.9%, Aldrich), 2-aminoterephthalic acid
(99%, Aldrich), sodium hydroxide (NaOH), phthalic anhydride (99.9%, Aldrich), dioxane
(99%, Aldrich), ferrous nitrate (Fe(NO3)2) (99.9%, Aldrich), copper nitrate (Cu(NO3)2)
(99.9%, Aldrich), zinc nitrate (Zn(NO3)2) (99.9%, Aldrich), and ethanol ((99.9%, Aldrich),
used in this study were all analytical grade and used without further purification.

2.2. Synthesis of MIL-53-NH2

AlCl3.6H2O (0.66 g, 2.7 mmol), 2-aminoterephthalic acid (1.35 g, 7.5 mmol), and NaOH
(0.6 g, 15 mmol) were dissolved separately in 10 mL of distilled water at room temperature.
These solutions were then mixed, and the resulting slurry was sealed and heated in a
hydrothermal reactor at 110 ◦C for 24 h. The resulting solution was then centrifuged and
rinsed ten times with 10 mL of distilled water. The final product was dried at 80 ◦C for 4 h.
The percentage yield of the synthesized materials was 45%.
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2.3. Post-Synthetic Modification of MIL-53-NH2
2.3.1. Synthesis of MIL-53-NH-ph

MIL-53-NH-ph was produced by dissolving MIL-53-NH2 (1.16 g, 5.2 mmol) and
phthalic anhydride (3.015 g, 20.3 mmol) in 10 mL of dioxane and heating for 24 h at 150 ◦C.
The final product was centrifuged and washed ten times with distilled water then dried at
100 ◦C for 24 h. The percentage of conversion was 54%.

2.3.2. Synthesis of MIL-53-NH-ph-M (M = Fe, Cu, Zn)

MIL-53-NH-ph-M was prepared by reacting MIL-53-NH-ph (1 g, 3.3 mmol) and Fe
(NO3)2 (4.4 g, 24.46 mmol), Cu(NO3)2 (2.4 g, 12.8 mmol), and Zn(NO3)2 (2.9 g, 12.31 mmol)
in 10 mL of ethanol under stirring for 72 h at room temperature. The solution was cen-
trifuged and rinsed ten times with distilled water. The final product was dried at 80 ◦C for
24 h.

2.4. Characterization of the Synthesized Compounds

The morphology of the MIL-53-MOFs was investigated using high-resolution scanning
electron microscopy (HRSEM Quanta FEG 250 with field emission gun, FEI—Eindhoven,
The Netherlands). Elemental analysis was carried out using an ener-gy-dispersive x-ray
spectroscopy (EDX) device (EDAX AME-TEK Analyzer, Mawah, NJ, USA) coupled to the
SEM microscope. An X’Pert PRO PAN diffractometer (Cu-Ka X radiation at 40 kV, 50 mA,
wavelength = 0.15406 cm−1) was used to detect powder x-ray diffraction (PXRD) of MIL-53-
NH2, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu. The
Fourier transforms infrared (FTIR) spectra of the synthesized compounds were obtained
by a JASCO FTIR-4700 spero-photometer. The 1H NMR spectrum of MIL-53-NH-ph was
investigated using a Bruker AVANCE 400 MHZ spectrometer (Bruker, Billerica, MA, USA)
with dimethyl sulfoxide as the solvent (DMSO-d6). The surface area and pore size of the
synthesized compounds were measured at 77 K using a volumetric adsorption analyzer
(ASAP 2420, Micrometrics, Norcross, GA, USA). CNH contents were determined by a
LECO CHNS-932 element analyzer. The metal content of the modified MOFs samples was
analyzed using an atomic absorption spectrophotometer (Perkin-Elmer Analyst 200 AAS,
Waltham, MA, USA).

2.5. Adsorption Study

Adsorption experiments of carbofuran on the synthesized compounds were carried
out at 303 K with shaking at 400 rpm. The experiments were carried out by adding
adsorbent (30 mg) to different concentrations of carbofuran solution (5–30 mg) at pH = 7.
The remaining concentration of the carbofuran solution was detected using ultraviolet-
visible (UV–VIS) spectrophotometry (JASCO) at λ = 286.5 nm, and calculated from a
calibration curve. Several factors, such as carbofuran initial concentration and equilibrium
time, were studied to determine the perfect conditions for carbofuran adsorption on MIL-
53-NH2, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu.
Throughout the experiment, the test tubes were removed periodically at specific time
intervals (15 min–120 min) and centrifuged to separate the adsorbent. The effect of the pH
of the adsorbent (MOF and its modified forms) solution was studied at pH values of 2, 7,
and 9. The solution pH was adjusted using solutions of HCl (0.1 M) and NaOH (0.1 M).
The pH measurements were made using a HANNA instruments digital pH meter (HI 8417
Microprocessor Bench pH/mV/◦C meter). It was found that pH 7 is the optimum pH
for using the prepared MOFs in the adsorption of carbofuran solution. Three replicates
were conducted, and the mean value was used. The adsorbed amount (Qt, mg g−1) of the
studied compounds was calculated using the following equation (Equation (1)):

Qt =
(Co − Ct)V

m
(1)
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where Qt (mg g−1) is the adsorbed amount, i.e., the amount of carbofuran adsorbed per
gram of the adsorbent; Co (mg L−1), Ct (mg L−1), and V (L) are the initial concentration
of adsorbate, the residual concentration at time t, and the total volume of the carbofuran,
respectively; and m (g) is the mass of the adsorbent. Equation (2) is used to compute the
carbofuran elimination efficiency (R).

% R =
(Co − Ct)

Co
100 (2)

3. Results and Discussion
3.1. Metal Complex Inside the Nanopores of MIL-53-NH2

The structural mechanism for the incorporation of metal ions in the MOF begins
with the attack of the lone pair of the nitrogen atom in MIL-53-NH2 on the carbonyl
group in phthalic anhydride, resulting in the opening of the ring and release of the free
carboxylic group (COOH) and amide group (NH-CO). The target molecule containing
the free carboxylic group was treated with various metal ions (Fe(II), Cu(II) and Zn(II)
(Figure 1). MIL-53-NH-Ph has a modified chemical formula of Al(OH)(C8H5NO4)0.45
(C16H9NO7)0.55.
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Figure 1. Post-synthetic modification of MIL-53-NH2 with phthalic anhydride and its complexation
with a transition metal.

3.2. Characterization

3.2.1. 1H NMR of MIL-53-NH-Ph

NMR spectroscopy was used to identify the number of protons, the chemical envi-
ronment around different protons, and the formation of new compounds. The 1H NMR
spectrum confirmed that MIL-53-NH2 is linked to phthalic anhydride (Figure 2). The 1H
NMR spectrum of MIL-53-NH-ph shows signals at = 7.01 (dd, 1H,), 7.58 (d, 1H,), 7.74
(d, 1H,) corresponded to the starting moiety, 2-amino terephthalic acid. The 1H NMR
spectrum also displays multiplet signals at 7.65 (m, 2H), 7.94 (dd, 1H, 1H), and 8.03 (dd,
1H), corresponding to the phthalic anhydride ring (blue color in the spectrum). On the basis
of the integration of the signals in the 1H NMR spectrum, the reaction ratio of MIL-53-NH2
with phthalic anhydride was 54 percent.
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3.2.2. IR of the Synthesized Compounds

The FTIR spectrum of MIL-53-NH-Ph is similar to that of MIL-53-NH2 except for a new
peak at 1732 cm−1 ascribed to the free carbonyl groups of the phthalic group arm (Figure 3).
The FTIR data was used to confirm the subsequent synthetic alteration of MIL-53-NH2 and
to show the metal coordination domain (Figure 3). When MIL-53-NH-Ph is complexed,
the C=O band at 1732 cm−1 was shifted by 55 cm−1 to a lower wavelength (1677 cm−1),
which is interpreted as evidence for C=O group coordination. Furthermore, new bands
were displayed in the FTIR spectra of the complexes at 650 cm−1 and 680 cm−1, which
were assigned to the M-O vibrations, indicating the formation of the complexes.
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3.2.3. XRD and SEM analysis

The PXRD patterns of MIL-53-NH2, MIL-53-NH-Ph, MIL-53-NH-Ph-Fe, MIL-53-NH-
Ph-Zn, and MIL-53-NH-Ph-Cu are shown in Figure 4. All modified MIL-53-MOFs have
PXRD patterns that are similar to that of MIL-53-NH2. This indicates that the updated
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MIL-53-MOFs were successfully prepared and showed the same 2θ peaks at 8.98◦, 9.88◦,
15.16◦, 18.13◦, 20.72, 25.23, 27.42, and 28.20◦. This confirmed that the modified MOFs and
pristine MOF have the same structure pattern without any structural modification.
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Figure 5 displays SEM pictures of the modified MIL-53-MOFs, which demonstrate
homogeneous morphology, and good dispersion with nanosize scale. The material’s
uniformity confirms its purity. The particle size of all the modified MIL-53-MOFs was
around 50 nm. According to EDX analysis, the produced materials contain Al3+, carbon,
oxygen, and nitrogen. The modified materials have an iron ion peak in the EDX spectrum
of MIL-53-NH-Ph-Fe, a copper ion peak in the EDX spectrum of MIL-53-NH-Ph-Cu, and a
zinc ion peak in the EDX spectrum of MIL-53-NH-Ph-Zn. This indicates that the metal ions
have been successfully incorporated into the MOF lattice.

The elemental analysis of MIl-53-NH2, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-
NH-ph-Zn, and MIL-53-NH-ph-Cu is given in Table 2. The carbon content was increased
when MIl-53-NH2 was modified with phthalic anhydride and then decreased with com-
plexation with the metals. Interestingly, the ratio of aluminum ions decreases with the intro-
duction of metal ions into MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu.
The surface areas of MIl-53-NH2, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn,
and MIL-53-NH-ph-Cu were 1060, 950, 750, 725, and 730 m2 g−1, respectively. On the basis
of these data, the surface area was decreased upon the complexation with metals.
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Table 2. Elemental characteristics and surface properties of MIl-53-NH2, MIL-53-NH-ph, MIL-53-
NH-ph-Fe, MIL-53-NH-ph-Zn, MIL-53-NH-ph-Cu.

Samples
Elemental Analysis (%) * Surface Area

(m2 g−1)
Pore Size

(nm)
Pore Volume

(cm3 g−1)C H N Al Zn Fe Cu

MIl-53-NH2
43.9

(43.07)
2.55

(2.71)
6.33

(6.28)
12.3

(12.09) - - - 1060 0.8 0.5

MIL-53-NH-ph 48.51
(48.9)

2.78
(2.71)

4.75
(4.6)

8.91
(8.86) - - - 950 0.7 0.47

MIL-53-NH-ph-Fe 44.98
(44.49)

2.31
(2.30)

4.25
(4.18)

8.28
(8.06) - 9.5

(9.18) - 750 0.5 0.42

MIL-53-NH-ph-Zn 43.91
(43.81)

2.14
(2.27)

4.31
(4.12)

8.1
(7.94)

10.3
(10.5) - - 725 0.44 0.41

MIL-53-NH-ph-Cu 44.1
(43.94)

2.32
(2.27)

4.12
(4.13)

8.15
(7.96) - - 10.5

(10.3) 730 0.47 0.44

* The metal percentage was calculated from EDX. C, H, N percentages were measured for 3 samples, and the
calculated value between brackets.

3.3. Adsorption Analysis Study
3.3.1. Effect of pH on the Adsorption Process

The effect of each synthesized material including MIL-53-NH2 and all post-synthetic
MOFs on the solution pH was intensively studied. The experiment was investigated at
three pH values, 2, 7, and 9. In acidic solution (pH 2), each newly synthesized MOF and
carbofuran were separately added to the acidic solution to show the effect of each material
separately on the solution pH. It was found that the pH of the solution increased when
adding MIL-53-NH2, confirming the basic character of this compound, whereas, in the
case of MIL-53-NH-ph, the pH decreased. The latter finding indicated that MIL-53-NH-ph
has acidic characters, leading to an increase in the acidity of the solution. Furthermore,
there was a slight lowering in the solution pH with the addition of MIL-53-NH-ph-Fe,
MIL-53-NH-ph-Zn, MIL-53-NH-ph-Cu, and carbofuran, which asserted the acidic character
of these compounds (Figure 6a). These compounds were also investigated in basic medium
(pH = 9). The increased pH in the case of MIL-53-NH2 was indicative of the high basicity
of MIL-53-NH2, while the pH declined in the case of MIL-53-NH-ph, which confirmed
the results of the earlier former experiment. MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, MIL-
53-NH-ph-Cu, and carbofuran have acidic characters (Figure 6b). When the experiment
was conducted at neutral pH (pH 7), no remarkable change in the pH of the solution was
detected (Figure 6c). Therefore, pH 7 was suitable for achieving adsorption in this study.
These materials are suitable for the treatment of drinking water due to maintaining the
structure of MIL-53-MOFs and the presence of aluminum, iron, copper, and zinc ions was
not detected in the solution after the adsorption experiment.

The effect of pH on adsorption was studied at various pH over the range of 3–11, and
the solution pH was controlled using aqueous solutions of HCl (0.1 M) and NaOH (0.1
M). Figure 7 showed the influence of pH on carbofuran uptake using MIl-53-NH2, MIL-53-
NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu. Significantly, the
adsorption uptake of carbofuran was found to be pH-dependent, and the optimal pH was
pH 7.
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Figure 7. Effect of pH on the uptake of carbofuran onto MIl−53−NH2, MIL−53−NH−ph, 
MIL−53−NH−ph−Fe, MIL−53−NH−ph−Zn, and MIL−53−NH−ph−Cu (Dosage: 30 mg L−1, speed = 400 
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Figure 7. Effect of pH on the uptake of carbofuran onto MIl−53−NH2, MIL−53−NH−ph,
MIL−53−NH−ph−Fe, MIL−53−NH−ph−Zn, and MIL−53−NH−ph−Cu (Dosage: 30 mg L−1,
speed = 400 rpm, time: 120 min, pesticide concentration: 30 mg L−1, and T = 303 k).

3.3.2. Effect of Pesticide Concentration

The concentration of carbofuran and the amount of carbofuran adsorbed on the MIl-53-
NH2, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu were
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determined at room temperature using isotherm curves (Figure 8). The most commonly
utilized adsorption models are the Freundlich and Langmuir models. The Langmuir
model [16] can be expressed as a non-linear equation (Equation (3)):

Qe =
QmkLCe

1 + kLCe
(3)

where Ce is the equilibrium concentration of carbofuran, Qe is the equilibrium adsorption
capacity, Qm is the highest adsorption capacity, and kL is the Langmuir constant. The
non-linear Freundlich model [17] is shown in Equation (4).

Qe = kFC
1
n
e (4)

where kF is the Freundlich adsorption equilibrium constant and n is an empirical parameter.
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Figure 8. (a) Effect of carbofuran concentration on the uptake onto MIl−53−NH2, MIL−53−NH−ph,
MIL−53−NH−ph−Fe, MIL−53−NH−ph−Zn, and MIL−53−NH−ph−Cu; (b) Langmuir isotherm
fitting for the modified MIL−53−MOFs; (c) Freundlich isotherm fitting for the modified
MIL−53−MOFs. (Dosage: 30 mg L−1, speed = 400 rpm, time: 120 min, pH: 7, and T = 303 k).

The Langmuir model proved to be appropriate for fitting the data based on the top
correlation coefficient (R2) (Table 3). This relates to the pesticide carbofuran adsorption on
the adsorbent, which must therefore be monolayer adsorption.
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Table 3. Adsorption isotherm parameters for the uptake of carbofuran onto MIL-53-NH2, MIL-53-
NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu.

Samples Freundlich Parameters Langmuir Parameters

n
kF

(mg g−1)
(mL mg−1)1/n

R2 χ2 Qm
(mg g−1)

kL
(mL mg−1) R2 χ2

MIL-53-NH2 2.27 ± 0.09 76.08 ± 4.15 0.937 444.8 367.87 ± 4.58 0.173 ± 0.04 0.986 21.07
MIL-53-NH-Ph 2.14 ± 0.12 81.88 ± 5.96 0.949 167.7 462.06 ± 2.83 0.127 ± 0.014 0.992 18.04
MIL-53-NH-Ph-Fe 1.86 ± 0.33 124.00 ± 3.64 0.927 4322 662.94 ± 2.75 0.117 ± 0.037 0.958 85.19
MIL-53-NH-Ph-Zn 3.61 ± 0.86 304.92 ± 5.21 0.938 5216 717.62 ± 6.71 0.068 ± 0.09 0.995 36.03
MIL-53-NH-Ph-Cu 2.97 ± 0.98 370.27 ± 10.21 0.771 3427 978.64 ± 9.76 0.048 ± 0.24 0.988 14.34

3.3.3. Effect of Time on the Adsorption Process

The kinetics of carbofuran adsorption in MIL-53-NH2, MIL-53-NH-Ph, MIL-53-NH-Ph-
Fe, MIL-53-NH-Ph-Zn, and MIL-53-NH-Ph-Cu are shown in Figure 9. In both pseudo-first-
order and pseudo-secondary kinetic models, the time-effect data were different at different
time intervals (Table 4). The non-linear equation of the pseudo-first-order model [18] is
written as follows:

Qt = Qe

(
1 − exp−k1 t

)
(5)

The non-linear equation of the pseudo-second-order model is written as follows:

Qt =
k2Q2

et
1 + k2tQe

(6)

where Qt is the adsorption capacity at time t, and k1 and k2 are the rates constant of the
pseudo-first-order and pseudo-second-order kinetic models, respectively. A pseudo-second-
order kinetic model (R2 = 0.997) was found to be the best fit. The greatest carbofuran adsorp-
tion capabilities on MIL-53-NH2, MIL-53-NH-Ph, MIL-53-NH-Ph-Fe, MIL-53-NH-Ph-Zn,
and MIL-53-NH-Ph-Cu determined that MIL-53-NH-ph-Cu was the optimal material for
carbofuran adsorption from wastewater.

Table 4. Kinetic parameters for carbofuran uptake onto MIl-53-NH2, MIL-53-NH-ph, MIL-53-NH-ph-
Fe, MIL-53-NH-ph-Zn, and MIL-53-NH-ph-Cu.

Samples Qe Exp.
(mg g−1)

Pseudo-First-Order Parameters Pseudo-Second-Order Parameters

Qe
(mg g−1)

k1
(min−1) R2 χ2 Qe

k2 × 10−5

(g mg−1 min−1) R2 χ2

MIL-53-NH2 309 431.66 ± 12.92 0.0143 ± 0.001 0.926 370.6 315.42 ± 4.67 1.88 ±0.02 0.997 28.99
MIL-53-NH-Ph 366 557.28 ± 26.83 0.0186 ± 0.003 0.938 270.1 369.11 ± 2.76 0.14 ± 0.02 0.992 49.04
MIL-53-NH-Ph-Fe 616 809.12 ± 32.21 0.0270 ± 0.001 0.946 145.3 619.76 ± 8.91 1.54 ± 0.17 0.997 10.91
MIL-53-NH-Ph-Zn 689 974.29 ± 34.54 0.0430 ± 0.002 0.966 201.1 673.56 ± 8.27 6.07 ± 1.16 0.986 16.12
MIL-53-NH-Ph-Cu 976 1041.4 ± 36.31 0.0492 ± 0.001 0.957 256.6 978.34 ± 4.89 1.88 ± 0.18 0.996 39.76
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MIL−53−NH−ph−Fe, MIL−53−NH−ph−Zn, and MIL−53−NH−ph−Cu; (b) pseudo first order fitting; 
and (c) pseudo-second-order fitting. (Dosage: 30 mg L−1, speed = 400 rpm, pesticide concentration: 
30 mg L−1, pH: 7, and T = 303 k). 
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picted in Figure 10. As the π-π system is present in both carbofuran insecticide and 
MIL-MOFs, the π-π stacking interaction is the dominant mechanism. The non-covalent 
interaction between carbon structures is studied using the π-π stacking process, which 
describes how two or more aromatic rings are linked. In molecular complexes containing 
two benzene rings, each forms a π-π stack and links with a benzene ring of carbofuran, 
and, thereby, intermolecular π-π stacking contact occurs. Each of the three oxygen atoms 
in carbofuran possesses one electron pair. The coordination bond is established when an 
electron pair is donated and accepted. Each oxygen creates a coordination bond with the 
metal, resulting in carbofuran and MOF structure coordination bonding. Furthermore, a 
hydrogen bond is established when a hydrogen atom attracts a more electronegative 
atom, such as an oxygen atom. In this system, the hydrogen of the amine group of 
MIL-MOFs and the oxygen of carbofuran form an intermolecular hydrogen bond. 

Figure 9. (a) Effect of time on adsorption of carbofuran onto MIL−53−NH2, MIL−53−NH−ph,
MIL−53−NH−ph−Fe, MIL−53−NH−ph−Zn, and MIL−53−NH−ph−Cu; (b) pseudo first or-
der fitting; and (c) pseudo-second-order fitting. (Dosage: 30 mg L−1, speed = 400 rpm, pesticide
concentration: 30 mg L−1, pH: 7, and T = 303 k).

3.4. Adsorption Mechanism

The π-π stacking interaction for the removal of carbofuran from wastewater is depicted
in Figure 10. As the π-π system is present in both carbofuran insecticide and MIL-MOFs,
the π-π stacking interaction is the dominant mechanism. The non-covalent interaction
between carbon structures is studied using the π-π stacking process, which describes how
two or more aromatic rings are linked. In molecular complexes containing two benzene
rings, each forms a π-π stack and links with a benzene ring of carbofuran, and, thereby,
intermolecular π-π stacking contact occurs. Each of the three oxygen atoms in carbofuran
possesses one electron pair. The coordination bond is established when an electron pair is
donated and accepted. Each oxygen creates a coordination bond with the metal, resulting
in carbofuran and MOF structure coordination bonding. Furthermore, a hydrogen bond is
established when a hydrogen atom attracts a more electronegative atom, such as an oxygen
atom. In this system, the hydrogen of the amine group of MIL-MOFs and the oxygen of
carbofuran form an intermolecular hydrogen bond.
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Figure 10. The proposed adsorption mechanism of carbofuran onto the modified MIL-53-MOFs.

3.5. Comparison of the Obtained Results with Previous Work

Table 5 shows the maximum adsorption capabilities of various materials that adsorbed
carbofuran. The composite materials proposed in this study had the highest adsorption
when compared to other carbofuran-absorbable materials (See Table 5). It has been observed
that MIL-53-NH-ph-Cu achieved an adsorption capacity three times that of activated carbon
from rice straw and ten times that of commercial activated carbon. At the same time, the
order of adsorption capacity of the materials in this study was MIL-53-NH-Ph-Cu > MIL-53-
NH-Ph-Fe > MIL-53-NH-Ph-Zn > MIL-53-NH-Ph > MIL-53-NH2. Therefore, MIL-53-NH-
ph-Cu was the almost-perfect material for the adsorption of carbofuran from wastewater.

Table 5. Adsorption capacity for carbofuran onto different adsorbents reported in this study and the
literature.

Adsorbent pH Qm (mg g−1) Reference

MIL-53-NH-Ph-Cu 7 978.6 Current work
MIL-53-NH-Ph-Fe 7 717.6 Current work
MIL-53-NH-Ph-Zn 7 662.9 Current work
MIL-53-NH-Ph 7 462.1 Current work
MIL-53-NH2 7 367.8 Current work
Indian soils 7 0.9–4.9 [19]
Slow pyrolyzed sugarcane bagasse biochar 6 3.6–18.9 [20]
Animal bone meal 6 18.5 [21]
Tea waste biochars 5 22.8–54.7 [22]
Granular activated carbon 7 96.2 [23]
Commercial activated carbon 7 97.1 [24]
Date seed-activated carbon 5.5 137.02 [25]
Palm-oil-fronds-activated carbon 7 164.0 [26]
Magnetic sugarcane bagasse 7 175.0 [27]
Activated carbon from rice straw 7 296.5 [28]
Rice straw-derived activated carbon 7 222.2–312.5 [29]
Steel (blast furnace slag dust and sludge) 7.5 208 [30]
Orange peel 7 84.49 [31]
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4. Conclusions

MIL-53-NH2, MIL-53-NH-ph, MIL-53-NH-ph-Fe, MIL-53-NH-ph-Zn, and MIL-53-
NH-ph-Cu were all successfully synthesized. The herbicide carbofuran was removed from
wastewater using the synthesized materials as effective adsorbents. MIL-53-NH2 has a basic
character, MIL-53-NH-ph has an acidic character, and MIL-53-NH-ph-Fe, MIL-53-NH-ph-
Zn, and MIL-53-NH-ph-Cu have acidic characters. The proper kinetic model for carbofuran
adsorption is pseudo-second order. The Langmuir isotherm model was shown to be a good
fit for the equilibrium adsorption behavior. MIL-53-NH2, MIL-53-NH-Ph, MIL-53-NH-Ph-
Fe, MIL-53-NH-Ph-Zn, and MIL-53-NH-Ph-Cu had adsorption capacities of 367.8, 462.1,
662.94, 717.6, and 978.6 mg g−1, respectively. π-π stacking, coordination bonding, and
hydrogen bonding were the adsorption mechanisms. The current study proposes an ideal
approach for the removal of carbofuran from wastewater, on the basis that the framework
has a free metal center that facilitates coordination bonding with carbofuran insecticide.
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