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Abstract: The population balance is an indispensable tool for studying colloidal, aerosol, and, in
general, particulate systems. The need to incorporate spatial variation (imposed by flow) to it invokes
the reduction of its complexity and degrees of freedom. It has been shown in the past that the method
of moments and, in particular, the log-normal approximation can serve this purpose for certain
phenomena and mechanisms. However, it is not adequate to treat gravitational deposition. In the
present work, the ability of the particular method to treat diffusional and convective diffusional
depositions relevant to colloid systems is studied in detail.
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1. Introduction

The population balance equation with terms of coagulation, particle growth, and
particle removal is the main tool for the simulation of a variety of processes. It can be used
for the study of colloidal systems, aerosol reactors, atmospheric aerosols, and for the study
of the precipitation of solids from solutions. Although there are accurate numerical methods
for the solution of the population balance [1], the need for space–time simulations involving
complex flows [2] renders them computationally intractable. However, the well-known
method of moments is ideally suited to this problem because of its low computational
requirements. Furthermore, McGraw et al. [3] showed that the method of moments is
capable of describing the integral properties of the distribution even if the initially assumed
distribution is quite different from the real one. Barret and Jheeta [4], as well as Mc Graw [5]
developed two different hierarchies of moment methods in which the accuracy increases
with the number of unknowns. Over the last decade, several novel methods of moments
appeared in the literature [6,7]. The full exploitation of low-order moment methods is
necessary because the key point in complex applications is not the very high accuracy
but the computational requirements. In this context, Kielkiewicz [8], as well as Barret
and Jheeta [4] have shown that the simple log-normal method of moments has a poor
performance for the gravitational removal of particles. In the present work, it will be shown
that this simple moment method gives very good results for the more important case of
pure or convective diffusional removal. In conjunction with the well-known ability of
the log-normal distribution to simulate Brownian coagulation and growth processes, it is
concluded that this method of moments is capable of simulating systems that obey the
above mentioned population balance equation.

2. Theoretical Analysis

In order to facilitate the presentation, it is convenient to use dimensionless variables.
Thus, assuming that xo is the mean volume of the initial particle size distribution and N is
the initial number concentration, the following non-dimensionalization is made:

x =
x
xo

, R(x) =
R(x)
R(xo)

, t = τR(xo), F(x, t) =
xof(x, τ)

N
(1)
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where R(x) is the removal rate, x is the particle volume, τ is the time, and f(x,τ) is the
number-density particle volume distribution. The evolution equation for the particle size
distribution has the following dimensionless form.

∂F(x, t)
∂t

= −R(x)F(x, t) (2)

with the initial condition F(x, 0) = Fo(x).
The solution of the above equation is F(x, t) = Fo(x)e−R(x)t. Assuming a typical

removal rate of power type R(x) = xm, the evolution of the first (dimensionless) moments
of the distribution is obtained from the following relations.

Mi(τ) =

∞∫
0

xiFo(x)e−xmτdx (3)

where, by construction, Mo(0) = M1(0) = 1. The dispersity of the particle size distribution
can be found from the following relation.

s = ln(
M2Mo

M2
1

)

According to the method of moments with log-normal distribution, it is assumed that
the particle size distribution retains a log-normal form with its main parameters evolving in
time. After some algebra, the method results in the following system of ordinary differential
equations for the first two moments and dispersity of the distribution [9]:

dMo

dt
= −Mm

1 M1−m
o em(m−1)s/2 (4a)

dM1

dt
= −Mm+1

1 M−m
o em(m+1)s/2 (4b)

ds
dt

= Mm
1 M−m

o (2em(m+1)s/2 − em(m−1)s/2 − em(m+3)s/2) (4c)

The initial distribution is assumed to be log-normal with dispersity so. In summary,
the exact solution for the moments can be found from integral (3), whereas the approxima-
tions are obtained from system (4). Integration is performed by an explicit Runge–Kutta
integrator [10]. The prespecified relative accuracy is set equal to 10−5. It is noted here that
the application of the log-normal method is not restricted to removal rates, for which a
closure of the moment equation can be achieved. In the case of a general complex form
of the removal rate, system (4) contains integrals over the log-normal profile. These inte-
grals can be readily integrated numerically through the Gauss–Hermite quadrature. The
log-normal method is one with three degrees of freedom. In certain complex applications,
moment methods of even lower orders are employed (e.g., monodisperse with two degrees
of freedom) [11,12].

3. Results and Discussion

A very interesting solution of the removal problem arises when m = 0, i.e., the removal
rate is independent of the particle size. In this case, the moments are given simply as
Mi = Mi(0)e−t and the size distribution is self-preserving, i.e., it does not change with time
after it has been transformed using the self-similarity variables, which are extensively used
in coagulation literature (e.g., see [13]). In this particular case, the method of moments
leads to the exact result, which can be confirmed by setting m = 0 in Equation (4). Another
limiting case is that of zero dispersity (monodisperse initial distribution). The distribution
remains monodisperse at all times and Mi = e−t. This behavior is also exactly predicted by
the method of moments (Equation (4)).
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In generalizing the above observations, it is possible to say that in assuming a m-
σo plane (or rather a hemiplane because so is always positive), the method of moments
becomes more accurate as we move towards the axis m = 0 and it becomes exact on this
axis. This statement is compatible with an observation of Williams [14] who compared
a moments method (two parameter Gamma distribution) with the analytical solution of
the growth-removal population balance. According to this author, considering all the
other conditions identical, the accuracy of the moments method is greater for the removal
exponent m = −1/3 than for m = 2/3. Before proceeding to more quantitative results, the
range of exponent m must be considered, for which the accuracy of the method of moments
must be studied. Assuming the general case of fractal particles with fractal dimension df
and using the well-known relation for the diffusivity D∝x1/df , one obtains that for pure
diffusional deposition m = −1/df. In the more important case of convective diffusional
deposition from turbulent flows, the exponent m takes the value −2/(3df) [9]. This type
of removal is relevant to the simulation of aerosol reactors, of precipitation of sparingly
soluble salt processes, and of colloidal particle deposition, while gravitational deposition is
relevant to the simulation of atmospheric aerosols or industrial settling processes. A typical
range of df is 2 to 3; thus, the range of m worth studying is 0 to −1/2, with special interest
in the range of −2/9 to −1/3, which represents the removal by convection/diffusion.

In Figure 1, the relative error of the moments method for the total particle mass is
shown at the time when the remaining total particle mass is 10% of its initial value. The
procedure to construct this graph is the following: First, Equation (3) with i = 1 and M1 = 0.1
is solved with the Newton–Raphson method to find the required time τ and then system (4)
is integrated over this time to find the approximate value of M1. The relative error is given
as (M1/0.1 − 1). This error is shown versus exponent m for three values of so, as depicted
in Figure 1. As it is expected, the greater the so, the larger the error. A characteristic of the
negative exponent m is that, consistently, Mo < M1, whereas for the gravitational removal
(m > 0), it is always M1 < Mo. The computation showed that the corresponding Figure 1
error for the Mo is much smaller than that of M1. The assumed extent of the process is
rather large (90% of the total mass deposited) and covers all the possible applications of
the method. For larger extents, the total mass of the particles remaining in the flow is too
small to require a highly accurate computation. In other words, if the relative error in
Figure 1 was transformed to an absolute error (fraction of the initial total mass), it would
be 10-times smaller.
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Figure 1. Relative error of the method of moment in computation of M1 (in time such that the exact 
value of M1 is 0.1) versus exponent m for three values of the initial dispersity so. 

The evolution of the dispersity of the distribution is shown in Figure 2 for m = −1/3 
and for several initial dispersities sο. The exact results are compared to those obtained with 
the method of moments. The time range appeared in Figure 2 corresponds more than 95% 
of the initial mass finally removed. According to this figure, only for large initial disper-
sities and large times there is a considerable difference between the method of moments 
and the exact results. The corresponding results for m = −2/9 are of the same general form 
as in Figure 2 but with smaller discrepancies between the two methods.  
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Figure 2. Exact and computed results with the method of moments dispersities versus dimension-
less time for three values of the initial dispersity so. 

According to the literature, Brownian coagulation generates particle-size distribu-
tions with rather small dispersities (s = 0.693 in the continuum regime irrespective of df 
[15]). Additionally, the growth process has the tendency to further sharpen the distribu-
tion. Other coagulation mechanisms, such as turbulent coagulation, are capable of pro-
ducing distributions with large dispersities but it is known that the log-normal version of 
the method of moments is inadequate for this coagulation mechanism [16]. For large dis-
persities where the accuracy of the log-normal distribution method for particle removal 
deteriorates, the same occurs for particle growth as well [17]. However, as discussed 
above, Brownian coagulation and growth retains the dispersity minimally, thus the log-
normal method can be accurately used for the above phenomena in combination with the 

Figure 1. Relative error of the method of moment in computation of M1 (in time such that the exact
value of M1 is 0.1) versus exponent m for three values of the initial dispersity so.

The evolution of the dispersity of the distribution is shown in Figure 2 for m = −1/3
and for several initial dispersities so. The exact results are compared to those obtained
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with the method of moments. The time range appeared in Figure 2 corresponds more
than 95% of the initial mass finally removed. According to this figure, only for large
initial dispersities and large times there is a considerable difference between the method of
moments and the exact results. The corresponding results for m = −2/9 are of the same
general form as in Figure 2 but with smaller discrepancies between the two methods.
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Figure 2. Exact and computed results with the method of moments dispersities versus dimensionless
time for three values of the initial dispersity so.

According to the literature, Brownian coagulation generates particle-size distributions
with rather small dispersities (s = 0.693 in the continuum regime irrespective of df [15]).
Additionally, the growth process has the tendency to further sharpen the distribution.
Other coagulation mechanisms, such as turbulent coagulation, are capable of producing
distributions with large dispersities but it is known that the log-normal version of the
method of moments is inadequate for this coagulation mechanism [16]. For large dis-
persities where the accuracy of the log-normal distribution method for particle removal
deteriorates, the same occurs for particle growth as well [17]. However, as discussed above,
Brownian coagulation and growth retains the dispersity minimally, thus the log-normal
method can be accurately used for the above phenomena in combination with the diffu-
sional or convective-diffusional removal of particles. There are many other further methods
of moments apart from the log-normal method but we believe that it is a very attractive
choice in terms of simplicity, accuracy, stability, and distribution reconstruction ability, at
least for particular mechanisms, such as those examined here.

4. Conclusions

This work shows that in cases where the log-normal distribution approximation is
adequate for the simulation of other phenomena (i.e., coagulation and growth), it is also
adequate for the simulation of diffusional (convective or molecular) deposition. This
includes the majority of practical cases, especially in the precipitation of sparingly soluble
salts where instantaneous nucleation is relevant and the final colloidal particle size is too
small for the turbulent coagulation to prevail. An application of the moments method to a
practical problem that includes particle deposition can be found in [18]. Due to well-known
difficulties in the numerical solution of the population balance, the moments method
solution to the abovementioned cases is usually comparably accurate to some of the more
computationally demanding methods that are based on particle-size discretization [19,20].
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