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Abstract: Marangoni patterns are created by instabilities caused by thermocapillary and solutocapil-
lary stresses on the deformable free surface of a thin liquid layer. In the present paper, we consider
the influence of the insoluble surfactant on the selection and modulational instability of stationary
Marangoni patterns near their onset threshold. The basic governing parameters of the problem are
the Biot number characterizing the heat-transfer resistances of and at the surface, the Galileo number
indicating the role of gravity via viscous forces, and the elasticity number specifying the influence
of insoluble surfactant on the interfacial dynamics of the liquid. The paper includes a review of the
previous results obtained in that problem as well as new ones.
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1. Introduction

Interfacial phenomena are significant in many natural and technological processes.
A basic phenomenon is the interfacial pattern formation discovered by H. Bénard at the
end of the 19th century [1]: under homogeneous external conditions, the system becomes
spatially inhomogeneous. The correct theoretical explanation of these experimental results
was proposed more than 50 years later in the 1950s of the 20th century by Block [2] and,
independently, by Pearson [3]. They both explained the interfacial pattern formation as
a result of surface tension variations of a liquid free surface due to temperature changes
along the surface.

The interest in the pattern formation was awoken by the seminal paper of Turing [4],
who predicted theoretically a spontaneous pattern generation in a chemical system with
two reacting and diffusing chemicals (found experimentally in the 1990s [5]), and by the
paper of Normand, Pomeau, and Velarde [6], who attracted the attention of physicists to
the convective pattern formation. The most typical convective patterns are rolls, squares,
and hexagons. Numerous examples of patterns can be found in the recent publications [7,8].
Now, we know that the process of pattern formation is typical for physical, chemical,
and biological systems which are far from the thermodynamic equilibrium state.

The longwave Marangoni convection is the focus of the special interest of the experts
on pattern formation because of a rich gallery of patterns that can be formed. There exist two
kinds of longwave Marangoni instabilities: (i) the first is the already mentioned Pearson’s
mode which is possible in the case of poorly conducting boundaries, and (ii) the mode
described by Scriven and Sternling [9] existing in the case of a thin film. The evolution of
longwave instability is described by a slowly evolving "active" variable that determines the
nonlinear dynamics. The study of the pattern formation caused by the Pearson’s mode was
started in the works of Sivashinsky [10] and Knobloch [11]. In this case, the temperature
plays the role of the active variable. In the case of the mode of Scriven and Sternling, the
active variable is the free-surface deformation. The nonlinear evolution of this mode was
described by Davis [12].

Recently, a remarkable interest in the Marangoni patterns generated by the longwave
Marangoni instability was motivated by the work of Shklyaev et al. [13]. The authors
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showed that in the interval of wavenumbers k ∼ O(Bi1/2) (Bi � 1 is the Biot number,
defined as the ratio of heat-transfer resistances inside of and at the surface of the liquid),
the temperature disturbance and the surface deformation are both active variables. Their
interaction can generate large-scale monotonic and oscillatory instabilities, which produce
stationary patterns and wave patterns [14].

In applications such as inject printing [15,16], spray cooling [17], the fabrication of
DNA/RNA microarrays [18], photolithography [19], and various pulmonary therapies [20],
one has to deal with the influence of surfactant contaminants. The nonuniform deposi-
tion of surfactant over the liquid surface can be a cause of special surfactant-induced solutal
Marangoni stresses that significantly change the patterning profile of a liquid. Even a small con-
centration of impurities can cause the solutal stresses that interact with the thermal Marangoni
flow [21,22]. Recently, the experimental and theoretical works in colloid science showed
that the formation of unusual patterns (from rings and the "Marangoni ridge" to hexagonal
arrays) are related to the Marangoni instabilities of deposited liquid films [23–26]. A highly
ordered pattern is observed when a milimeter-size drop of dichloromethane spreads on an
aqueous substrate under a change in Marangoni stresses [27]. The surfactant adsorption at a
droplet interface is capable of modulating the flow patterns via the wetting shape, varying the
liquid–vapor interfacial properties, and inducing superficial flows [28].

The conservation of the amount of the absorbed insoluble surfactant is the origin
of an additional slow long-scale process: the redistribution of the adsorbed surfactant
due to the surface flow and diffusion. The surfactant concentration is one more active
variable. Though the presence of an insoluble surfactant on the surface provides no specific
instability mechanism, it can significantly modify the development of instability generated
by the thermocapillary instability.

In the present work, we review the latest results on the large-scale Marangoni convec-
tion in a liquid layer with an insoluble surfactant spread over a deformable liquid interface.
The literature on the Marangoni convection with a soluble surfactant was reviewed in detail
by Shklyaev and Nepomnyashchy in [8]. We present a weakly nonlinear analysis of the
patterns on square and rhombic lattices in the Fourier space near the instability threshold.
The modulation of these convective patterns is considered using the Newell, Whitehead,
and Segel [29,30] approach, describing the interaction of the disturbances with various
wavenumbers close to the critical one. As a result, this modulation is described by the
Ginzburg–Landau-type equation for the amplitude of patterns coupled with equations for
surface distortion and surfactant concentration. We discuss the role of 2D modulation on
the roll stability. Several cases have been revealed. In each case, a specific stability map in
terms of the Biot and Galileo numbers is constructed. In all these cases, the special role of
insoluble surfactant is investigated. The results of the 1D modulation of rolls have been
formerly published in [31]. All other results are presented here for the first time. At the
end, the perspectives of the future research are discussed.

2. Description of Longwave Marangoni Convection with Insoluble Surfactant
2.1. Formulation of the Problem

The presence of an insoluble surfactant changes the interfacial stresses on the de-
formable surface of the thin liquid layer. In the case of a non-isothermal liquid layer (the
liquid is subjected to a transverse fixed temperature gradient −a, (a > 0) [32]), the surfac-
tant provides an additional factor, a solutocapillary mechanism, to generate Marangoni
stresses on the liquid surface. The surface tension can be written as a linear function of
both the temperature T and concentration of surfactant Γ,

σ = σ0 − σ1(T − T0)− σ2(Γ− Γ0),

and here, σ0 is the reference value of the surface tension σ1 = −∂Tσ, σ2 = −∂Γσ, and T0
and Γ0 are the reference values of the corresponding variables at the surface in the absence
of convection. The absorbed surfactant at the free surface is convected and diffuses over
the free-liquid interface but not into the bulk. The parameter that describes the relation



Colloids Interfaces 2022, 6, 53 3 of 19

between surfactant diffusivity D0 and thermal diffusivity χ of the liquid is called the Lewis
number, L = D0/χ. Typically, the Lewis number is small, L 6 0.01.

The parameter characterizing the influence of the insoluble surfactant on the inter-
facial dynamics of the liquid is the elasticity number, N = σ2d0Γ0/ηχ. It determines the
significance of the solutocapillary effect as compared to viscous forces. It is a changeable
parameter. Here, d0 is a mean thickness of the liquid layer and η is a dynamic viscosity
(η = ρν, ρ is a density of the liquid, and ν is a kinematic viscosity of the liquid).

Let us discuss the characteristic values of the surfactant parameters, N and L. While the
elasticity number, N, which depends on the surfactant concentration, can vary in a relatively
large interval, the value of the surfactant Lewis number has a significant limitation. As an
example of an insoluble surfactant, let us consider C12EO8, produced by Nikko Chemical
Co. (Tokyo, Japan); for its properties, see [33]. The typical surfactant values of the surface
surfactant diffusion coefficient are (3.0–4.0)×10−10 (m2/s), [34]. The surfactant is located at
the air/water interface, and for other parameters, we take the physical values of the water
at the room temperature. It means the value of the thermal diffusivity coefficient, χ, is
1.3× 10−7 (m2/s), and the kinematic viscosity, ν, is 0.9× 10−6 (m2/s). For the calculation,
we fix the Lewis number at L = 0.003.

The schematic of the problem is presented in Figure 1. Here, the liquid layer is
bounded at the bottom by a rigid substrate and has an upper free surface. The coordinate
axes (x, y) are in the plane of the substrate and the z axis points upward.

Figure 1. Schematic of the problem.

The typical additional dimensionless parameters of the instability problems are the
Marangoni number, M = σ1ad2

0/ηχ, the ratio of the thermocapillary surface force to the
viscous force; the Galileo number, G = gd3

0/νχ, the ratio between the gravity force and the
viscous force; the inverse capillary number, Σ = σ0d0/ηχ, the ratio between the surface
tension force and the viscous force; and the Biot number, Bi = qd0/ΛT (q is the heat-transfer
coefficient and ΛT is the thermal conductivity), the ratio of the heat-transfer resistances
inside of and at the surface of the liquid.

The mathematical description of the interfacial dynamics includes the surface transport
equation for the surfactant. Traditionally, some authors use this equation in the form
proposed by Levich [35]. However, it works only in the case of a nondeformable free
surface. For a deformable surface, the equation modified by Wong et al. [36,37] needs to
be used.

Let us describe the free-liquid interface as z = h(x, y, t). Then, in the general case, it is
necessary to distinguish between the liquid velocity v and the velocity along the surface,
vs = v− (v · n)n. Here, n = (−∂xh,−∂yh, 1)(1 + (∂xh)2 + (∂yh)2)−1/2 is the unity vector
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normal to the interface. Then, the evolution equation for the surfactant concentration Γ can
be written as

∂tΓ− ∂h(ez · ∇s)Γ +∇s · (vsΓ) + (∇s · n)(v · n)Γ = D0∇2
s Γ, (1)

where ∇s = ∇− n(n · ∇) denotes the operator of the gradient along the interface, ∇ =
(∂x, ∂y, ∂z), ez = (0, 0, 1). The first two terms of Equation (1) describe the temporal change
of Γ along the normal to the moving interface. The last term in the left-hand side describes the
change in the surfactant concentration due to the temporal change in the surface area [38].

2.2. The Case of Perturbations with k ∼ O(Bi1/4)

It turns out that in the case Bi� 1, there are two different characteristic spatial scales
of disturbances, k = O(Bi1/4) and k = O(Bi1/2). The former scaling has been discovered
in the pioneering work of Pearson [3] for a nondeformable surface. It was shown that in
the case Bi = O(ε4), ε� 1, the minimum of the neutral curve is shifted to the longwave
region, k = O(ε). We rescale the wavenumber as k = εK. The analysis of the Marangoni
convection with the insoluble surfactant adsorbed at the deformable free surface has been
conducted in [39]. That analysis based on the longwave expansions shows the existence
of two modes of instability—monotonic and oscillatory. At the leading order, the critical
value of the monotonic Marangoni number is

Mm0 =
12G(4L + N)

L(G + 72)
. (2)

The monotonic mode exists if

N < N∗ =
4(216 + G(G + 27))L2

L(864 + G(G + 36))− G(G + 72)
.

The second-order correction has the form Mm2 = c1K2 + c2K−2, where c1 and c2 are
constants. For N > N∗, the instability becomes oscillatory with the critical Marangoni number

Mosc =
1

2(G + 27 + 48L)

(
G2 + 3G(41 + 32L + 5N) + 72[5N + 3 + 2L(L + N + 2)]−

√
D
)

, (3)

where

D = −144{4(216 + G(G + 27))L2 − G(G + 72)N + (864 + G(G + 36))LN}+
+{G2 − 9G(N − 3) + 72(N + 3 + 2L(L + N))}2 .

The neutral oscillations have the frequency ω = K2Ω0 with

Ω2
0 =

1
288
{−G2 + 9G(N − 3)− 72(3 + N + 2L(L + N)) +

√
D}.

The deformability of the free surface is restricted by the conservation law of the
volume that gives us the equation for the local layer thickness H. Two others relate to the
conservation of energy described by the equation for the bottom temperature F and to the
conservation of the mass of the surfactant described by the equation for the concentration
of surfactant Γ. If all the parameters Σ, M, and G are of order of unity, at the leading order,
one obtains the following system:

∂τ H = ∇ ·
(

G
3 H3∇H + M

2 H2∇θ + N
2 H2∇Γ

)
≡ ∇ · Q̃1, (4)

H∂τ F = ∇ ·
(

GH4

8 ∇H + MH3

6 ∇θ + NH3

6 ∇Γ + H∇F
)
+ Q̃1 · ∇θ − 1

2 (∇H)2, (5)

∂τΓ = ∇ ·
[

L∇Γ + ΓH
(

G
2 H∇H + M∇θ + N∇Γ

)]
≡ ∇ · Q̃2. (6)
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Here, θ = F − H is a temperature perturbation on the free surface, ∇ = (∂X, ∂Y).
Note that parameters Σ and Bi do not appear in the leading-order equations. The obtained
longwave system of equations is ill-posed [40], because the stabilizing action of the surface
tension is not taken into account. To regularize the obtained problem, it is necessary
to assume that the surface tension is strong: Σ = ε−2S, S = O(1). The strong surface
tension suppresses shortwave disturbances, and the assumption of longwave instability is
self-consistent.

The case of the finite value of the Biot number was considered in the problem on
evaporation of the liquid layer with an insoluble surfactant [37], as well as in the problem
of the formation of Faraday waves at the surfactant-covered free surface of a vertically
vibrated liquid layer [41].

The influence of surfactants on convective instabilities in two-layer systems was
discussed in [42–44].

2.3. The Case of Perturbations with k ∼ O(Bi1/2)

Another distinguished limit of the problem was discovered by Shklyaev et al. [13],
where the authors showed that for the deformable interface, the disturbances in the interval
k ∼ Bi1/2 without surfactant had two modes of instability, monotonic and oscillatory, that
can be generated. This interval of wavenumbers determines the appropriate scaling for the
development of possible nonlinear longwave structures in the liquid. One can rescale the
spatial coordinates as

X = εx, Y = εy, 0 < ε� 1.

The characteristic time is proportional to k2 and one can rescale the temporal coordinate as

τ = ε2t.

In the presence of an insoluble surfactant, in the framework of that scaling, we de-
rived the following system of the longwave amplitude equations for the local thickness
H(X, Y, τ), perturbations of temperature F(X, Y, τ), and surfactant concentration Γ(X, Y, τ),
see [45]:

∂τ H = ∇ ·
(

H3

3 ∇R + MH2

2 ∇θ + NH2

2 ∇Γ
)
≡ ∇ ·Q1, (7)

H∂τ F = ∇ ·
(

H4

8 ∇R + MH3

6 ∇θ + NH3

6 ∇Γ + H∇F
)
+ Q1 · ∇θ − 1

2 (∇H)2 − βθ, (8)

∂τΓ = ∇ ·
[
ΓH
(

H
2 ∇R + M∇θ + N∇Γ

)
+ L∇Γ

]
≡ ∇ ·Q2. (9)

Here, R = GH − S∇2H, ∇ = (∂X , ∂Y). The Biot number is Bi = ε2β.
The system (7)–(9) describes the nonlinear dynamics of longwave perturbations and

includes the following effects: Equation (7) includes the evolution of the surface defor-
mation due to the bulk flow with the flow rate Q1 generated by hydrostatic and Laplace
pressures and both thermocapillary and solutocapillary effects. Equation (8) describes the
advective heat transfer by the flow and heat conductivity in the longitudinal direction, and
the last two terms of the equation describe the heat loss from the deformable interface.
Finally, Equation (9) presents the evolution of the surfactant concentration due to the
diffusion and surface flow caused by the gravity and surface tension, as well as by thermo-
and solutocapillarity.

The linear analysis of (7)–(9) was performed in [45] and gave two instability modes:
the monotonic one and oscillatory one. The wavelength of disturbances is rescaled as
K = ε−1k. The neutral stability curve is described for the monotonic mode as

Mm(K) =
(48 + 12N/L)(G + K2S)(β + K2)

K2(72 + G + K2S)
. (10)
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Formula (2) is recovered in the limit K2 → ∞, K2S→ 0. The minimum of the marginal
stability curve is reached at the critical wavenumber:

(Kc)
2 =

GSβ +
√

72GSβ(72 + G− Sβ)

S(72− Sβ)
. (11)

Note that without the loss of generality, one can choose S = 1, which corresponds to
the definition ε = Σ−1/2.

In both limits, we arrive at a conclusion that in the considered problems, despite the
appearance of a new oscillatory in the mode, increasing the concentration of the insoluble
surfactant suppresses the instabilities creating the convection.

3. Pattern Selection in the Longwave Marangoni Convection
3.1. Square Lattice

We consider the nonlinear dynamics of small spatially periodic perturbations in the
neighborhood of the threshold of the monotonic mode, M = Mm + δ2M2 (here, δ is a small
parameter of supercriticality), corresponding to a square lattice in the Fourier space. At the
present stage, only disturbances with the critical wavevector Kc determined by (11) are
taken into account. The plots showing basic wavevectors for all considered lattices are
shown in Appendix A.

The problem is described by the set of Equations (7)–(9) for variables H, F, and Γ,
which are expanded in powers of parameter δ:

H = 1 + δh1 + δ2h2 + . . . ,

F = 1 + δ f1 + δ2 f2 + . . . ,

Γ = 1 + δγ1 + δ2γ2 + . . . . (12)

Substituting these expansions into (7)–(9), we obtain at the leading order the linear
equations for h1, f1, and γ1. We can write their solution in the form

h1 = A1(τ2)eiKcX + A2(τ2)eiKcY + c.c., f1 = α1h1, γ1 = α2h1, (13)

where α1 = − (GK2+K4S−72β)
72(K2+β)

and α2 = G+K2S
6L .

Continuing the operations for higher powers of δ and applying the solvability con-
ditions at the third order in δ, we obtain the set of Landau equations that describe the
evolution of complex amplitudes A1 and A2:

∂A1

∂τ2
= κ0 A1 + κ1|A1|2 A1 + κ2|A2|2 A1, (14)

∂A2

∂τ2
= κ0 A2 + κ1|A2|2 A2 + κ2|A2|2 A2. (15)

Here,

κ0 =
K4L2(72 + G + K2S)2M2

12(K2D1 − βD2)
(16)

where

D1 = −N(G + K2S)(72 + G + K2S) + LN(864 + 36G + G2 + 2(18 + G)K2S + K4S2)+

4L2(216 + 27G + G2 + (27 + 2G)K2S + K4S2),

D2 = 36LN(−24 + G + K2S) + N(G + K2S)(72 + G + K2S) + 36L2(−24 + 5G + 5K2S).

Other coefficients are cumbersome to be given here (see Supplemental Material to [45]).
We have two kinds of steady-state solutions: one of them describes rolls (if one of A1

or A2 is zero) and another one describes squares (both A1 and A2 are nonzero). Here, the
pattern selection is determined by signs of κ1, κ1 − κ2, and κ1 + κ2. The rolls and squares



Colloids Interfaces 2022, 6, 53 7 of 19

can be stable if κ1 < 0 and κ1 + κ2 < 0 (supercritical bifurcation). The rolls are selected if
κ2 < κ1 < 0; if κ1 < κ2, κ1 + κ2 < 0, the squares are stable, see Figure 2.

Figure 2. Pattern selection domains for the square lattice. The solid lines are for κ1 = 0, the dashed
lines are for κ1 + κ2 = 0, and dot-dashed lines are for κ2− κ1 = 0. Here, the red-colored set (# 1 ) is for
N = 0, the blue-colored set (# 2) is for N = 10−6, and the black set (#3) is for N = 10−5. The domains
are marked: “R” for rolls, “S” for squares. Panel (b) is detailed panel (a) for small β.

Note that the problem of selection between the roll and square patterns is mathe-
matically similar to the classical problem of species competition [46]. The selection of
rolls corresponds to the extinction of all species except one, while the selection of squares
corresponds to the symbiosis.

The pattern selection domains are presented in Figure 2 for three different cases.
The red color is for the case without surfactant, the blue color relates to N = 10−6, and the
black color is for N = 10−5. It is seen that even at a low concentration of surfactant, the
domains shrink. Figure 2b shows domains at small values of β.

It was found that the rolls are the most typical of the patterns. Note that this kind of
structures is the only possible one in a rectangular container with one size much longer
than another one or in a narrow annular container of a large radius.

3.2. Hexagonal Lattice

The most typical kind of non-equilibrium patterns near the threshold of stationary
is the hexagonal pattern. Hexagons are formed by three sets of rolls, with wavenumbers
satisfying the resonant condition k1 +k2 +k3 = 0, |k1| = |k2| = |k3|. Well-known examples
are irregular hexagons appearing in the heated cooking oil and giraffe’s coat markings
(see [14]); also, hexagonal patterns were observed in front solidification [47], in Faraday
crispation [48], in a liquid-crystal-valve device [49], in ferrofluids [50], etc.

Here, we find how the surfactant concentration affects the type of hexagons in the
longwave Marangoni convection. As in the previous section, we take the variable fields
H(X, Y, τ), F(X, Y, τ), and Γ(X, Y, τ) near the threshold point Mm(Kc) (see (10) and (11)).
The Marangoni number is presented as M = Mm + δM1 + δ2M2 + . . . . We introduce the
different time scales in the neighborhood of the threshold, i.e., τ0 = τ, τ1 = δτ, τ2 = δ2τ2,
etc. Then, at the leading order of the expansions, at the hexagonal lattice in the Fourier
space, we have the solution

h1 =
3

∑
j=1

Aj(τ1, τ2)eiKcnj ·X + c.c, f1 = α1h1, γ1 = α2h1. (17)

Expression (17) corresponds to six peaks in the Fourier space around the points ±Kcnj

(j = 1, 2, 3), n1 = (1, 0), n2 = (−1/2,
√

3/2), n3 = (−1/2,−
√

3/2). The vectors nj are unit
vectors parallel to pattern wavevectors. We also define mutually orthogonal to nj unit
vectors tj, namely t1 = (0, 1), t2 = (−

√
3/2,−1/2), t3 = (

√
3/2,−1/2). Here, X = (X, Y).

At the second order of the expansion, the solvability condition for h1, f1, and γ1 gives

∂τ1 Al = κ0 Al + s1 A∗m A∗n, {l, m, n} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}. (18)
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If s1 = O(1), then Equation (18) describes a two-sided bifurcation and unbounded
growth of the selected type of hexagons, up-hexagons or down-hexagons, depending on the
sign s1. However, there exists the line in the space of parameters, where s1 = 0; hence,
the term s1 A∗m A∗n vanishes. The line s1(G, β) = 0 is shown in Figure 3. The solid line
corresponds to the case without the surfactant, and the dashed line is plotted in the case
with added surfactant on the surface (N = 10−6 and L = 0.003). In all the calculations, here
we choose S = 1, which corresponds to the definition ε ≡ Σ−1/2.

Figure 3. Pattern selection for regular hexagons (q0 = 0). Solid line: s1(G, β) = 0 in the case without
surfactant (N = 0), the dashed line: in the case with surfactant (N = 10−6, L = 0.003). Up-hexagons
(H+) are selected in the region above the line s1 = 0, and down-hexagons (H−) are selected below
that line.

In the region where s1 = O(δ), we can denote s1 = δs̄1 and relegate this term to the
third order of expansion. In the vicinity of the line s1 = 0, we can set ∂τ1 = M1 = 0. Then,
we obtain equations:

∂τ2 Al = κ0 Al + κ1|Al |2 Al + κ2(|Am|2 + |An|2)Al + s̄1 A∗m A∗n,

{l, m, n} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}, (19)

where κ1 is the same as in Equations (14) and (15), and κ2 characterizes the interaction
of rolls turned to the angle 2π/3 with each other. The growth of amplitudes is saturated
if κ1 < 0 and κ1 + 2κ2 < 0.

3.3. Rhombic Lattice

The patterns of a rhombic lattice are less widespread than rolls/squares or hexagons.
However, they are known in different physical processes, such as [51–54]. These patterns are
the result of the interaction of two external perturbations, oriented by angle θ one to another.
In other words, we have an external one in rolls with respect to disturbances such that their
wavevectors form angle θ with the basic wavevector of the roll. Thus, the solutions at the
leading order of the variables can belong to a rhombic lattice in the Fourier space:

h1 = A1(τ2)eiKcX + A2(τ2)ei(KcX cos θ+KcY sin θ) + c.c., f1 = α1h1, γ1 = α2h1. (20)

The angle θ is an additional parameter of the problem. Without a loss of generality, we
take for consideration θ < π/2, but θ does not equal π/3. The rhombic lattice at θ = π/2
becomes a square one. Note that patterns with wavevectors on the rhombic lattice in the
Fourier space look like rectangles in the real space.
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Making the same procedures as in the case of the square lattice, we obtain for the
complex amplitudes A1 and A2 the system of equations similar to (14) and (15):

∂A1

∂τ2
= κ0 A1 + κ1|A1|2 A1 + κ̃2(θ)|A2|2 A1, (21)

∂A2

∂τ2
= κ0 A2 + κ1|A2|2 A2 + κ̃2(θ)|A2|2 A2. (22)

Here, κ2 = κ̃2(π/2). The growth of amplitudes on the rhombic lattice is saturated if
κ1 < 0 and κ1 + κ̃2 < 0.

Figure 4 presents the pattern selection on the rhombic lattice for three values of angle θ.
Figure 4a shows the case θ = 0.45π. Here, the angle is closer to π/2 and the map is similar
to the patterns on the square lattice. In Figure 4b is the case θ = 0.4π, and in Figure 4c,
θ = 0.25π.

Figure 4. Pattern selection domains for the rhombic lattice. The solid lines are for κ1 = 0, the dashed
lines are for κ1 + κ̃2(θ) = 0. Here, the black color set (#1 ) is for N = 0, the blue-colored set (#2 ) is for
N = 10−6. The stability domains are marked: “1Rh” is for N = 0, “2Rh” for N = 10−6. Panel (a):
θ = 0.45π, panel (b): θ = 0.4π, and panel (c): θ = 0.25π.

Each panel includes two cases of different N; the black color lines are for N = 0 and
the blue ones are for N = 10−6. It is shown that surfactant diminishes the regions of stable
rhombi. The calculations show that the most dangerous perturbations are directed by
θ = π/2.

4. Modulational Instability of Stationary Rolls—The Case of 1D Disturbances

The stability analysis carried out in the previous section is incomplete because it does
not include the stability of periodic patterns with respect to disturbances with wavenumbers
different from Kc. The most important class of disturbances are those with wavenumbers
close to Kc. Below, we present the analysis of the instability of roll patterns with respect
to one-dimensional disturbances near the instability threshold (M = M0 + δ2M2, M0 =
Mm(Kc)) carried out in [31]. In that case, the motionless state is unstable with respect to
disturbances with the wavenumbers in the interval O(δ) around Kc. Using the Newell–
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Whitehead–Segel approach, two spatial scales are introduced: X corresponding to the main
wavelength of the pattern, and X1 = δX corresponding to the spatial modulation of the
pattern. The time variable is rescaled as τ2 = δ2τ. Thus, the solution at the leading order
can be written as

h1 = A(X1, τ2)eiKcX0 + A(X1, τ2)
∗e−iKcX0 , f1 = α1h1, γ1 = α2h1

(coefficients α1 and α2 are the same as in the previous section). At the next order, the
solution can be written as

h2 = h̄(X1, τ2) + B1(X1, τ2)e2iKcX0 + B1(X1, τ2)
∗e−2iKcX0 ,

f2 = f̄ (X1, τ2) + B2(X1, τ2)e2iKcX0 + B2(X1, τ2)
∗e−2iKcX0 ,

γ2 = γ̄(X1, τ2) + B3(X1, τ2)e2iKcX0 + B3(X1, τ2)
∗e−2iKcX0 . (23)

The heat-transfer equation at the second order gives f̄ − h̄ = −K2
c

β |A|
2. The calculation

is performed taking into account that convection does not change the total volume of the
liquid and the total amount of the surfactant one has < h̄ >= 0,< γ̄ >= 0, (< · · · > is
averaging over X1).

Finally, one obtains the following set of equations for the amplitude of the rolls A, for the
large-scale disturbances of the surface deformation h0, and for surfactant concentration γ0:

∂τ2 A = κ0 A + κ1|A|2 A + µ1∂X1X1 A + µ2h̄A + µ3γ̄A, (24)

∂τ2 h̄ = a1∂X1X1 |A|
2 + a2∂X1X1 h̄ + a3∂X1X1 γ̄, (25)

∂τ2 γ̄ = b1∂X1X1 |A|
2 + b2∂X1X1 h̄ + b3∂X1X1 γ̄. (26)

The nature of the terms and the expressions for the coefficients are described in [31].
The coefficients µi(i = 1, 2, 3) are cumbersome and not presented here. Coefficients ai and
bi are described in Appendix B.

Stationary solution of Equations (24)–(26) without deformation and non-homogeneity

of surfactant is a family of rolls A0 =
√

q2µ1−κ0
κ1

eiqX1 , h̄ = 0, γ̄ = 0 (κ1 < 0). Here, q is
the deviation of the wavenumber from Kc (q2 < q2

0 = κ0/µ1).
To consider the stability of the rolls, we disturb their amplitude and the phase in

the form of normal modes. Obtaining the dispersion relation for the growth rate, λ,
of the side-band instability, we find in the limit of longwave modulations (assuming
λ = λ0 +Λk2 + o(k2)) that the growth rate of the mode related to the amplitude modulation,
λ0, is negative and the other three eigenvalues tend to zero when k → 0. This equation
for Λ describes the interaction of three Goldstone modes corresponding to the definite
symmetries of the problem—phase disturbances, surface deformation, and surfactant
concentration disturbances.

The analysis of the dispersion relation in the case without surfactant gives a quadratic
equation for eigenvalue Λ1,2. Fixing parameters G and β (remember, S = 1), we can follow
the evolution of the modulated rolls as a function of q2.

Figure 5 presents the stability map of the stationary rolls in the case without surfactant.
The black solid line here shows the boundary between supercritical and subcritical domains
for the rolls. We analyzed the modulational instability only in the region of supercritical
rolls and found three regions:
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Figure 5. Stability map of the stationary rolls in the case without surfactant.

• Region 1. Here, all the rolls are unstable with respect to modulation.
• Region 2. Here, the rolls are stable within the interval q2 < q2

m and monotonically
unstable for q2

m < q2 < q2
0 (monotonic Eckhaus instability).

• Region 3. Here, the rolls are stable within interval q2 < q2
osc, oscillatory unstable for q2

slightly above q2
osc, and oscillatory or monotonically unstable for q2

osc < q2 < q2
0.

The boundary of the monotonic Eckhaus instability is found as

q2
m =

κ0

µ1

(
a2κ1 − a1µ2

3a2κ1 − a1µ2

)
. (27)

For q2
osc, we found

q2
osc =

κ0

µ1

(
a2κ1 + κ1µ1 − a1µ2

a2κ1 + 3κ1µ1 − a1µ2

)
. (28)

Even a small addition of surfactant changes the stability interval. The boundary of
monotonic Eckhaus instability is

q2
m = q2

0
1 + C
3 + C

, (29)

where q2
0 = κ0/µ1 is the width of the existence interval for periodic solutions and

C =
(a3b1 − a1b3)µ2 − (a2b1 − a1b2)µ3

(a2b3 − a3b2)κ1
. (30)

In the case without surface deformations and disturbances of surfactant concentration,
we have C = 0, and we obtain the classical result q2

m = (1/3)q2
0.

Figure 6 presents the stability maps for N = 10−8 (a) and N = 10−7 (b). The shrink-
ing of the region of stable supercritical rolls means that with an increasing surfactant
concentration, the instability becomes subcritical in the larger region of the parameter.
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Figure 6. Stability maps for N = 10−8 (a) and N = 10−7 (b). Other parameters L = 0.003 and S = 1.
Regions “1”, “2”, and “3” correspond to the same named in Figure 5.

5. Modulational Instability of Stationary Rolls—The Case of 2D Disturbances

Consider now the 2D modulation of the rolls. The roll pattern is typically selected by
the analysis of competition of disturbances characterized by difference |Kn −Km| ∼ O(1),
i.e., the angle between these two wavevectors is O(1). In the case of the problem with
rotational symmetry, the set of wavevectors corresponding to unstable modes is a ring
which contains a continuum of wavevectors with |K2 − 1| < δ, see Figure 7.

Figure 7. Ring of unstable wavevectors.

Let us take a roll pattern with K0 = (Kc, 0) and consider the disturbances with
K = K0 + ∆ around that wavevector. The most unstable modes have K = Kc. When
Ma−Mac ∼ O(δ2), the instability region of the motionless state is a ring ||K| −Kc| = O(δ).

Because

|K| = |K + ∆| =
√
(Kc + ∆x)2 + ∆2

y = Kc + ∆x +
∆2

y

2Kc
+ . . . ,

the instability of the motionless state takes place with respect to the disturbances with the
wavevectors in the region

|∆x| = O(δ), |∆y| = O(δ1/2). (31)

In addition, the coupling between the longwave roll modulation, the modulations of
the surface distortion h, and the distribution of the surfactant concentration γ has some
specific features in the region of |Ky| = O(δ). Therefore, one has to consider two regions of
transversal modulation characterized by rescaled variables Y1/2 = δ1/2Y and Y1 = δY.



Colloids Interfaces 2022, 6, 53 13 of 19

5.1. Transversal Modulation of Rolls, Y1 = δY

Introduce the following rescaling of spatial and time coordinates

X0 = X, X1 = δX, Y1 = δY, τ2 = δ2τ. (32)

As in the previous section, applying the approach of Newell–Whitehead–Segel, one ob-
tains the following set of evolution equations for amplitude A, for the surface deformation
h0, and for the disturbance of surfactant concentration γ0:

∂τ2 A = κ0 A + κ1|A|2 A + µ1∂X1X1 A + µ2h0 A + µ3γ0 A, (33)

∂τ2 h0 = (a1∂X1X1 + ã1∂Y1Y1)|A|
2 + a2(∂X1X1 + ∂Y1Y1)h0 + a3(∂X1X1 + ∂Y1Y1)γ0, (34)

∂τ2 γ0 = (b1∂X1X1 + b̃1∂Y1Y1)|A|
2 + b2(∂X1X1 + ∂Y1Y1)h0 + b3(∂X1X1 + ∂Y1Y1)γ0. (35)

Coefficients κ1, µ1, µ2, and µ3 are cumbersome and not given here; others are presented
in Appendix A.

In the framework of the linear stability theory, the perturbations of the roll amplitude
and its phase, surface deviation, and surfactant of concentration are taken proportional to
eλτ2+iKX X1+iKYY1 . Consider a longwave modulation of the rolls and

|k|2 = k2 = K2
X + K2

Y = K2
X(1 + χ2)� 1.

Here, χ = KY/KX . When |KY| = 0, we have the case described in the previous section.
The boundary of the monotonic Eckhaus instability is described by (29). In the case of

transversal modulation, |KY| 6= 0, the parameter C in (29) is replaced by C̃ = C+C̃χ2

1+χ2 . Here,

C̃ is obtained from C by the replacement a1 → ã1 and b1 → b̃1. Because for any χ2, C̃ is
between C and C̃, it is sufficient to compare the criterion with the new one,

q2 < q̃2
m = q2

0
1 + C̃
3 + C̃

. (36)

The rolls are stable with respect to disturbances with small K2
X , K2

Y, if q2 < min(q2
0, q̃2

m).
The stability maps have additional parameter, χ. We start plot for case without the sur-
factant, see Figure 8. When χ grows, the stability of stationary rolls increase, i.e., the
longitudinal disturbances are more dangerous than disturbances with inclined wavevector.
At χ2 > 5.2, the region “1” disappears.

Figure 8. Stability map of the stationary rolls in the case without surfactant. The solid black line
is the boundary line between supercritical and subcritical rolls (“subcr. R”). Region “1” (below
the dashed line) is the region of unstable rolls; in region “2”, rolls are stable within q2 < q2

m and
monotonically unstable for q2

m < q2 < q2
0; region “3” (above dot-dashed line) is the region of stable

rolls for q2 < q2
osc, oscillatory unstable for q2 slightly above q2

osc, and oscillatory or monotonically
unstable for any q2

osc < q2 < q2
0. Dashed and solid lines: blue color for χ2 = 2, brown color for χ2 = 5,

green color for χ2 = 10.
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Figure 9 presents the stability maps for two different values of N: panel (a) N = 10−8,
panel (b) N = 10−7 for different χ.

Figure 9. Stability maps for N = 10−8 (a) and N = 10−7 (b). Other parameters are L = 0.003 and
S = 1. Regions “1”, “2”, and “3” are the same as Figure 3. Dashed and solid lines: blue color for
χ2 = 2, brown color for χ2 = 5, green color for χ2 = 10.

5.2. Transversal Modulation of Rolls, Y1/2 = δ1/2Y

Here, we rescale coordinates as

X0 = X, X1 = δX, Y1/2 = δ1/2Y, τ2 = δ2τ. (37)

Now, Equations (34) and (35) in the third order become

∂2
Y1/2

(ã1|A|2 + a2h0 + a3γ0), (38)

∂2
Y1/2

(b̃1|A|2 + b2h0 + b3γ0). (39)

Thus, the system of algebraic equations for surface distortion h0 and for distribution
of the surfactant concentration γ0 can be written as

a2h0 + a3γ0 = −ã1(|A|2− < |A|2 >), (40)

b2h0 + b3γ0 = −b̃1(|A|2− < |A|2 >), (41)

where < · · · > denotes averaging over both X1 and Y1/2. Solving this system, we find the
solutions for surface distortion h0 and distribution of the surfactant concentration γ0 can
be written as

h0 = ch(|A|2− < |A|2 >), γ0 = cγ(|A|2− < |A|2 >). (42)

Here,

ch =
a3b̃1 − ã1b3

a2b3 − b2a3
, cγ =

ã1b2 − a2b̃1

a2b3 − b2a3
.

In this case, we can rewrite the amplitude equation as the following modified Newell–
Whitehead–Segel equation:

∂τ2 A = κ0 A + κ1|A|2 A + κ̃1(|A|2− < |A|2 >)A + µ1

(
∂

∂X1
− i∂2

2Kc∂Y2
1/2

)2

A. (43)

Here, κ̃1 = µ2ch + µ3cγ. Linearizing Equation (43) and substituting the disturbances
of the rolls amplitude and its phase in the form ∼ exp(λτ2 + i(KXX1 + KYY1/2), we obtain
quadratic equation for the growth rate λ.
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In the case when the perturbations vary only in Y−direction (parallel to the rolls),
KX = 0 the dispersion relation gives the growth rate for the phase perturbation

λ = −K2
Y

qµ1

Kc
− K4

Y
µ1

4K2
c

. (44)

Here, when q < 0, we have the zigzag instability for small |KY| (K2
Y < −4Kcq).

The zigzag instability caused by the phase disturbances is not influenced by κ̃1. The origin
of the zigzag instability is fully "geometrical" for K < Kc, there is a resonance of neutral
disturbances with wavevectors (±K, KY) with zero linear growth rate, K2 + K2

Y = K2
c :

(−K, KY) + (2K, 0) = (K, KY).

6. Distortions of Hexagons

Let us discuss now the longwave distortion of hexagons:

h1 =
3

∑
j=1

Aj(X1, τ1, τ2)eiKcnj ·X0 + c.c, f1 = α1h1, γ1 = α2h1, (45)

where X0 = X, X1 = δX. Distorted non-equilateral hexagons have been observed in
chemical systems [55] and considered in theoretical models [56,57].

The general form of the amplitude equations for distorted patterns described by
amplitudes Al (l = 1, 2, 3) is as follows, [58,59]:

∂τ2 Al = κ0 Al + κ1|Al |2 Al + κ2(|Am|2 + |An|2)Al + µ1(nl · ∇)2 Al + µ2h̄Al +

+µ3γ̄Al + s̄1 A∗m A∗n + is2[A∗m(tn · ∇)A∗n − A∗n(tm · ∇)A∗m] + is3[A∗n(nm · ∇)A∗m +

+A∗m(nn · ∇)A∗n], (46)

∂τ2 h̄ =
3

∑
j=1

[a1(nj · ∇)2 + ã1(tj · ∇)2]|Aj|2 + a2∇2h̄ + a3∇2γ̄, (47)

∂τ2 γ̄ =
3

∑
j=1

[b1(nj · ∇)2 + b̃1(tj · ∇)2]|Aj|2 + b2∇2h̄ + b3∇2γ̄. (48)

Here, ∇ ≡ ∇X1 . New coefficients are: ã1 = 1
3 (G + K2

c S)− K2
c Mm
2β and b̃1 = 1

36L (G +

K2
c S)(12L − G − K2

c S) − K2
c Mm
β . The terms with the coefficient s2 describe the change in

the nonlinear interaction by rotation of the wavevectors of rolls forming the hexagons,
while the terms with s3 correspond to that by dilatations of hexagons. The values of the
coefficients s2 and s3 are computed directly from the original Equations (7)–(9), similarly
to [60,61]. The terms µ2h̄Al and µ3γ̄Al describe the influence of surface deformation and
surfactant concentration perturbation created by the pattern modulation on the growth
rate of Marangoni instability.

7. Conclusions

In this paper, a review is presented of the recent works on the longwave Marangoni
convection of the non-isothermal liquid layer covered by an insoluble surfactant. This
analysis includes two different ranges of disturbances: one is with wavevectors k ∼ Bi1/4

and one with k ∼ Bi1/2 (Bi is the Biot number). While the first interval of wavevectors
is well known and widely investigated, the second one, k ∼ Bi1/2, is less known. Recent
works elucidate the pattern selection at the interval of the disturbance wavenumbers:
rolls/squares, hexagons, and rhombi were found. In the present work, we studied how
the concentration of an insoluble surfactant, characterized by the elasticity parameter N,
influences the roll stability, as well as that of rectangles and hexagons. The last pattern
must be still investigated in more detail. The analysis of external instability is performed
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at a fixed value of the critical wavevector at which the monotonic instability mode of the
Marangoni convection appears.

The special part of the paper is devoted to the modulational instability, when the 1D or
2D large-scale perturbations disturb the stable roll patterns, which are formed as a result of
the stationary Marangoni convection in the liquid layer with/without insoluble surfactant.
The result of this modulation is the appearance of the Eckhaus instability. The analysis is
performed in the neighborhood of the critical wavenumber. The difference between the 1D
and 2D modulation is revealed. In both cases, the stability maps are drawn in the plane of
the Galileo number, G, and the Biot number, Bi.

The existence of three regions of the supercritical rolls is found. Region “1” is where
all the rolls are unstable with respect to modulation. Region “2” is where the rolls are stable
within the interval q2 < q2

m and monotonically unstable for q2
m < q2 < q2

0. Region “3” is
where the rolls are stable within the interval q2 < q2

osc, oscillatory unstable for q2 slightly
above q2

osc, and oscillatory or monotonically unstable for any q2
osc < q2 < q2

0. The zigzag
instability boundary does not depend on the concentration of the insoluble surfactant.

The paper includes the known results published earlier in different papers, as well
as new results never yet published. The authors anticipate that the discussed theory can
motivate more experiments on the investigation of pattern formation in the system with
surfactants. To estimate the parameters of potential experiments, we take the water layer of
a thickness of 0.05 mm. As shown in [13], the longwave Marangoni convection is possible
if BiΣ < 72. Assuming the heat-transfer coefficient q ∼ 10 (W/m2K) and the thermal
conductivity is 0.5 (W/mK), one obtains Bi ∼ 0.001. The Galileo number corresponds to
G ∼ 10 and the inverse capillary number Σ ∼ 3× 104.

The authors hope that this paper will be useful for experts in colloid physics and in
surface active agents (surfactants).

Author Contributions: A.B.M.: software, formal analysis, investigation, writing—original draft,
writing—review and editing, and visualization; A.A.N.: conceptualization, methodology, validation,
writing—original draft and review and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors acknowledge the support by the Israel Science Foundation (Grant
No. 843/18).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Basic Wavevectors for the Patterns

In this paper, we considered the patterns characterized by three different sets of basic
wavevectors Ki in the Fourier space.

For a square lattice, the basic wavevectors are perpendicular to another, Figure A1a. In
the rhombic lattice, the basic wavevectors are oriented one to another by angle θ. In the real
space, the rhombic structures look like rectangles, Figure A1b. The most typical structures are
hexagonal patterns, Figure A1c, with three basic wavevectors oriented by 2π/3. That pattern
is supported by the resonance interaction of disturbances forming a triad, K1 +K2 +K3 = 0.
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Figure A1. Basic wavevectors of disturbances. Panel (a) square/rolls lattice, (b) rhombic lattice,
(c) hexagonal lattice.

Appendix B. Coefficients of (33)–(35)

a1 =
1
3
(G + 7K2S)− K2Mm

2β
, ã1 =

1
3
(G + K2S)− K2Mm

2β
,

b1 =
1

36L
[G(12L− G) + 4K2(G + 21L)S + 5K4S2]− K2Mm

β
, (A1)

b̃1 = − (G + K2S)(G− 12L + K2S)
36L

− K2Mm

β

a2 =
G
3

, a3 =
N
2

, b2 =
G
2

, b3 = L + N.
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