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Abstract: This work is devoted to the influence of NaCl salt concentration on the formation and
stability of colloidal gas aphrons (CGA) produced by the anionic surfactant sodium dodecyl sulfate
(SDS) and zwitterionic surfactant coco amido propyl betaine (CAPB) in the presence of xanthan
gum (XG) as a stabilizer. Dynamic surface tension measurements as well as volume and half-life
time of the produced foams are considered for stability analysis. A sharp decrease of the half-life
time and volume of the CGAs at NaCl concentrations larger than 20,000 ppm was observed, which
was attributed to the precipitation of SDS in the solution. The mentioned SDS precipitation altered
the dynamic surface tension behavior, dilational surface elasticity, and turbidity of the solution.
The main reason for the precipitation of SDS is the increased Krafft point caused by the addition of salt.
However, for the zwitterionic surfactant CAPB, the effects of added NaCl on the interfacial properties
required for CGAs production was negligible due to the simultaneous effects on the cationic and
anionic head groups in the CAPB leading to negligible changes in the net repulsion forces. Yet, an
overall reduction in the half-life time of CGAs with increasing salt concentration, even when we have
no precipitation, was observed for both surfactants, which could be explained by the reduction in the
ability of XG to increase the viscosity with increasing salt concentration.

Keywords: colloidal gas aphrons; foam formation and stability; drilling fluid; dynamic surface
tension; interfacial rheology; cocoamidopropyl betaine; sodium dodecyl sulfate; NaCl

1. Introduction

Colloidal gas aphrons (CGAs) were introduced by Sebba, and refer to a colloidal system of bubbles
in the micron-range size. According to Sebba, each CGA comprises of a gas core encapsulated in a
viscous shell formed by two layers of surfactants. The hydrophilic heads of the first layer are inside the
shell and the tails are in the core. The second layer has heads in the shell while the tails are oriented
outward. There is also a third layer of surfactant which is called the compatibility layer and has tails
inward and heads in the aqueous medium [1,2]. CGAs have been frequently used as drilling fluid
for depleted fractured formations. Their ability to survive longer at higher pressures in comparison
to regular foams as well as easy production and easy handling have made them a suitable choice for
drilling engineering [3–11]. From the review article [10], it can be seen that many papers have studied
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the effect of different parameters, including stirring time and speed, surfactant and polymer type, and
concentration, etc., on the formation, stability, and performance of CGAs. However, the influence of
salts has not been sufficiently investigated. This is while the presence of salts significantly changes both
the surface activity of ionic surfactants [12] and rheological properties of polymers [13–15]. In addition,
many water sources used for making CGAs contain various amounts of salts and specifically during
offshore drilling when using sea water, the salinity level may be even higher than 30,000 ppm.

Let us mention a few works published in this framework. Longe evaluated the effect of added
200 ppm NaCl to the solution of 0.5 g/L NaDBS for a CGA production and observed that the presence
of NaCl lowers the minimum and maximum bubble size [16]. He argued that, in the presence of
electrolyte, one of the ions is adsorbed at the surface along with the surfactant and increases the
effective concentration of the ionic surfactant. Kommalapati et al. [17] also changed the salinity of
a CGA system from 0 to 400 ppm and observed that the increased salt concentration enhances the
stability. Save et al. [18] evaluated CGAs made by 0.85 mM of Cetyl Trimethyl Ammonium Chloride
surfactant in the presence of 10,000, 40,000 and 80,000 ppm of NaCl and observed that the added salt
increased the volume of CGAs but the value of half-life time was reduced. The half-life time describes
the time needed for half of the liquid content of CGA solution to drain down and be collected at the
bottom of the vessel. It should be noted that their work was in the category of water purification
systems and their stability was of the order of 100–300 s, which is much lower than the needed stability
for the cases of CGAs as drilling fluid. They concluded that the addition of salt compresses the electrical
double layer leading to the reduction of their mutual repulsion and finally decreasing the thickness of
the liquid films and the stability of the foam. They related the observed increase in the CGA volume to
the reduction in CMC which increases foamability. Almost the same results were obtained by Juregi
et al. who examined the stability of CGAs made by anionic surfactant sodium bis-(2-ethyl hexyl)
sulfosuccinate) at NaCl concentrations of 0, 0.07, and 0.14 mM and observed that the stability of CGAs
decreases with increasing salt concentration [19]. The authors stated that increasing salt concentration
suppresses the repulsive electrostatic interactions between bubbles leading to less stability. Chaphalkar
et al. also reported that adding 200 ppm of NaCl to the solution increases the volume of CGAs for the
ionic surfactants used [20].

Despite the mentioned works on the influence of salts on CGA properties, none of these works
have considered the presence of polymer although it is frequently used as viscosifier in CGA based
drilling fluids. It also affects the surface behavior of surfactants [21] and enhances the stability of
produced CGA systems [10,22]. Moreover, the reported salinities are mostly in the low range and the
given results cannot be used for regular saline water systems.

The formation and stability of the CGAs mostly depend on the surface behavior of the surfactant in
the solution which is strongly affected by the presence of salt. Therefore, in this work, we performed a
systematic study to understand the main influences of added salt on the surfactant behavior and justify
the changes of the volume and half-life time of CGAs. We specifically deal with the influence of NaCl
salt on the performance of the anionic SDS and the zwitterionic CAPB surfactants for generating CGAs.
This is done by studying the dynamic surface tension behavior of aqueous solutions of these surfactants
in presence of XG as viscosifier and salt concentrations up to 40,000 ppm as well as performing tests
for calculating the volume and half-life time of CGAs. It should be noted that both SDS and CAPB
surfactants are utilized in the CGA formation and are proven to produce CGAs with good stability [22].

2. Experimental Setup and Procedure

The drop profile analysis Tensiometer (PAT) [23] manufactured by SINTERFACE Technologies,
Germany, was employed for dynamic surface tension measurements. For performing each experiment,
a drop was formed in a closed cuvette and the surface tension was recorded versus time by keeping
the drop size constant until 600 s. Then, the drop surface area oscillation experiments with frequencies
of 0.02, 0.05 and 0.08 Hz were performed. We also used the ODBA capillary pressure based apparatus
(oscillating drop and bubble analyzer tensiometry) produced by SINTERFACE Technologies, Germany)
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for the fast dynamic surface tension measurements in time-scales lower than 1 s. The capillary pressure
method uses the pressure difference between inside and outside of the drop/bubble as well as the
radius of curvature, to calculate the surface tension. The high-accuracy pressure sensor of the device
is able to measure the pressure with a resolution of 1 Pascal and is sufficiently sensitive to record
the pressure changes in the drop/bubble in the range of milliseconds during fast adsorption of the
surfactants at interface [24].

For producing CGAs, a specific amount of polymer was dissolved in water using a disperser
(IKA T25), then pre-weighted amounts of surfactant and salt were added consecutively to the fluid
and were gently mixed until a homogeneous mixture was achieved. 200 mL of the prepared solution
was poured into a 500 mL beaker, placed under the disperser and CGAs were generated at a specific
stirring time and speed. When CGAs were produced, they were immediately poured in a 500 mL
graduated cylinder and the total volume was recorded. Afterwards, the height of the clear liquid
gathered at the bottom of the graduated cylinder was recorded versus time and the half-life time of the
CGA was determined as the time needed to collect 100 mL of liquid at the bottom of the cylinder.

XG was purchased from Sigma Aldrich, SDS was provided from AppliChem and CAPB was
provided from Behdash Chemical Co., Iran. The CAPB surfactant came as a 30 wt.% solution in water.
NaCl was also purchased from Mojallali Chemical Co., Iran. All the experiments were performed at
constant temperature of 20 ◦C using deionized water.

3. Results and Discussion

3.1. Influence of NaCl on SDS made CGAs

SDS is a frequently used surfactant for making CGAs [10,25]. But its anionic nature is a reason to
be affected by the presence of ions in the system. Figure 1 depicts volume and half-life time of CGAs
made by aqueous solutions of 16.6 mM (2 CMC) SDS and 0.1 wt.% XG for different NaCl concentrations.
Two trends are seen in the figure. Below 10,000 ppm NaCl, an approximately constant value for the
CGA volume could be observed while the half-life time decreases slightly. However, both CGA volume
and half-life time diminish for NaCl concentrations above 10,000 ppm with a steep slope.

Figure 1. Volume and half-life time for CGAs made by 0.1 wt.% XG and 16.6 mM SDS vs.
NaCl concentration.

Both the stability and volume of CGAs depend on the solution surface properties. In that regard,
dynamic surface tension measurements were carried out for different NaCl concentrations using
PAT experimental setup. Moreover, to have a better resolution on the dynamic surface tension at
short times, which is an important parameter for foam formation as result of bubble formation in
sub-seconds, ODBA capillary pressure based method was used for fast dynamic measurements [24].
According to Figure 2, a fast dynamic surface tension behavior is detected for 0, 5000, and 10,000 ppm



Colloids Interfaces 2020, 4, 9 4 of 9

of NaCl, while an overall reduction in the surface tension could be observed with increasing the
salt concentration. This reduction is due to the decreased repulsion between the surfactant head
groups which leads also to a reduction of the CMC of the ionic surfactants and an increase in surface
activity [26]. But, for 20,000 ppm NaCl, although the equilibrium surface tension is further reduced,
the dynamic surface behavior has changed and a further increase of surface tension at concentrations
of 30,000 and 40,000 ppm indicates that a precipitation of SDS has occurred in the solution. The fast
dynamic results in Figure 2-left also support this argument as the surface tension starts at a higher value
for 20,000 ppm than 10,000 ppm which reveals the lower concentration of surfactants in the 20,000 ppm
case. The turbidity changes of the solutions as shown in Figure 3 and surface elasticity increments
for concentrations larger than 20,000 ppm as depicted in Supplementary Information confirm this
statement as well.

Figure 2. Dynamic surface tension of aqueous solutions of 0.1 wt.% XG, 16.6 mM SDS and various
concentrations of NaCl. The left picture shows the fast dynamic tensions measured by ODBA capillary
pressure based setup and the right picture shows the PAT results.

Figure 3. Aqueous solutions of 0.1 wt.% XG, 16.6 mM SDS and various concentrations of NaCl.
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At lower concentrations than CMC, the solubility of SDS is controlled by the solubility product
of sodium and dodecyl sulfate ions as well as the non-idealities induced by the presence of other
ions [27,28]. But the behavior is much different above the CMC and large concentrations of SDS can be
dissolved in water by micelle formation [29–31]. In this regard, The Krafft point plays an important
role in the solubility as well since surfactant micelles can be formed above this temperature. Below
the Krafft temperature, the individually dispersed surfactants are in equilibrium with the hydrated
solid surfactants while above, hydrated solid surfactants melt and micelles also participate in the
equilibrium [32]. Iyota and Krastev measured the surface tension of aqueous SDS-NaCl solution for
different concentrations of NaCl at constant SDS mole fraction and observed a reduction of surface
tension followed by an increase upon the NaCl concentration increment [33]. At the point of reversal
of the surface tension trend, the solution became turbid as a sign of SDS precipitation. According to
their work, ionic surfactants are salted out at high salt concentrations and hydrated crystalline particles
are formed in solution. This is in accordance with the increment of the SDS Krafft temperature by
addition of NaCl as reported by others [32,34–36]. For instance, Chundru observed that changing the
NaCl concentration from 0 to 0.02 M at a constant SDS concentration of 0.1 M, increases the Krafft
temperature from 15.7 to 17.5 ◦C [34]. Shinoda et al. also reported that the Krafft temperature of
SDS increases significantly by the addition of NaNO3 [32]. In another work, Nakayama and Shinoda
measured an increase in the Krafft point followed by a reduction in the solubility of SDS by adding
salt [35]. Sharker also observed that the SDS Krafft temperature increases with the addition of NaCl,
CsCl, and KCl while it decreases when LiCl is added [36]. This is because the type of the counterion is
determinative in Krafft point changes and the Krafft point lowers in the presence of strongly hydrated
ions such as Li+ [32].

As a result, when the Krafft point increases to above the solution temperature, surfactant micelles
break down and hydrated solid surfactants are formed as precipitates. Consequently, the surfactant
concentration in the medium diminishes and a slower dynamic of adsorption (reduction of surface
tension versus time) is observed. This phenomenon could be observed in Figure 2 for concentrations
of 20,000-40,000 ppm of NaCl. It should be noted that NaCl does not precipitate in our experiments
since according to the literature at the temperature of 20 ◦C, an amount around 260,000 ppm of NaCl is
soluble in water [37] which is much more than the NaCl content for our case studies.

Despite the mentioned points about the solubility changes by addition of single salts, it should be
noted that when miscellaneous ions such as Ca2+ and Mg2+ are present in the solution, the problem
becomes more complex [27].

As discussed above, the SDS precipitation is responsible for a lower stability in region 2, as depicted
in Figure 1. However, this is not the case in region 1 in which no precipitation occurs. The little
decrease in the half-life time in region 1 is due to viscosity reduction of the XG solution in presence of
ions that directly influences the CGAs stability [22]. XG is an anionic polymer in which the viscosity is
created as the result of repulsion forces between different molecules. The presence of an ionic field
weakens this repulsion force leading to a lower viscosity of the solution, which affects the stability of
the system. Different studies have illustrated the influence of ions on the rheological properties of XG
solutions [13–15].

3.2. Influence of NaCl on CAPB made CGAs

CAPB is a zwitterionic surfactant having both anionic and cationic charges at medium and high
pH levels [38,39]. Figure 4 depicts the dynamic surface tension behavior of aqueous 10 mM CAPB
in presence of 0.1 wt.% XG and various NaCl concentrations. No considerable dependency on the
NaCl concentration can be observed. All measured equilibrium surface tension values are between
28.5–29.5 mN/m. This observation, which is in contrast to the results for SDS, originates from the
surfactant’s nature. According to Rosen, the effect of electrolytes on the surface behavior and CMC is
larger for anionic and cationic rather than zwitterionic surfactants [31]. The strong dependency of the
surface behavior of anionic and cationic surfactants on the ionic strength is because the electrostatic
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repulsion forces between the ionic head groups is weakened in the presence of counterions and
surfactant molecules can get closer to each other at the interface. However, for zwitterionic surfactants,
both electrostatic repulsion and attraction forces are present and a balance among them is responsible
for the arrangement of surfactant molecules in micelles and at surfaces. In this case, the electric
field generated by ions weakens both the repulsion and attraction forces leading to little alteration in
the balance, so that the surface activity is not considerably influenced by added salt. In this regard,
Kamenka et al. have also reported very little variations in the micellar aggregation number upon the
addition of electrolyte for betaine type zwitterionic surfactants [40].

Figure 4. Dynamic surface tension of aqueous solutions of 0.1 wt.% XG, 10 mM CAPB and various
concentrations of NaCl.

Since CAPB is not influenced by the presence of high amounts of ions, its ability to produce CGAs
is not damaged. Figure 5 shows the values of CGA volume and half-life time for aqueous solutions
of 0.1 wt.% XG, 10 mM CAPB and different NaCl concentrations. A little decrease in the stability is
observed by increasing NaCl concentration which, as stated previously, is the result of weakened
ability of XG to build up viscosity of the solution. It should be noted that this decrease in stability
could be compensated for by adding more XG to the solution. However, for the case of SDS, the
precipitation at high salinities makes it impossible to utilize this surfactant in offshore drillings where
large concentrations of different ions are present.

Figure 5. Volume and half-life time for CGAs made by 0.1 wt.% XG and 10mM CAPB vs.
NaCl concentrations.
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4. Conclusions

The influence of NaCl on formation and stability of CGAs made by the anionic SDS and zwitterionic
CAPB surfactants in the presence of XG was investigated and the following conclusions can be drawn:

• A significant reduction in the half-life time of produced CGAs by SDS was observed for NaCl
concentrations above 20,000 ppm which can be attributed to the precipitation of SDS in the solution.

• Increasing the Krafft temperature of SDS solutions by the addition of NaCl was the reason for SDS
precipitation in solution.

• Fast dynamic surface tension measurements using bubble pressure tensiometry supported this
observation, i.e., lower effective surfactant concentration due to the precipitation process.

• NaCl did not have considerable influence the surface behavior of the zwitterionic surfactant CAPB
and its ability for CGAs production was not reduced. This is because of the presence of both
cationic and anionic head groups at the surfactant inducing both attraction and repulsion forces.
In this case, the presence of salt simultaneously weakens both attraction and repulsion forces
leading to negligible changes in the net forces.

• NaCl decreased the overall ability of XG to build up the viscosity, leading to a considerable
decrease in the half-life time of CGAs for both surfactants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-5377/4/1/9/s1,
Figure S1: Surface elasticity values of aqueous solutions of 0.1 wt.% XG, 16.6 mM SDS for various concentrations
of NaCl at a fixed frequency of 0.05 Hz.
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