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Abstract: We derive the general expression for the diffusiophoretic mobility of a soft particle (i.e.,
polyelectrolyte-coated hard particle) in a concentration gradient of electrolytes for the case in which
the particle’s core size is large enough compared with the Debye length. Therefore, the particle
surface can be regarded as planar, and the electrolyte concentration gradient is parallel to the core
surface. The obtained expression can be applied for arbitrary values of the fixed charge density of
the polyelectrolyte layer and the surface charge density of the particle core. We derive approximate
analytic mobility expressions for soft particles of three types, i.e., (i) weakly charged soft particles,
(ii) soft particles with a thick polyelectrolyte layer, in which the equilibrium electric potential deep
inside the polyelectrolyte layer is equal to the Donnan potential, and (iii) soft particles with an
uncharged polymer layer of finite thickness.

Keywords: diffusiophoretic mobility; diffusiophoresis; soft particle

1. Introduction

Diffusiophoresis is the migration of colloidal particles in a concentration gradient of
electrolytes. A great number of theoretical studies have been reported on the diffusiophore-
sis of rigid particles [1–16], liquid drops [17–20], and soft particles [21–26]. In particular, soft
particles (i.e., polyelectrolyte-coated particles) serve as a model for biocolloids, including
biological cells [27–31]. There are several experimental studies on the diffusiophoresis of
biological cells [32,33]. In addition, as Shin [34] has pointed out, there is a growing interest
in microfluidic colloid separation enabled by diffusiophoresis for various biological and
biomedical applications.

In a previous paper [26], we treated a weakly charged soft particle. In the present paper,
we derive the general expression and approximate expressions for the diffusiophoretic
mobility of a soft particle applicable for arbitrary values of the fixed charge density of
the polyelectrolyte layer and the surface charge density of the particle core. We consider
soft particles for the case in which the particle’s size is large enough compared with the
Debye length, 1/κ. Therefore, the particle surface can be regarded as planar. This condition
holds for biological systems, since the size of biological cells is of the order of 1~10 µm
and 1/κ ≈ 1 nm under physiological conditions. We also confine ourselves to the case in
which the polyelectrolyte layer is much thinner than the particle core size; therefore, the
electrolyte concentration gradient is parallel to the core surface. We derive approximate
mobility formulas, which cover the following three important cases: (i) weakly charged soft
particles, (ii) soft particles with a thicker polyelectrolyte layer than the Debye length and the
Brinkman length, in which the equilibrium electric potential far inside the polyelectrolyte
layer is given by the Donnan potential, and (iii) soft particles with an uncharged polymer
layer of finite thickness.

2. Theory

Let us consider a soft particle, i.e., a hard particle covered with an ion-penetrable
surface layer of polyelectrolytes with a thickness d and with a diffusiophoretic velocity U
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in an aqueous liquid solution of viscosity η and of relative permittivity εr containing an
electrolyte under a constant applied gradient of electrolyte concentration (Figure 1). The
electrolyte is of the Z:Z symmetrical type with valence Z but may have different ionic drag
coefficients λ+ and λ- for cations and anions, respectively. We assume that the polyelec-
trolyte layer, in which charges are distributed with a uniform density ρfix (when ρfix = 0,
the surface layer consists of uncharged polymers). We adopt the Brinkman–Debye–Bueche
model [35,36]. In this model we regard polymer segments in the polyelectrolyte layer as
resistance centers, exerting frictional forces on the liquid flowing in the polyelectrolyte
layer. The x-axis is considered to be normal to the particle core with its origin x = 0 at the
front edge of the polyelectrolyte layer, and the z-axis is considered to be parallel to the
particle core, as shown in Figure 1.

Figure 1. Soft particle consisting of the core covered with an ion-penetrable surface layer of poly-
electrolytes of thickness d. The particle moves with diffusiophoretic velocity U in an electrolyte
concentration gradient ∇n∞ or with the corresponding vector a. U is parallel to ∇n∞ and α. ρfix

is the fixed charge density in the polyelectrolyte layer, and s is the surface charge density of the
particle core.

We consider first the case in which there is no electrolyte concentration gradient.
With the functions n+(x) and n−(x), which are functions of only x, we can denote the
concentrations (number densities) of electrolyte cations and anions, respectively, and with
n∞, we can denote their concentration beyond the electrical double layer around the particle,
where n+(∞)= n−(∞) = n∞. We assume that in the absence of the electrolyte concentration
gradient the equilibrium concentrations n+(x) and n−(x) of cations and anions, respectively,
which depend only on x, obey the Boltzmann distribution, viz.,

n±(x) = n∞e∓y (1)

and the electric potential ψ(x), which also depends only on x, satisfies the Poisson–Boltzmann
equations:

d2y
dx2 = κ2sinhy for x > 0 (2)

d2y
dx2 = κ2(sinhy− sinhyDON) for − d < x < 0 (3)

with

κ =

√
2Z2e2n∞

εrεokT
(4)

y(x) =
Zeψ(x)

kT
(5)
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yDON =
ZeψDON

kT
(6)

ψDON =
kT
Ze

arcsinh
( ρfix

2Zen∞

)
=

kT
Ze

ln

[
ρfix

2Zen∞ +

√( ρfix
2Zen∞

)2
+ 1

]
(7)

where εo is the permittivity of a vacuum, κ is the Debye–Hückel parameter, 1/κ is the
Debye length, y(x) is the scaled electric potential, ψDON is the Donnan potential in the
polyelectrolyte layer, and yDON is the scaled Donnan potential. The boundary conditions
for y(x) are

ψ(x)→ 0 as x → ∞ (8)

ψ
(
0−
)
= ψ

(
0+
)

(9)

dψ

dx

∣∣∣∣
x=0−

=
dψ

dx

∣∣∣∣
x=0+

(10)

dψ

dx

∣∣∣∣
x=d+

= − σ

εrεo
(11)

where σ is the surface charge density of the particle core.
Now, we consider the case in which the electrolyte concentration gradient ∇n∞ (0, 0,

dn∞/dz) is applied; therefore, n∞ becomes a function of z, and the particle moves with a
diffusiophoretic velocity U. We treat the case in which the applied electrolyte concentration
gradient ∇n∞, the diffusiophoretic velocity U(0, 0, U), and thus the liquid flow u(r) are all
parallel to the z-axis (Figure 1). We introduce a vector α(0, 0, α) proportional to ∇ n∞, viz.,

α =
kT
Ze
∇ ln(n∞) (12)

We assume that the liquid velocity u(r) = (0, 0, u(x, z)) at position r(x, z) satisfies the
following Navier–Stokes equations:

η∆u(r)−∇p(r)− ρel(r)∇ψ(r) = 0 for x > 0 (13)

η∆u(r)− γu(r)−∇p(r)− ρel(r)∇ψ(r) = 0 for − d < x < 0 (14)

with the continuity equation for u(r)

divu(r) = 0 (15)

where p(r) is the pressure, and γu(r) is the frictional force exerted on the liquid flow by
the polymer segments in the polyelectrolyte layer, with γ being the frictional coefficient.
The boundary condition for the electric potential ψ(r), far from the particle at x→∞, can
be derived as follows. The ionic flows v±(r), which are caused by α, induce a macroscopic
diffusion potential field E(0, 0, E), by which the net electric current becomes 0, and hence
ψ(r) tends to approach −Ez as x→∞. Here, the electric current density i(r) is given by

i(r) = Ze{n+(r)v+(r)− n−(r)v−(r)} (16)

with
v±(r) = u(r)− 1

λ±
∇µ±(r) (17)

where v+(r) and v-(r) are the velocities of cations and anions, respectively. Since i(r) must
be zero far from the particle (x→ ∞), we find

ψ(r)→ −βαz as x → ∞ (18)

and
E = βα (19)
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where β is defined by

β =
1/λ+ − 1/λ−
1/λ+ + 1/λ−

= −λ+ − λ−
λ+ + λ−

(20)

and α is the z-component of α(0, 0, α) given by (see Equation (12))

α =
kT
Ze

d ln(n∞)

dz
(21)

From the x-component of Equations (13) and (14), we obtain

p(x, z)− p(∞, z) = 2n∞(z)kT{cosh y(x)− 1} (22)

where y(x) is the scaled equilibrium electric potential (Equation (5)). By substituting Equation (22)
into Equations (13) and (14), the z-component of Equations (13) and (14) yields

d2u
dx2 −

2Zeα

η
(cosh y− 1− βsinhy) = 0 for x > 0 (23)

d2u
dx2 − λ2u− 2Zeα

η
(cosh y− 1− βsinhy) = 0 for− d < x < 0 (24)

with

λ =

√
γ

η
(25)

where λ is the Brinkman parameter, and 1/λ is the Brinkman screening length, which is
typically of the order of 1 nm [30]. The boundary conditions for u(x) are

u
(
0−
)
= u

(
0+
)

(26)

du
dx

∣∣∣∣
x=0−

=
du
dx

∣∣∣∣
x=0+

(27)

u(−d) = 0 (28)

u(x)→ −U as x → ∞ (29)

Equation (29) states that the slipping plane, at which u(x) = 0, is located at the particle
core surface at x = −d. The electric potential ψ(−d) is thus the zeta potential of the soft
article, viz.,

ζ = ψ(−d) (30)

and
ζ̃ =

Zeζ

kT
(31)

is the scaled zeta potential. Note that the zeta potential ζ = ψ(−d) is different from ψo = ψ(0),
i.e., the electric potential at the front edge of the polyelectrolyte layer at x = 0, which we call
the surface potential of the soft particle.

We introduce the scaled diffusiophoretic mobility U* by

U =
εrεo

η

(
kT
Ze

)
U∗α (32)

By solving Equations (23) and (24) subject to Equations (26)–(29), we obtain

U∗ = 4 ln
[
cosh

( yo

4

)]
+ βyo +

2κ

λ
tanh(λd)

{
cosh

( yo

2

)
− 1 + βsinh

( yo

2

)}
+

κ2

λ

∫ 0

−d
(cosh y− 1 + βsinhy)

sinh[λ(x + d)]
cosh(λd)

dx (33)
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with
yo =

Zeψo

kT
(34)

where yo = y(0) is the scaled surface potential of the soft particle.

3. Results and Discussion

Equation (33) is the general expression of the diffusiophoretic mobility U* of a large
soft particle. Consider some limiting cases for Equation (33). For d = 0, in which case the
polyelectrolyte layer vanishes, the soft particle becomes a hard particle with no polyelec-
trolyte layer carrying zeta potential ζ = ψo = ψ(0) = ψ(−d), and Equation (33) becomes

U∗ = 4 ln

[
cosh

(
ζ̃

4

)]
+ βζ̃ (35)

which agrees with the diffusiophoretic mobility of a large hard particle with zeta potential
ζ [1,2]. For λ→ 0 and ρfix → 0, in which case the polyelectrolyte layer also vanishes, the
soft particle becomes a hard particle carrying zeta potential ζ = ψ(−d), and Equation (33)
becomes Equation (35). For the limit of λ→∞, the soft particle becomes a hard particle
carrying surface potential ζ = ψo, and Equation (34) tends to

U∗ = 4 ln
[
cosh

(yo

4

)]
+ βyo (36)

which is the diffusiophoretic mobility of a large rigid particle with a surface located at x =
−d. In this case, there is no liquid flow inside the polyelectrolyte layer, i.e., the slipping
plane shifts to a plane x = 0, but electrolyte ions can penetrate the polyelectrolyte layer.

Now, in the following, we consider three important cases in detail.

3.1. Weakly Charged Soft Particle

We first consider the low potential case. In this case, Equation (33) becomes

U∗ = βyo +
y2

o
8

+
κ

λ
tanh(λd)

(
βyo +

y2
o

4

)
+

κ2

λ

∫ 0

−d

{
βy(x) +

y2(x)
2

}
sinh[λ(x + d)]

cosh(λd)
dx (37)

with
y(x) = ζ̃e−κ(x+d) + yDON

{
1− e−κd cosh[κ(x + d)]

}
(38)

ζ = ψ(−d) =
σ

εrεoκ
(39)

ζ̃ = y(−d) =
Zeζ

kT
(40)

ψDON =
ρfix

εrεoκ2 (41)

yDON =
ρfix

εrεoκ2

(
Ze
kT

)
(42)

where Equation (39) is the relation between ζ and σ for the low potential case, ψDON is the
Donnan potential (Equation (7)) for the low potential case, and yDON is its scaled quantity.
By substituting Equation (38) into Equation (37), we obtain

U∗ = βyo +
y2

o
8

+
κ

λ
tanh(λd)

(
βyo +

y2
o

4

)
+ β

(
f1ζ̃ + f2yDON

)
+ f3ζ̃2 + f4y2

DON + f5ζ̃yDON (43)

where f 1–f 5 are defined by

f1 =
κ2

κ2 − λ2

[
1

cosh(λd)
−
{

1 +
κ

λ
tanh(λd)

}
e−κd

]
(44)
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f2 =
κ2(2κ2 − λ2)
2λ2(κ2 − λ2)

− κ2

λ2 cosh(λd)
− κ3tanh(λd)

2λ(κ2 − λ2)
− κ2e−κd

(κ2 − λ2) cosh(λd)
+

κ2{λ + κtan h(λd)}e−2κd

2λ(κ2 − λ2)
(45)

f3 =
κ2

2(4κ2 − λ2)

[
1

cosh(λd)
−
{

1 +
2κ

λ
tanh(λd)

}
e−2κd

]
(46)

f4 = κ2

8λ2 − κ2

2λ2 cosh(λd) −
κ3tanh(λd)
4λ(4κ2−λ2)

+ 3κ5{κ−λtanh(λd)}
2λ2(κ2−λ2)(4κ2−λ2)

− κ2e−κd

(κ2−λ2) cosh(λd)

+
κ2{κ2+λ2+2κλtanh(λd)}e−2κd

4λ2(κ2−λ2)
− κ2(2κ2−λ2)e−2κd

2λ2(4κ2−λ2) cosh(λd) −
κ2{λ+2κtanh(λd)}e−4κd

8λ(4κ2−λ2)

(47)

f5 =
κ2

(κ2 − λ2) cosh(λd)
+

κ2(2κ2 − λ2)e−κd

λ2(4κ2 − λ2) cosh(λd)
−

κ2{κ2 + λ2 + 2κλtanh(λd)
}

e−κd

2λ2(κ2 − λ2)
+

κ2{λ + 2κtanh(λd)}e−3κd

2λ(4κ2 − λ2)
(48)

3.2. Soft Particle with a Thick Polyelectrolyte Layer

We next consider a soft particle with κd >> 1 and λd >> 1, which are fulfilled for most
practical cases in biological systems. In such a case, the contribution of the surface charge
of the particle core with density σ can be neglected, and the electric potential far inside
the polyelectrolyte layer is practically equal to the Donnan potential ψDON (Equation (7)).
We may thus linearize Equation (3) with respect to the deviation of the potential y(x) from
yDON with the result [27–32]

y(x) = yDON + (yo − yDON)eκmx for− d < x < 0 (49)

with
κm = κ

√
cosh yDON (50)

yo = y(0) = yDON − tanh
(yDON

2

)
= ln

[
ρfix

2Zen∞ +

√( ρfix
2Zen∞

)2
+ 1

]
+

2Zen∞

ρfix

{
1−

√( ρfix
2Zen∞

)2
+ 1

}
(51)

where κm is the effective Debye–Hückel parameter in the polyelectrolyte layer. By using
Equation (49) and noting that the lower limit −d of integration in Equation (33) can be
replaced with -∞ for κd >> 1 and λd >> 1, we finally obtain the following approximate
expression for U*:

U∗ = 4 ln
[
cosh

(yo

4

)]
+

4κ

λ
sinh2

(yo

4

)
+

κm
(
κ2

m − κ2)
λ2(κm + λ)

+ β

{
yo/κm + yDON/λ

1/κm + 1/λ
+

κ2

λ2 sinh(yDON)

}
(52)

The term proportional to β resulting from the diffusion potential field corresponds to
the electrophoretic mobility µ of a large soft particle with κd >> 1 and λd >> 1, which is
given by [28–31]:

µ =
εrεo

η
·ψo/κm + ψDON/λ

1/κm + 1/λ
+

ρfix

ηλ2 (53)

As κ→∞, U* tends to a non-zero constant value independent of the electrolyte concen-
tration, viz.,

U∗ = β
κ2

λ2 sinh(yDON) = β
ρfix

λ2εrεo

(
Ze
kT

)
(54)

This is an electrokinetic characteristic of soft particles [28–31].
For the low potential case, Equation (52) tends to

U∗ = β

(
κ + λ/2

κ + λ
+

κ2

λ2

)
yDON +

1
32

{
1 +

2κ

λ
+

16κ3

λ2(κ + λ)

}
y2

DON (55)
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which is different from the correct limiting form of Equation (44) for κd >>1 and λd >> 1,
viz.,

U∗ = β

(
κ + λ/2

κ + λ
+

κ2

λ2

)
yDON +

1
32

{
1 +

2κ

λ
+

16κ3

λ2(κ + λ)
+

2κ2

λ(κ + λ/2)

}
y2

DON (56)

which agrees with Equation (24) in a previous paper [26]. By comparing Equations (55)
and (56), we see that Equation (54) fails to reproduce the last term in the curly brackets
in Equation (56). This is because this term is obtained by the integrating of terms of the
order of (yo-yDON)2, which is neglected in Equation (49). Numerically, however, this error
is small, since the dominant term in the curly brackets in Equation (56) is the third term
when κ/λ is small, and it is the first term when κ/λ is large.

Figure 2 shows some examples of the results of the calculation of the scaled diffu-
siophoretic velocity U* of a soft particle with a thick polyelectrolyte layer in an aqueous
KCl solution (β = −0.02) and in an aqueous NaCl solution (β = −0. 2) as a function of the
scaled Donnan potential yDON for various values of the ratio κ/λ of the Brinkman shielding
length 1/λ to the Debye length 1/κ, calculated with Equation (52) (solid lines). Results
obtained with a low potential approximation with Equation (56) are also given (dotted
lines) in Figure 2, which shows to be a good approximation for |yDON| ≤1.

Figure 2. Scaled diffusiophoretic mobility U* of a large soft particle with a thick polyelectrolyte
layer as a function of the scaled Donnan potential yDON for several values of κ/λ in an aqueous
KCl solution (β = −0.02) (a) and in an aqueous NaCl solution (β = −0.2) (b). Solid lines are results
obtained with Equation (52). Results obtained with a low potential approximation with Equation (56)
are also given as dotted lines.

3.3. Soft Particle with an Uncharged Polymer Layer

Finally, we consider a soft particle with ρfix = 0. This case corresponds to a soft
particle covered with an uncharged polymer layer. The solution to the Poisson–Boltzmann
equations (Equations (2) and (3)), in this case, is found to be

y(x) = 2 ln

1 + tanh
(

ζ̃/4
)

e−κ(x+d)

1− tanh
(

ζ̃/4
)

e−κ(x+d)

 for x ≥ −d (57)

which is equivalent to

tanh
[

y(x)
4

]
= tanh

(
ζ̃

4

)
e−κ(x+d)for x ≥ −d (58)
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By using Equation (60), we obtain

sinh[y(x)] =
∞

∑
n=1

(2n− 1)

(2n− 1)2 − (λ/κ)2 tanh2n−1

(
ζ̃

4

)
(59)

cosh[y(x)]− 1 =
∞

∑
n=1

(2n)

(2n)2 − (λ/κ)2 tanh2n

(
ζ̃

4

)
(60)

By substituting Equations (59) and (60) into Equation (33) with ρfix = 0, we obtain

U∗ = 4 ln
[
cosh

( yo
4
)]

+ βyo +
2κ
λ tanh(λd)

{
cosh

( yo
2
)
− 1 + βsinh

( yo
2
)}

+4
∞
∑

n=1

(2n)

(2n)2−( λ
κ )

2 tanh2n
(

ζ̃
4

)[
1

cosh(λd) −
{

1 + (2n) κ
λ tanh(λd)

}
e−2nκd

]
+4β

∞
∑

n=1

(2n−1)
(2n−1)2−(λ/κ)2 tanh2n−1

(
ζ̃
4

)[
1

cosh(λd) −
{

1 + (2n− 1) κ
λ tanh(λd)

}
e−(2n−1)κd

] (61)

with

yo = y(0) = 2 ln

1 + tanh
(

ζ̃/4
)

e−κd

1− tanh
(

ζ̃/4
)

e−κd

 (62)

which becomes Equation (39) for the case of a weakly charged soft particle. The scaled zeta
potential ζ̃ is related to σ by

σ

εrεoκ

(
Ze
kT

)
= 2sinh

(
ζ̃

2

)
(63)

As κd→0, Equation (61) tends to

U∗ = 4 ln

[
cosh

(
ζ̃

4

)]
+ βζ̃ (64)

whereas, as κd→∞, Equation (61) tends to

U∗ =

{
4 ln

[
cosh

(
ζ̃

4

)]
+ βζ̃

}
1

cosh(λd)
(65)

For the case of a weakly charged soft particle, Equation (61) becomes

U∗ = βyo +
y2

o
8

+
κ

λ
tanh(λd)

(
βyo +

y2
o

4

)
+ β f1ζ̃ + f3ζ̃2 (66)

with
yo = y(0) = ζ̃e−κd (67)

Equation (67) agrees with Equation (43) with ρfix = 0.
Figures 3 and 4 show some examples of the results of the calculation of the scaled

diffusiophoretic velocity U* of a soft particle in an aqueous KCl solution (β = −0.02)
(Figure 3) and in an aqueous NaCl solution (β = −0.2) (Figure 4) as a function of the
scaled zeta potential ζ̃ for several values of κd at λd = 1 (a) and λd = 10 (b), calculated
with Equation (61) (solid lines). Results obtained with a low potential approximation
with Equation (66) are also given (dotted lines) in Figure 3, which shows to be a good
approximation for |ζ̃| ≤ 2.
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Figure 3. Scaled diffusiophoretic mobility U* of a large soft particle as a function of the scaled
zeta potential ζ̃ for several values of κd at λd = 1 (a) and λd = 10 (b) in an aqueous KCl solution
(β = −0.02). Solid lines are results obtained with Equation (61). Results obtained with a low potential
approximation with Equation (66) are also given as dotted lines.

Figure 4. Scaled diffusiophoretic mobility U* of a large soft particle as a function of the scaled
zeta potential ζ̃ for several values of κd at λd = 1 (a) and λd = 10 (b) in an aqueous NaCl solution
(β = −0.2). Solid lines are results obtained with Equation (61). Results obtained with a low potential
approximation with Equation (66) are also given as dotted lines.

4. Conclusions

We have derived the general expression (Equation (33)) for the diffusiophoretic mobil-
ity U* of a soft particle carrying ρfix and σ of arbitrary values in an electrolyte concentration
gradient for the case in which the particle size is large enough compared with the Debye
length, 1/κ. Therefore, the particle surface can be regarded as planar. We have derived
approximate mobility expressions for the following three cases: (i) a weakly charged soft
particle (Equation (43)), (ii) a soft particle with a thick polyelectrolyte layer (Equation (52)),
in which the thickness of the polyelectrolyte layer is much larger than the Debye length
1/κ and the Brinkman screening length 1/λ, and (iii) a soft particle with an uncharged
polymer layer (Equation (61)). It has been shown that, for case (ii) for the limit of a high
electrolyte concentration, diffusiophoretic mobility tends to a non-zero limiting value given
by Equation (54), independent of the electrolyte concentration.
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