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Abstract: A novel method is proposed for calculating the solvent flux density and electric current
density in the process of flow of an electrolyte solution through a charged porous layer (membrane)
under the simultaneous action of external pressure and electric potential gradients. The method
is based on irreversible thermodynamics and the cell model of an ion-exchange membrane. It is
shown that, with the increase in the electrolyte concentration, the total permeability of the porous
structure also increases as a result of both barofiltration and electroosmotic transfer of the solvent
when both external gradients are co-directional vectors. As for the current density, it also increases
with the increasing electrolyte concentration owing to the growth of the streaming current and
specific conductivity.

Keywords: Onsager’s approach; kinetic coefficients; cell model; charged porous layer; ion-exchange
membrane; electrobarofiltration; hydrodynamic permeability; electroosmotic transfer

1. Introduction

It is well known that one of the most effective methods for studying the behavior of
concentrated bound dispersed systems, such as porous layers or membranes, is the cell
method [1]. The creation of a cell model of a charged porous medium of a globular type
involves the mental replacement of a real system of chaotically arranged grains that make
up this medium, carrying, as a rule, a negative charge, with a periodic lattice of identical
porous balls enclosed in liquid spherical cells and having some constant density of fixed
groups (exchange capacity). In this case, the action of neighboring particles is considered by
setting special boundary conditions on the surface of liquid spherical shells. The advantage
of this approach is that all quantities included in the transfer equations—thermodynamic
fluxes and forces—can be directly measured in experiments. In [2], the cell model of an
ion-exchange membrane was created, the problem of finding the kinetic coefficients of the
Onsager matrix was set up and solved in the general form, and an exact algebraic formula
for the hydrodynamic permeability of a charged membrane was obtained for the first time.
In [3], in the framework of thermodynamics of nonequilibrium processes, based on the
previously proposed cell model of a charged membrane [2], the electroosmotic permeability
and specific electrical conductivity of an ion-exchange membrane, considered as kinetic
coefficients of the Onsager matrix, were calculated. Here, we will use the results of the
mentioned works and apply them to the calculation of the transfer of solvent (water) and
electric current through a charged porous layer (membrane) in contact with an aqueous
solution of a binary 1:1 electrolyte. In this study, as in [2,3], we choose pressure gradients
and electric potential as follows: ∇p = (p20 − p10)/h and ∇ϕ =(ϕ20 −ϕ10)/h, respec-
tively, as independent thermodynamic forces set during the experiment—the gradient of
the chemical potential (the concentration gradient of the electrolyte) is absent. Here, h is the
thickness of the porous layer, and the indices “1” and “2” indicate the left and right sides of
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the porous layer, which are in contact with an equilibrium solution of a binary electrolyte
of constant concentration C0 (Figure 1a).
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Figure 1. Diagram of the electrolyte solution transfer process through a charged porous layer
(membrane) (a) and single cell (b).

As dependent thermodynamic parameters determined in the experiment, we take
the densities of solvent (water) flows, U, and mobile charges (electric current density), I.
As for the flux of solute (salt), which can also occur when pressure gradients and electric
potential are applied, for simplicity, we do not consider it here. Then, the phenomenological
transport equations in the case of isothermal processes can be written as the following
system of equations: {

U = −(L11∇p + L12∇ϕ),
I = −(L21∇p + L22∇ϕ).

(1)

In accordance with the Onsager reciprocity principle, the matrix of kinetic coefficients
must be symmetric, i.e., L12 = L21. However, as shown in our recent work [4], this property
ceases to be valid in our case. This fact is confirmed by the results of [5], in which it was
phenomenologically proven that, in the case of linear nonequilibrium thermodynamics,
the symmetry of the matrix of kinetic coefficients is observed only in the special case of
generalized thermodynamic fluxes being equal to zero and thermodynamic forces not being
equal to zero. Here, we will discuss the calculation of the hydrodynamic L11, electroosmotic
L12 permeabilities, the kinetic coefficient L21 determining the streaming current, as well as
the specific electrical conductivity L22 of the charged porous layer, which can be found by
the formulae following from (1):

L11 = − U
∇p

∣∣∣∣
∇ϕ=0,∇C=0

, (2a)

L21 = − I
∇p

∣∣∣∣
∇ϕ=0,∇C=0

, (2b)

L22 = − I
∇ϕ

∣∣∣∣
∇p=0,∇C=0

, (2c)

L12 = − U
∇ϕ

∣∣∣∣
∇p=0,∇C=0

(2d)

These relations (2) mean that the correct measurements of coefficients L11 and L21 are
possible only in the absence of concentration and electric potential differences and a given
constant pressure drop p20 − p10 = h∇p = const on the layer. The correct measurements
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of coefficients L22 and L12 are possible only in the absence of concentration and pressure
differences and a given constant electric potential drop ϕ20 −ϕ10 = h∇ϕ = const.

2. Statement of the Problem

Here, we will model a charged layer of a cellular-globular structure by a periodic
lattice of porous charged spherical particles of the same radius a enclosed in liquid spherical
shells of radius b, which is chosen in such a way that the ratio of particle volume to cell
volume equals the volume fraction of particles in a dispersed system (porous layer):

γ3 = (a/b)3 = 1−m0, (3)

where m0 is porosity available for filtration, or active porosity—Figure 1b.
The cell method makes it possible to reduce the problem of determining the kinetic

coefficients of an entire layer to a boundary value problem for a single cell. The mathemati-
cal formulation of the problem for a single cell is given in [2,3] and is not given here for
brevity. The designations of variables and parameters completely coincide with those in
the articles [2,3] and are presented for convenience at the end of the article. The motion of
an incompressible fluid (an aqueous electrolyte solution) in the outer region (a < r < b) of
the cell is described by the vector differential Stokes equation at small Reynolds numbers
(“creeping flow”), supplemented by a spatial electric force.

The fluid motion in the inner porous region (0 ≤ r < a) obeys the Brinkman vector
differential equation [6], complicated by a similar spatial electric force as in the outer region.
Traditionally, the “Brinkman fluid” is assumed to be incompressible.

The electric potential satisfies the Poisson equation inside and outside the porous
particle, and the Nernst–Planck representation is used for the density of ion fluxes. At the
same time, there are no sources and drains of charges in the system, and the problem is
considered in a stationary formulation. Assuming the Debye radius to be extremely small
compared with the particle radius, the presence of electric double layers (EDLs) is effectively
replaced by jumps in electric potential and ion concentrations when passing through the
geometric interface of a porous grain/electrolyte solution [2,3]. At the same boundary, we
set conditions for the equality of electrochemical potentials, velocities, total voltages, and
radial components of ion flows. On the outer boundary of the cell, the Kuwabara condition
is set—the absence of vorticity and the continuity of the radial velocity component.

Let, as previously in [2,3], ρV be the absolute value of the volume density of fixed
charges of the porous skeleton (exchange capacity). For certainty, we assume the charge
of the particle −ρV to be negative. This is true, for example, in the case of sandstones or
clay beds, then ρV > 0. It should be noted that there are several experimental methods
for determining the exchange capacity. The reservoir rock exchange capacity can be found
by continuous potentiometric titration against the background of a NaCl solution [7]. The
charge density of fixed groups in the membrane can also be estimated by measuring the
streaming potential [8].

For the convenience of the analysis, we will use the same parameters as in [2,3]:

m = µi/µo, s2 = a2/(mkD), s0
2 = ms2 = a2/R2

b, (4)

where Rb =
√

kD is the characteristic thickness of the filtration layer (Brinkman radius); kD
is the specific permeability of the structural grains that make up the formation; and µo, µi

are the viscosity of the liquid in the shell surrounding the grain and in the grain itself. The
parameter s0 reflects how deep the fluid flow penetrates into the particle—the smaller this
parameter, the stronger this penetration.

3. Discussion of the Theoretical Results

The hydrodynamic permeability of a negatively charged porous layer (membrane) in
an aqueous solution of 1:1 electrolyte was determined based on the cell model in [2]. In
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the simplest calculation case of an ideally selective membrane (negative sorption of ions
located in the pores of the layer is observed), it is equal to the following:

L11 = a2

45µo(1−m0)

 45

ms2

1+

(
1− C0
ρ

)
m0

ρ
ρ0

m0
Dm+
D+

+(3−m0)
C0
ρ

 + 15 + 3(1−m0)
2 − 18 3

√
1−m0 −

5m

(
6+s2

[
1− 2

s/tanhs−1

])
m2

0[
2(1−m)

s/tanhs−1+m

]
s2−6(1−m)

, (5)

where D±
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Dm± are the diffusion coefficients of ions in dilute solution and porous layer,
respectively; ρ = ρV/F0 is the reduced exchange capacity; ρ0 = µoD+/(kDRT) is the
characteristic exchange capacity of the problem under consideration; F0 is the Faraday con-
stant; R is the universal gas constant; and T is the absolute temperature. The characteristic
exchange capacity ρ0 is reverse proportional to the specific hydrodynamic permeability
of the structural grains and does not depend on the charge properties of the membrane.
However, the behavior of kinetic coefficients depends on whether ρ0 is greater or less than
the exchange capacity ρ of the membrane.

It follows from Formula (5) that, with an increase in the concentration of the electrolyte,
the additional term to the unit in the denominator of the first fraction in the square bracket
monotonically decreases from the positive value D+

Dm+

ρ
ρ0

at C0 = 0 to the negative value

− m0
3−m0

ρ
ρ0

at C0 = ∞. Therefore, as the concentration C0 increases, the hydrodynamic
permeability will continuously increase, monotonically approaching its asymptotic value:
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1
45(1−m0)

a2

µ◦

 45

ms2
(

1− m0
3−m0

ρ
ρ0

) + 15 + 3(1−m0)
2 − 18 3

√
1−m0 −

5m
(
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[
1− 2

s/tanhs−1

])
m2

0[
2(1−m)

s/tanhs−1 + m
]
s2 − 6(1−m)
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It should be noted that the monotonic approach of the hydrodynamic permeability
curve (5) to a constant value (5a) with an increase in the electrolyte concentration corre-
sponds to the nature of the dependence of the rate of extraction of petroleum products
from the purified liquid on the concentration of calcium chloride by flocculation with the
addition of cationic polyacrylamine and copolymer dimethylamine and epichlorohydrin [9].
An increase in the exchange capacity ρ of the membrane, as also follows from Formula (5),
has a complex effect on the hydrodynamic permeability—a maximum is observed on
this dependence at the value ρ = C0√

1+ Dm+
(3/m0−1)D+

+1
< C0

2 . With a further increase in the

exchange capacity, the permeability L11 begins to decrease, tending to a value lower than
that for an uncharged layer:

L11 =
1

45(1−m0)

a2

µ◦

15 + 3(1−m0)
2 − 18 3

√
1−m0 −

5m
(

6 + s2
[
1− 2(s/tanhs− 1)−1

])
m2

0[
2(1−m)(s/tanhs− 1)−1 + m

]
s2 − 6(1−m)

. (5b)

An increase in the characteristic exchange capacity ρ0 = µoD+/(kDRT) of the problem
with the selected electrolyte means a decrease in grain permeability kD while maintain-
ing the porosity of the layer. It is quite natural that this leads to a drop in the overall
permeability of the layer.

The specific electrical conductivity of the membrane was calculated in [3] and, in the case
under consideration of an ideally selective structure and a 1:1 electrolyte, it is given by the
following expression:

L22 = C0D+
F2

0
RT

 2m0

3−m0

(
1 +

D−
D+

)
+

9(1−m0)

3−m0

Dm+
D+

ρ0
ρ + 1

m0

(
Dm+
D+

ρ0
ρ + 1

)
+
(
(3−m0)

ρ0
ρ −m0

)
C0
ρ

. (6)

Expression (6) consists of two terms: the first term determines the electrical conduc-
tivity of the electrolyte solution located between the grains of the layer, and the second
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one determines the electrical conductivity of the ionite grains themselves saturated with
electrolyte. Dependence (6) has the sloping asymptote:

L22|C0→∞ '
F2

0 D+

RT

9(1−m0)

3−m0

(
Dm+
D+

+ ρ
ρ0

)
ρ

3−m0

(
1 + ρ

ρ0

) +
2m0

3−m0

(
1 +

D−
D+

)
C0

. (6a)

Various cases of the asymptote location are studied in detail in [3].
As for the electroosmotic permeability of an ideally selective cation-exchange layer relative

to a 1:1 electrolyte, it can also be calculated for the particular case considered here; just as
in [3], the adjoint coefficient L21, which determines the streaming current, was calculated:

L12 = 3
F0D+

RT

C0
ρ

m0

(
Dm+
D+

ρ0
ρ + 1

)
+
(
(3−m0)

ρ0
ρ −m0

)
C0
ρ

, (7)

L21 = 3
F0D+

RT

(
1 + m0

3−m0

Dm+
D+

)
C0
ρ

m0

(
Dm+
D+

ρ0
ρ + 1

)
+
(
(3−m0)

ρ0
ρ −m0

)
C0
ρ

. (8)

In this case, dependence (7) has the following horizontal asymptote:

L12|C0→∞ =
3F0D+

RT
1

(3−m0)
ρ0
ρ −m0

, (7a)

and dependence (8) has another horizontal asymptote:

L21|C0→∞ =
3F0D+

RT

1 + Dm+
D+

m0
3−m0

(3−m0)
ρ0
ρ −m0

. (8a)

Comparing (7) and (8), as well as (7a) and (8a), we conclude that they, although only
slightly, differ (because Dm+/D+ << 1 and 0≤ m0/(3−m0) ≤ 0.5). That is, the Onsager
principle of reciprocity is violated here.

Note that, in the case of non-ideality of the layer, it is necessary to consider the poten-
tials of specific (non-electrical) interaction of ions with the surface of its pores. To do this,
the coefficients of the equilibrium distribution of cations and anions γ± = exp(Φ±/kBT)
in a porous matrix are introduced, where kB is the Boltzmann constant. Potentials Φ±
characterize the total energy required to move ions from a bulk solution to a pore and
represent the sum of interaction potentials of various nature: Van der Waals forces, image
forces, and Born forces. At the same time, it is known that the greatest contribution to the
value of Φ± is given by the Born forces [10], i.e., the forces associated with damage of the
structure of hydrate shells of the anion/cation and the structure of water in the pore when
the ion moves from bulk solution into the pore.

4. Results of Calculations

Using Formulas (5)–(8) and the Onsager relations (1), it is possible to calculate the
solvent flow density (linear velocity U) and the electric current density I at any values
of pressure gradients and electric potential. This means that it is possible to regulate the
solvent flux and the electric current passing through the porous charged layer by changing
the external electric field at a constant pressure gradient. The calculations were performed
using the Mathematica 12 application software package and are shown in Figures 2–5.
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Figure 5. Dependences of ratios of HCl electrolyte filtration velocities U/U∗ (a) and current
density I/I∗ (b) as functions of the dimensionless ratio of electric potential and pressure gradi-
ents ρF0

∇ϕ
∇p at concentration C0 = 0.5M, calculated using formulas (9a) and (10a) respectively:

m0 = 9.6%, s0 = 1 (1); m0 = 9.6%, s0 = 10 (2); m0 = 30%, s0 = 1 (3); m0 = 30%, s0 = 10 (4);
D+ = 9610 , D− = 2030 , Dm+ = 586 µm2/s, ρ = 1.08, ρ0 = 106 M.

To estimate the relative influence of an external electric field on the linear velocity of a
solvent (water) through a charged porous layer, we will use the ratio

U
U∗

= 1 + χu
∇ϕ
∇p

, (9)

and to assess the effect of the electric field on the electric current density, we will use the
formula

I
I∗

= 1 + χi
∇ ϕ

∇p
, (10)

where U∗, I∗ are the linear velocity of the solvent flow and the streaming current density
only in the presence of a pressure gradient on the porous layer; U, I are the flow velocity
and current density under the action of pressure and electric potential gradients; ϕ = F0

RTϕ

is the dimensionless electric potential; and p = a2

µoD+
p is the dimensionless pressure. The

proportionality coefficients in the case of coincident viscosity values (m = 1) are easily
determined from expressions (1) and (5)–(8):
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χu =
135(1−m0)s2

0
C0
ρ0(

18s2
0(1− 3√1−m0)+2m0s2

0

((
5(s0/tanhs0−1)−1−1

)
m0−3

)
−30m2

0

)
×
(

m0

(
Dm+
D+

+ ρ
ρ0

)
+
(

3−m0

(
1+ ρ

ρ0

))
C0
ρ

)
+45

(
m0

Dm+
D+

+(3−m0)
C0
ρ

) , (11)

χi =
s0

2
((

2m2
0

(
1 + D−

D+

)
+ 9(1−m0)

)(
Dm+
D+

+ ρ
ρ0

)
+ 2m0

(
1 + D−

D+

)(
3−m0

(
1 + ρ

ρ 0

))
C0
ρ

)
3
(

3 + m0

(
Dm+
D+
− 1
)) . (12)

Note that, in the case of pressure gradients and electric potential of the same sign, the
coefficient χi linearly increases with C0

ρ and the coefficient χu also monotonically increases

with the growth in C0
ρ , asymptotically approaching its limiting value:

χ∞
u =

135(1−m0)s2
0
ρ
ρ0(

18s2
0(1− 3√1−m0)+2m0s2

0

((
5(s0/tanhs0−1)−1−1

)
m0−3

)
−30m2

0

)
×
(

3−m0

(
1+ ρ

ρ0

))
+45(3−m0)

. (11a)

The dependences χu calculated by Formula (11) with an increase in the relative con-
centration C0

ρ of the electrolyte are shown in Figure 2 in the case of values of the physico-
chemical parameters that are typical for the cast cation-exchange membrane MF-4SC (the
Russian analogue of Nafion) in HCl solution investigated in our work [11].

From Figure 2a, it can be seen that an increase in s0 (decrease in the grain permeability
or an increase in the grain size) by 5 times leads to an increase in χu by 20 times (curves 1
and 2), and an increase in porosity m0 by 3 times leads to a decrease in χu by about 30%
(curves 2 and 3). It can also be concluded that the asymptotic value (9a) is practically
achieved already at very small relative concentrations of the electrolyte. At the same time,
Formula (12) implies a linear increase in the coefficient χi on the relative concentration
C0
ρ of the electrolyte, and a directly proportional increase on the parameter s2

0 = a2/kD.
Figure 2b shows these linear dependencies. Moreover, it can be seen that, with large s0
(low hydrodynamic permeability of porous grains) increases in porosity, this first leads to a
relative decrease in the coefficient χi compared with lower porosity, and then the difference
between the coefficients weakens and disappears at C0

ρ = 0.06. A further increase in the
relative concentration of the electrolyte leads to the fact that the coefficient χi increases
faster with a larger macroscopic porosity than with a smaller one. Such behavior of χi is
explained by the complex nature of the interaction between the streaming current due to
convective ion transport and the conductivity of the solution due to the imposition of an
external electric field.

Thus, the imposition of an external electric field on a negatively charged layer, the
intensity vector of which is co-directed with the velocity of barofiltration (filtration under
imposition of a pressure drop), leads to an increase in the rate of liquid transfer through
the porous layer due to the addition of an electroosmotic component to the convective
flux. When an electric field acts in the opposite direction, the solvent flow is inhibited.
A similar pattern is observed for the electric current density. Figure 3a–c show surfaces
depicting the behavior of the coefficient χu depending on the porosity m0 and the ratio of
the characteristic volumetric capacity of the layer to its actual capacity ρ0

ρ at two different

values of the relative concentration of the electrolyte ( C0
ρ = 0.1 and 0.5) and a given ratio of

the diffusion coefficient of the counterion in the bulk solution to its value inside the porous
layer— D+

Dm+
= 16.4. This ratio value is typical for the perfluorinated MF-4SC membrane

and hydrochloric acid solution [11]. At the same time, we have ρ0
ρ > 1. We assume that the

above-mentioned parameters remain approximately the same for a charged oil reservoir.
However, based on the analysis of Formula (11), the parameter D+

Dm+
does not significantly

affect the coefficient χu. The behavior of the coefficient χu in Figure 3a–c, depending on the
porosity m0 and the parameter ρ0

ρ , is qualitatively similar, asserting the decrease in χu with
the growth in these parameters. As can be seen from Figure 3, the increase in the rate of
solvent transfer through the porous layer is strong with the increasing parameter s0 = a/Rb
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(thinning of the Brinkman filtration layer in the grains that make up the porous layer) and
almost weakly depends on the relative concentration of the electrolyte C0

ρ (Figure 3b,c).
Consequently, in practice, to improve the total permeability of an oil-bearing reservoir, it
is most advantageous to pre-apply methods of chemical or physical modification of the
reservoir to reduce the specific permeability kD = R2

b of its grains. At the same time, a
synergistic effect is observed as the characteristic exchange capacity ρ0 = µoD+/(kDRT)
also increases.

Note that the qualitative behavior of the coefficient χi depending on the porosity m0

and the ratio ρ0
ρ of the characteristic volumetric capacity of the layer to its actual capacity,

shown in Figure 4, is similar to how the coefficient χu behaves (Figure 3a). The mentioned
observation reflects the generality of the pattern of charge and solvent transfer through a
porous layer.

It should be mentioned that, in accordance with Formulas (11) and (12), the changes in
the rate of solvent transfer through the layer and the density of the electric current depend
not only on the dimensionless parameters χu and χi, accordingly, but also on the ratio of
dimensionless gradients (differences) of the electric potential and pressure on the layer:
∇ρ
∇p = ∇

(
F0
RTϕ

)/
∇
(

a2

µoD+
p
)
= ρ0F0

s2
0

∇ϕ
∇p . Considering this and the relations (11) and (12),

Formulas (9) and (10) can be rewritten explicitly:

U
U∗ = 1+

135(1−m0)
C0
ρ

(
ρF0
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∇p

)
(
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0

((
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)
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) , (9a)

I
I∗

= 1 +
ρF0

∇ϕ
∇p

((
2m2

0

(
1 + D−

D+

)
+ 9(1−m0)

)(
Dm+
D+

+ ρ
ρ0

)
+ 2m0

(
1 + D−

D+

)(
3−m0

(
1 + ρ

ρ0

))
C0
ρ

)
3 ρρ0

(
3 + m0

(
Dm+
D+
− 1
)) . (10a)

Figure 5 shows the dependences (9a) (Figure 5a) and (10a) (Figure 5b) on the ratio of
gradients ∇ϕ∇p for the convenience of calculations measured in units of the inverse density

of fixed charges of a porous skeleton 1
ρF 0

= 1
ρV

.
Analyzing Figure 5a, we conclude that there are values of the electric potential gradient,

opposite to the pressure gradient, at which the solvent transfer through the porous layer
stops. At the same time, the values of the dimensionless ratio ρF0

∇ϕ
∇p are quite high:

−150 . . .− 175 for the set of parameters used, which are characteristic of the cast membrane
MF-4SC [11]. Considering that the electrodialysis process takes place at a voltage of the
order of 1 V, and if we use the pressure during nanofiltration in the range of 1–10 bar,
we have ρF0

∇ϕ
∇p ≈ 100 − 1000. That is, the achievement of the above effect is quite

real. Moreover, by increasing the negative gradient of the electric potential in absolute
magnitude, it is possible to reverse the flow of solvent through a porous charged layer. The
same applies to the direction of the electric current (Figure 5b), but there the critical values
of ρF0

∇ϕ
∇p that are 3–4 orders of magnitude lower. From Figure 5a, it follows that the ratio

U/U∗ at small porosities weakly depends on the parameter s0—curves 1 and 2 practically
coincide. At the same time, with an average porosity of 30%, they differ markedly—curve
3 at s0 = 1 lies above curve 4 at s0 = 10. That is, with a lower permeability of the porous
grains, the solvent transfer rate is also lower. It turns out to be smaller and with greater
macroporosity m0, which is quite understandable from a physical point of view. Note that,
because the parameter s0 is not included in Formula (10a), curves 1 and 2, 3, and 4 coincide
in Figure 5b. In the general case of a non-ideal membrane, these curves will differ as the
ratio I/I∗ depends on the parameter s0.

It should be noted that the process of electrobarofiltration (filtration under simultaneous
imposition of a pressure drop and an electric field) studied here, when the direction of the
electric field is opposite to the pressure gradient, can be effectively used to separate ions of
the same sign and charge, for example, Li+ and K+ [12,13].
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The cell model of an ion-exchange membrane that we explore here is only one of the
possible interpretations of its complex structure and does not pretend to fully correspond
to a real membrane. However, this mathematical model shows the same macroscopic
properties as a real membrane, as shown in our works, for example, in [11]. To do this, it
is only necessary that the macroscopic porosity m0 in the model formed by the ordered
arrangement of spherical grains coincides with the real porosity of the membrane. For
clarifying a structure of the Nafion ionomer suggested by well-known physicochemical
models for ion-exchange membranes (like Gierke’s cluster, the local-order model, the
polymer-bundle model, and others), previously published small-angle scattering data
of hydrated Nafion are quantitatively simulated in [14]. The main result of [14] is the
parallel water-channel (inverted-micelle cylinder) model of Nafion. Simulations for various
other models of Nafion do not match the scattering data. The authors of [15] reviewed
different models describing ion transport in electromembrane systems, highlighting the
role of micro- and macroheterogeneities. They paid attention to the models based on the
irreversible thermodynamics approach, “solution-diffusion” and “pore-flow” models, as
well as multiphase models built within the effective-medium approach.

5. Conclusions

A new method, based on irreversible thermodynamics and the cell model of an ion-
exchange membrane, is proposed to calculate the solvent flux density and the electric
current density in the process of the flow of an electrolyte solution through a charged
porous layer (membrane) under the simultaneous action of external pressure and electric
potential gradients. It is shown that, with the increase in the electrolyte concentration, the
total permeability of the porous structure also increases as a result of both barofiltration
and electroosmotic transfer of the solvent when both external gradients are co-directional
vectors. As for the current density, it also increases with the increasing electrolyte con-
centration owing to the growth of the streaming current and specific conductivity. It was
found that, by setting an electric field opposite to the pressure gradient, it is possible to
achieve a state where the solvent flow through the charged porous layer stops or even
reverses. Similar states are possible with respect to the electric current flowing through
the layer. Nanofiltration of electrolyte solutions with the application of an external electric
field makes it possible to regulate the separation of single-charge cations with significantly
different mobilities.
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Nomenclature

Latin
a radius of a particle
b radius of a cell
k Brinkman’s constant
kB Boltzmann constant
kD = µo/k specific hydrodynamic permeability of an ionite grain according to Brinkman
C electrolyte concentration
C0 equivalent concentration of the electrolyte in equilibrium with the membrane
D, D0 diffusion coefficient, a characteristic diffusion coefficient
I the density of the flux of mobile charges (electric current density)
F0 the Faraday constant
h thickness of a membrane
m = µi/µo ratio of viscosities of a liquid in a Brinkman medium and a pure liquid
m0 = 1− γ3 macroscopic porosity of a membrane
Lij kinetic coefficients of the Onsager matrix
r radial coordinate
R universal gas constant
T absolute temperature
p pressure
p0 = RTC0 characteristic osmotic pressure
p = a2

µoD+
p dimensionless pressure

Rb =
√
µo/k =

√
kD Brinkman’s radius (width of the filtration zone in a porous medium)

s2 = a2k/µi dimensionless parameter
s0

2 = ms2 = a2/R2
b dimensionless parameter

U0 = ap0/µo characteristic filtration velocity

U∗, I∗
the linear velocity of the solvent flow and the streaming current density
only in the presence of a pressure gradient on the porous layer

U, I
flow velocity and current density under the action of pressure and electric
potential gradients

Greek
γ = a/b dimensionless parameter
γ± = exp(Φ±/kBT) distribution coefficients for ions inside the porous layer
∇ the Nabla operator (gradient)
µo viscosity of a pure liquid
µi viscosity of a liquid in a Brinkman medium (effective viscosity)
µ chemical potential
µ0 standard chemical potential
ϕ electric potential
ϕ = F0

RTϕ dimensionless electric potential
Φ± potentials of specific interactions of ions with the pore walls
Φi gradients of external forces acting on the cell and membrane
−ρV volume density of the fixed charge of a porous skeleton (cation-exchanger)
ρ = ρV

F0
exchange capacity of ionite grain (absolute value)

σ = ρV
F0C0

dimensionless exchange capacity
ρ0 = µoD+

kDRT characteristic exchange capacity
χu,χi dimensionless ratios (see Equations (11) and (12))
Indexes
«1» indicates the physical magnitude of the deviation from its equilibrium value.
«e» indicates the equilibrium value.
«o» indicates the value related to the liquid shell of the cell.
«i» indicates the value related to the porous particle in the cell.
~ the tilde indicates a dimensionless value.
«10» and «20» indicate the left and right sides of the membrane located in the measuring cell.
m indicates the value related to the membrane.
± indicates the value related to cations/anions.
∞ indicates a steady-state value (asymptotic).
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