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Abstract: Growing oil demand and the gradual depletion of conventional oil reserves by primary
extraction has highlighted the need for enhanced oil recovery techniques to increase the potential
of existing reservoirs and facilitate the recovery of more complex unconventional oils. This paper
describes the interfacial and colloidal forces governing oil film displacement from solid surfaces.
Direct contact of oil with the reservoir rock transforms the solid surface from a water-wet to
neutrally-wet and oil-wet as a result of the deposition of polar components of the crude oil, with
lower oil recovery from oil-wet reservoirs. To enhance oil recovery, chemicals can be added to the
injection water to modify the oil-water interfacial tension and solid-oil-water three-phase contact
angle. In the presence of certain surfactants and nanoparticles, a ruptured oil film will dewet to
a new equilibrium contact angle, reducing the work of adhesion to detach an oil droplet from the
solid surface. Dynamics of contact-line displacement are considered and the effect of surface active
agents on enhancing oil displacement discussed. The paper is intended to provide an overview
of the interfacial and colloidal forces controlling the process of oil film displacement and droplet
detachment for enhanced oil recovery. A comprehensive summary of chemicals tested is provided.

Keywords: enhanced oil recovery; oil film displacement; colloid and interfacial science; wettability;
surfactants; nanoparticle fluids

1. Introduction

The global energy landscape is gradually transitioning towards renewables, however, a reliance
on non-renewables, particularly petroleum, will remain for several decades due to its importance as a
fuel and chemical feedstock, which is a critical component to the steady improvement in the quality of
life of developing countries. While developed countries take the lead on demonstrating the application
of non-renewables, their remaining reliance on petroleum as part of the energy matrix remains for
the foreseeable future (beyond 2050) [1]. With overall petroleum demand expected to increase [2],
demand can only be met by increasing global production, which also coincides with the depletion of
‘easy-to-produce’ oil.

With few giant oil fields being discovered and new reserves frequently identified in
remote/challenging locations, there is a growing need to increase the potential of existing reserves and
improve the worldwide average oil recovery factor from as low as 20% to 40%. Methods of enhanced
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oil recovery (EOR) have the potential to double the produced lifetime of existing proven reserves;
which have a current lifetime without EOR of ~50 years [1]. The growing demand for petroleum is also
being met in part by the increased reliance on production from proven unconventional oil reserves,
for example, the Canadian oil sands, which has an estimated 300 billion barrels of ultimate potential
recoverable reserve (heavy oil), the third largest reserve behind Venezuela and Saudi Arabia [2].

Successful EOR and oil sands operations rely on controlling the process fluid chemistry to
favorably affect the mechanisms that govern oil droplet de-wetting and liberation. In this paper, we
will provide an overview of the scientific principles influencing oil droplet dynamics on solid surfaces,
and extend the discussion to demonstrate how those governing mechanisms can be influenced by the
commonly studied surface/interfacially active components namely surfactants and nanoparticles. The
step-by-step process by which oil detaches from the solid surface can be summarized in sequence:
(i) oil film thinning and rupture; (ii) oil de-wetting (recession) on the solid surface; and (iii) oil-solid
surface adhesion and liberation.

Before describing the underlying principles that govern each step, it is worth considering the likely
interaction between the oil and solid surface; i.e., the reservoir wettability. The reservoir environment
can be characterized as either: (i) water-wet (water droplet contact angle, 8 = 0° to ~70°); (ii) oil-wet
(6 = ~110° to ~180°); and (iii) neutrally-wet (6 = ~70° to ~110°) exhibiting a similar affinity to both
water and oil [3-5]. While it is understood that most reservoir environments were initially water-wet,
the reservoir rock can evolve to become more oil-wet due to the deposition/adsorption of several
indigenous organic polar species (asphaltenes, resins and naphthenic acids) present in crude oil [6-9].
For oil-wet reservoirs, oil recovery is poor due to no capillary imbibition. Hence, one of the criteria for
successful EOR is to enhance capillary imbibition and reverse the wettability change by using chemical
additives, although complete reversal to strongly water-wet surfaces is not favored for EOR [10]. An
oil layer on a hydrophilic or hydrophobic solid surface is the basis for the following discussions.

2. Background Science

Oil recovery from the reservoir rock occurs by either displacement from squeezing or oil film
thinning and rupture to form discrete oil droplets (Figure 1) that are removed by shear; the latter is of
interest here.

L. Oil film on substrate I1. Oil film thinning I11. Oil droplet formation IV. Droplet recession

Figure 1. Schematic showing the four stages of oil film dewetting from a uniform thick film (I) to film
thinning (II); formation of discrete oil patches (III); and recession of oil patches to form oil droplets at
the new equilibrium wetting condition (IV).

The long-time transformation from water-wet to an oil-wet reservoir occurs following the collapse
of a thin aqueous layer separating the solid surface and oil layer. The stability of the thin water layer
is attributed to the disjoining pressure that accounts for surface forces between the solid-water and
water-oil interfaces. The total disjoining pressure (I1I) includes contributions from electrostatic (I1,;),
van der Waals (I'T,;), and structural (I'Tg;) forces [11]

IT =11, + Iygw + g (1)

with the thin water layer collapsing when IT is negative. The disjoining pressure as a function of
aqueous layer thickness has been calculated for a silica/water/oil (bitumen) system of salinity 1 mM
KCl and pHs 3, 5, and 9, see Figure 2 (only I1,; and I,y have been considered). While 11,3 depends
on the interaction Hamaker constant, I, is sensitive to pH and salinity, with the magnitude of the
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electrostatic force dependent on the surface (zeta) potentials of silica and bitumen, and the Debye
length. For crude oil, the pH dependent surface potentials result from ionization and surface activity
of natural surfactants (naphthenic acids) [12-14]. At higher pHs, dissociation of the carboxylic-type
surfactant increases the surface potential (negative) of the oil-water interface, with the magnitude
increasing as more surfactant partitions at the interface. The high surface potentials at pH 9 form very
stable thin-water layers, whereas in more acidic conditions, the disjoining pressure maxima decrease,
and the thin-water layer in pH 3 is entirely unstable.
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Figure 2. Disjoining pressure (Il = I1,; +I1,;) as a function of thin-water layer thickness (i) and

pH. Zeta potentials () at pH 3, 5 and 9 are: 2.5, —55.6 and —78.2 mV for oil (bitumen) [15], and —12,

—30 and —38 mV for silica, respectively. The Hamaker constant (Agwg) for silica/water/oil system is
—ah2 2

5.7 x 1072 J[16]. L = %, I, = %SSOKZ 2y C;;’;fz'c(]:{)h)% % where ¢ and gg are the dielectric

permittivity of vacuum and relative dielectric permittivity of water, respectively. « is the Debye length,

which accounts for changes in salinity.

The stability of thick oil films is governed by the balance of gravity and capillary forces, with
instability and the formation of discrete oil patches having been described analytically by Sharma [17],
with the critical film thickness k., (Equation (2)) dependent on the oil-water interfacial tension (v, /),
the three-phase contact angle (6), and the minimum radius of the hole (r;;)

B 2sin(mt — 0) Yo/w
her = T ln(rm[l +cos(mt—0)]\ gp ) )

where g is the acceleration due to gravity and p the density of oil. For a typical oil-wetted solid surface
of three-phase contact angle of 145° and 7, ,,, = 30 mN/m, h is 0.05 mm for a stable minimum hole
radius of 10 um. Dependence on the fluid and surface properties is rather weak over the range of
general applicability, with i, strongly influenced by the size of the stable hole in the oil film [16]. For
very thick films (b > h,,), thinning of the oil film is needed for dewetting, otherwise holes formed
in the film will spontaneously collapse. The mechanisms for film thinning have not been extensively
considered but are most likely to result from fluid shear in confined environments. Other factors that
can influence the onset of film rupture include gas bubbles trapped in the oil film [18], and surface
asperities that lead to non-uniform film thickness.
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With the oil film ruptured, the circular hole begins to expand at a rate dependent on the fluid
and interfacial properties (to be discussed below) [19]. Away from equilibrium, the process of droplet
dewetting is driven by a change in energy following the creation of a new solid-water interface and
the loss of oil-solid interface, assuming the change in oil-water interface during droplet recession can

be considered negligible, that is
G

JA = Ys/w 08 ®)
where 7 is the interfacial tension and subscripts S, W, and O describe the solid, water and oil phases,
respectively. Equation (3) can be simplified by the Young’s equation for an oil droplet on a solid surface
given by
Yo/s —Vs/w @)

To/w

cosf =

to express the energy change during oil recession in terms of the equilibrium contact angle and
oil-water interfacial tension (two measurable properties)

aG
A= —Yo,w cos 6. 5)

With yo,w always greater than zero, Equation (5) confirms that oil recession is a spontaneous
process when 6 < 90°; i.e., the wetted solid surface is more water-wet (hydrophilic). The simple form
of Equation (5) provides fundamental insight for effective EOR, highlighting the value of modifying
surface wettability and oil-water interfacial tension. The smaller the 6, the more favorable the condition
for oil recession. Once the oil droplet has reached equilibrium, the work of adhesion (W4) between
oil and solid surface must be exceeded to liberate the oil droplet. By the reduction in area of oil-solid
interface and generation of oil-water and solid-water interfaces, W4 is given by

Wa = rs/w =+ Yo/w = 70/s (6)
which when combined with the Young’s equation leads to
Wa = yo,w(l —cosb) > 0. (7)

With the unlikely condition of 6 = 0 for spontaneous liberation (droplet detachment from the
solid surface), Equation (7) confirms the need for energy to detach oil droplets from the wetted surface.
In order to detach an oil droplet from the solid surface the hydrodynamic lift force must exceed
the contributions from the body and adhesion forces. An approximation of the adhesion force for
a partially wetting droplet is, F4 = mryo w sin(7t — 6), where r is the radius of oil-solid surface
contact area [20]. The contour map in Figure 3 indicates the strongest adhesion (red color) when the
oil-water interfacial tension and water droplet contact angle are high. Therefore, reducing both the
oil-water interfacial tension and oil-water-solid three-phase contact angle leads to more favorable oil
droplet liberation.
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Figure 3. Apparent adhesion force for a partially wetting droplet (droplet volume = 10 nL).

3. Dynamics of oil Film Recession

After creation of a hole on the oil film, the oil film recedes rapidly, governed by the receding
force, Fr = o, wlcos(m — 8;) — cos(r — 6)], acting at the three-phase contact line (6, is the dynamic
contact angle), with Fg diminishing towards the new equilibrium wetted-state, hence, the velocity
of the three-phase contact line decreases with time. The dynamics of o0il displacement on a solid
surface are frequently described using the (i) hydrodynamic (HD); (ii) molecular-kinetic (MK); or (iii)
combined models.

For more viscous fluids, such as crude oil, the hydrodynamic model relies on the solution of
creeping flow in the vicinity of the three-phase contact line, with the no slip boundary condition
relaxed to allow for finite slipping of the fluid/fluid contact line on a solid surface. Considering
an effective slip length (Lg), Cox presented a comprehensive hydrodynamic solution by segmenting
the dynamic three-phase contact line into inner, intermediate, and outer regions, and correlated the
apparent contact angle to the three-phase contact line displacement velocity, U [21,22]

Yo/w 3 3 L]

= 2008 6" — (8, im ()] ®)
Ho

where y, is the oil viscosity, 8 is the contact angle measured through the water phase, and L and Lg are

the characteristic length of the oil droplet and the slip length, respectively. While determination of the

slip length is nontrivial, the term is often used as a fitting parameter of the experimental data.

The molecular-kinetic model accounts for molecular displacements (adsorption/desorption) in
the vicinity of the dynamic three-phase contact line. The model assumes that the solid surface behaves
as a source of identical adsorption sites, and liquid molecules can detach and attach to neighboring
sites by overcoming an energy barrier to molecular displacements [23]. The work to overcome the
energy barrier is provided by a driving force governed by 7o, and an imbalance between the
equilibrium and dynamic wetting states. The three-phase contact line displacement is described in
terms of molecular displacement, defined as the distance between adsorption sites (1) and a frequency
(%) of adsorption/desorption events at equilibrium, as shown in Figure 4.
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Yow

Figure 4. Molecular-kinetic model describes the distance between adsorption sites (1) and a frequency
(%) of adsorption/desorption events. Figure adapted from Blake [24].

The relationship between the dynamic contact angle and the three-phase contact line velocity is
given by

—04) — —0)]A?
U = 21 A sin o | YoLwle0S( = Pa) — cos(m — B)] ©
2kgT
where kg is the Boltzmann constant and T the absolute temperature. The molecular displacement
parameters (A and «0) are often combined and treated as the coefficient of contact-line friction, { = 7](‘5372,

to describe the energy dissipated at the three-phase contact line, and neglecting any viscous dissipation
in the bulk liquid [24,25]. Similar to the HD model, { is treated as an adjustable parameter of the
experimental data. Simplification of Equation (9) then follows when the sin / function is small; i.e., not
far from equilibrium—and Equation (9) reduces to the linear form

u= ,Yo%[cos(n—ﬂd) —cos(t —0)] (10)

Since each model neglects a contributing factor, a combined model approach can be considered
to account for both the contact-line friction and viscous dissipation. As described by de Gennes and
Brochard-Wyart [26,27], the combined model for contact-line displacement is given by

_ Yo wlcos(t — 6;) — cos(T — 6)]

u
6o L
¢+ 3 In(s)

(11)

The sequence of images in Figure 5 show the dewetting process for an oil droplet deposited on
a solid surface. In this example, a 10 puL droplet of extra heavy oil (13.6° API at 20 °C; SARA: 7.4%
saturates, 37.8% aromatics, 15.3% resins, and 39.5% asphaltenes) was deposited on a glass substrate
with a water contact angle <5°. Since the oil viscosity was ~6700 mPa:s at 20 °C, the substrate was
heated to ~50 °C to promote faster spreading of the oil droplet on the solid surface. With the oil droplet
at the equilibrium wetted-state, Milli-Q water was pumped underneath the oil-wetted solid surface
at 1400 mL/min to completely submerge the oil droplet. The measurement cell temperature was
maintained using a circulating water bath. Since Z—g < 0, oil droplet recession occurs spontaneously
and the oil-solid contact area reduced to attain a new equilibrium wetted-state, as described by
Equation (4).
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Figure 5. Time-dependent dewetting of an extra heavy oil droplet on a hydrophilic solid surface. The
solid surface and water temperature were maintained at 40 °C. Images were captured at 20 fps for the
first 15 min and 2 fps thereafter. Data captured using the Theta tensiometer (Biolin Scientific).

The rate of oil film dewetting can be determined from the dynamic contact angle, see Figure 6,
with faster dewetting dynamics observed for higher temperature environments. Clearer differentiation
between 60 °C and 80 °C is shown in the inset of Figure 6, with the new equilibrium wetted-states
(oil-water-solid surface) attained within a few minutes, contrasting the 40 °C sample, which required
more than 1 h to reach equilibrium. Moreover, the contact angles at equilibrium were shown to depend
on temperature, decreasing from 63.7° to 54.1° and 51.3° with increasing temperature from 40 °C to
60 °C and 80 °C, respectively. Equation (4) shows that changes in the equilibrium wetted-state result
from a change in the balance of energies acting on the three interfaces. Measuring yo,/w at equivalent
temperatures, Figure 7 confirms a small decrease in o, with increasing temperature. Hence, if
it were assumed that 75,5 and s, remained independent of temperature, then § would decrease
in good agreement with Equation (4). Previous studies showed variation in the oil-water interfacial
tension as a function of pH and temperature [12,13,28-31], with the effect attributed to the partial
solubility of naphthenic acids in water [32,33].

180
—~ 160 -
140 -

180

40 °C

120 ~

1004
801

60

] 80°C .
©

0 T T T T T J T Y T
0 1000 2000 3000 4000
Time (s)

Dynamic contact angle (°

Figure 6. Dewetting dynamics of an extra heavy oil film immersed in Milli-Q water at different
temperatures: 40 °C, 60 °C, and 80 °C. Inset is an expanded region of the initial dewetting dynamics to
differentiate between the two higher temperatures. Each experimental condition was repeated four
times with measurement variability considered to be negligible.
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Figure 7. Initial oil droplet receding rate as a function of temperature, correlated to changes in oil
viscosity and oil-water interfacial tension (error £ 0.03 mN/m). Symbols: circle—oil droplet receding
rate, triangle—’yo /W, square—ii,.

Naphthenic acids are considered to be cyclic carboxylic acids of the general form R-COOH,
where R can be any cyclo-aliphatic group [34]. Compared to asphaltenes, naphthenic acids are of
lower molecular weight, typically less than 450 g/mol, spanning mainly Cjp to C5p compounds
with up to six fused ring structures that are mostly saturated [35]. Naphthenic acids preferentially
adsorb on carbonate solid surfaces mainly by chemical interactions to modify the wettability from
water-wet to oil-wet as the surface becomes saturated, although the process is reversible at elevated
temperatures [36,37].

The initial receding rate (%) of the oil film was compared for each temperature with the rates
correlated to changes in 7y, and p,, see Figure 7. Based on the HD model for contact line
displacement (Equation (8)), which includes both parameters, the oil viscosity is the rate dependent
parameter since the change in oil viscosity (—80.9%) with temperature is more significant than that of
oil-water interfacial tension (—9.9%); between 60 °C and 80 °C the oil viscosity decreased by 38.9%
and the initial receding rate increased by 107.2%. The same oil displacement data was fitted to both the
HD and MK models (Figure 8). A least-squares difference between the experimental and theoretical 6,

was made
te

A= Z(Gd,t,m - Hd,t,e)z (12)
t=0
where 6, ,,, and 0, , are the theoretical and experimental dynamic contact angles at time ¢, respectively,
and the model fitting parameters were determined by minimizing the least-squares value.

During the process of oil film dewetting, the model fits appear in reasonable agreement with the
experimental data. Slight variation is magnified at higher temperatures when the receding dynamics
can be considered rapid for extra heavy crude oil, and experimental variability is more evident.
The adjustable fitting parameters for each model (HD—In (L—LS), MK—() reduced with increasing
temperature, suggesting that the slip length of fluid /fluid contact line on a solid surface (Lg) increases
and the coefficient of contact-line friction decreases when the oil viscosity is reduced, in good agreement
with previous findings [38,39]. While our study only considered dewetting dynamics in Milli-Q water
the effect of water chemistry on oil film dewetting has received little attention and is an area for
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further study. High salinity brine can increase oil-water interfacial tension [40], enhance solvation
forces between solid-liquid interfaces [41], bind surfactants to substrate via multicomponent ion
exchange [42], and impact the stability of chemical additives used for EOR.

180 _
: ——HD60°C 40°C
= 1 ) ——HD80°C ?1000 In(LLs), R2=0.9068 & 1|
o 140 - . senees MK 60 °C E q: R?= 09986 !
)] 1 oc | T
£ 120 ] MKBOC s 11000
e In(L/Lg) = 1968 o 1 ~
S 100 ] _ 2 5
£ ¢=1800.2 Pa's Intig =314 |0 S
S 80 g=729Pas |E =}
o i ] @ 100 c
Q _—
= 60 - 7 =
[u] ] 4]
g 404 1InliLg) = 175 =
O 5] ——HD40°C| ]¢=23.7Pas 3
la coes MK40°C | b 104 ¢
0 1000 2000 3000 4000 O 20 40 60 80 100120140 05 115
Time (s) Time (s) Qil viscosity u (Pa-s)

Figure 8. Hydrodynamic (HD) and molecular-kinetic (MK) model fittings of oil film dewetting at
40 °C (a), 60 °C and 80 °C (b). Shaded lines represent the experimental data and the HD and MK
models identified by the solid and dash lines, respectively. (c) Optimal fitting parameters, HD (closed
symbols)—In (i ), MK (open symbols)—(.

4. Surfactant Oil Droplet Displacement

Surfactants are widely used in EOR to reduce 7o, and enhance water-wetting of the solid
surface. Surfactants are often described as amphiphilic molecules composed of a hydrophilic head and
a hydrophobic tail, thus surfactants favorably partition at solid-liquid and liquid-liquid interfaces. The
accumulation of surfactants at an interface is a function of the surfactant concentration in the bulk fluid
as described by the general form of the Gibbs” adsorption equation for a binary, isothermal system,
dy = —RTT:dIn C;, where I'; is the surface excess of surfactant, C; the surfactant concentration in
the bulk fluid, and RT the thermal energy of the system. As a function of concentration, surfactants
in solution exist in the monomer-form at low surfactant concentrations, reaching a concentration of
maximum solubility of the monomer-form, forming micelles via self-association. This concentration is
termed the critical micelle concentration (CMC). Surfactant adsorption and displacement of organic
species on solid surfaces and the resultant wettability modification is dependent on the surfactant
concentration. At extremely low concentrations, surfactant monomers adsorb as individual molecules
with no interaction between the adsorbed molecules. At higher concentrations (<CMC) surfactant
molecules associate to form patchy hemi-micelles on the solid surface, with surfactants coordinating in
the tail-tail confirmation. Further increases in concentration lead to saturation of all available surface
sites and the formation of a surfactant bi-layer at the CMC [43]. Formation of a bi-layer would orientate
the surfactant hydrophilic head group away from the solid surface, thus increasing the water-wetting
nature of the reservoir rock, favorable for oil droplet displacement (Equations (5) and (7)). Mechanisms
for wettability modification by different surfactants are described below.

Composition of the reservoir surface (sandstone, carbonate, and deposited organic species) often
dictates the surfactant selection for wettability modification, with surfactants categorized as cationic,
anionic and non-ionic, based on the charge characteristics of hydrophilic groups. Surfactant adsorption
on the solid surface can occur via electrostatic and van der Waals forces, and hydrogen bonding, with
the extent of wettability modification a function of several properties including surfactant adsorption
kinetics, surfactant structure, temperature, pH, salinity. A brief summary of surfactants considered
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for EOR is provided in Table A1, with remarks provided for changes in solid surface wettability and
interfacial tension.

While electrostatic interactions are often considered to describe surfactant-solid surface adsorption,
such simplicity does not describe the potential for surfactants to modify solid surface wettability, when
many other factors such as oil saturation, clay content, divalent cations, pH, and temperature influence
the action of the surfactant.

Cationic surfactants are frequently used to treat carbonate reservoirs and include permanently
charged ammonium groups (ammonium bromide and ammonium chloride) [44]. Adsorbed polar
components of crude oil (i.e., negatively charged naphthenic acids) can be removed from the solid
surface by forming ion pairs with cationic surfactants via strong ionic interaction. Removal of
contaminants transforms the solid surface wettability to more water-wet [44,45]. The use of cationic
surfactants to treat sandstone has also been demonstrated, although the chemical effectiveness in
carbonate reservoirs is greater [46].

Anionic surfactants including sulfates, sulfonates, phosphates, and carboxylates, have been shown
to modify wettability in both carbonate and sandstone reservoirs. Wettability modification occurs
via two mechanisms [44,45]: (i) anionic surfactants interact with the organic species via hydrophobic
forces, exposing the surfactant head group to make the solid surface more water-wet (wettability
modification for sandstone reservoirs); and (ii) via strong electrostatic forces with carbonate surfaces,
anionic surfactants can displace organic species exposing the underlying water-wet surface [46].

Non-ionic surfactants such as alcohols, esters and ethers have been used to modify the wettability
of carbonate and sandstone surfaces [47], being highly effective in high salinity water. With no
contribution from electrostatic forces, non-ionic surfactants interact via hydrophobic forces with
deposited organic species, and hydrogen bonding with hydroxyl groups on the solid surface [48,49].
Research has shown that non-ionic surfactants can modify highly oil-wet carbonate to weakly oil-wet
or even water-wet (6 < 80°) following the addition of 0.1 wt % surfactant [50].

Sodium dodecyl sulfate (SDS), an anionic surfactant, was used to displace an oil film deposited
on a glass substrate at 60 °C (Figure 9a). Adding SDS to the aqueous phase reduced v ,, and the
CMC was measured at ~0.1 wt % (3.5 mM) at 60 °C (Figure 9¢). Increasing the SDS concentration
from 5 x 10~% wt % to 5 x 1072 wt % increased both the rate of oil film displacement and equilibrium
oil droplet contact angle (inferred from lower water contact angle, 8). The equilibrium contact angle
reduced from 54.1° in the absence of SDS to 48.7° and 36.5° for 5 x 1074 wt % and 5 x 1072 wt %
SDS, respectively. Fitting the HD and MK models confirmed an increased slip length (Ls) and reduced
coefficient of contact-line friction ({) at higher SDS concentrations. Figure 9b illustrates the benefit
of injecting surfactants at a concentration greater than the CMC. The very low oil-water interfacial
tension (~5.75 mN/m) causes the oil film to continually recede and eventually detach from the solid
surface when the oil droplet buoyant force (3.77 uN) exceeds the solid surface-oil droplet adhesion
force (2.01 uN).
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Figure 9. (a) Oil film dewetting at 60 °C (0pj@60 °c = 946 kg/m3) with increasing sodium dodecyl
sulfate (SDS) concentration (5 x 104 wt % and 5 x 1073 wt %). Shaded lines represent the experimental
data with the HD and MK models identified by the solid and dash lines, respectively; (b) Oil film
dewetting at 60 °C with the SDS concentration above the CMC (SDS = 0.12 wt %). The solid surface-oil
droplet contact diameter reaches a minimum of 0.34 mm at the point of oil droplet detachment; (c) Extra
heavy oil-water interfacial tension as a function of the SDS concentration. The CMC was ~0.1 wt % at
60 °C.

5. Nanoparticle Oil Droplet Displacement

The application of ultra-small particles (nanoparticles) to enhance oil film displacement has
been demonstrated. Nanoparticles are typically 1 to 100 nm and are ideal for EOR applications with
particle sizes smaller than the pore diameter, hence nanofluids flow through the porous media without
obstructing the porous network. In addition, their high surface area to volume ratio increases their
effectiveness at low particle concentrations, and promotes their kinetic stability [51]. An overview of
nanoparticles (nanofluids) used to displace oil films is provided in Table A2.

For oil film displacement, different nanoparticles have been considered including metal oxides,
organic, inorganic, and composite particles. Metal oxides nanoparticles (Al,O3, CuO, TiO, and Fe,Os)
have been shown to lower o/ [52] and increase the disjoining pressure between the solid surface
and oil-water interface [53]. The interfacial tension decreases as nanoparticles partition at the oil-water
interface from the aqueous phase. Unlike surfactants, nanoparticles are not amphiphilic and their
affinity to partition at an oil-water interface is governed by their particle size and surface wettability.
The general expression of E = 7ta?yg (1 & cos 9)2, describes the particle detachment energy from an
oil-water interface (:-describes detachment into either liquid phase), where a is the particle radius [54].
When cos 0 = 0 the particle detachment energy is maximized, although for nanoparticles E can be of
the order of a few kgT which can result in reversible adsorption, similar to a surfactant molecule.

The reduction in oil-water interfacial tension has been shown to correlate to the nanoparticle size
and the particle specific surface area [55]. Al,O3 nanoparticles of diameter 20 nm and 45 nm were
shown to lower the oil-water interfacial tension to ~13.6 mN/m and ~8.6 mN/m, respectively [56].
Compared to surfactants, interfacial tension reduction by nanoparticles is often smaller. For
example, silica nanoparticles (7-14 nm) dosed at 0.01-0.10 wt % reduced yo,w to ~10 mN/m from
~15-20 mN/m [57-59], while TiO; nanoparticles (58 nm) reduced o,y from 23 mN/m to 18 mN/m
when dosed at 0.01-0.05 wt % [53]. As such, enhanced oil film displacement by nanoparticles is likely
to occur via other mechanisms; i.e., structural disjoining pressure and wettability modification.

Structural disjoining pressure is a consequence of nanofluids exhibiting super-spreading behavior.
Nanoparticles self-assemble in the vicinity of the three-phase contact line to form a liquid wedge at the
de-pinning point, see Figure 10. As nanoparticles accumulate in the liquid wedge a structural disjoining
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pressure (Equation (14)) gradient is established with the highest pressure at the oil droplet-solid surface
vertex, driving the nanofluid to spread and cause the oil film to recede. As explained by Wasan and
co-workers [60,61], the spreading coefficient (S) of the nanofluid is determined by the sum of the
capillary pressures at the equilibrium film thickness (ITy(%,)) and disjoining pressure (I1(}))

sznw@m+/mmw (13)
he
Inner contact line Quter contact line

Oil droplet

1,

11, /\ T\

Disjoining pressure (/7, kPa)

Film thickness (h/d)

Figure 10. Schematic showing the ordered accumulation of nanoparticles to form a liquid wedge.
The structural disjoining pressure increases towards the de-pinning point. The structural disjoining
pressure exceeds the Laplace pressure, deforming the meniscus profile as represented by inner and
outer contact lines. The contribution from the long range structural disjoining pressure dominates the
short range electrostatic and van der Waals forces. The figure has been modified from Zhang et al. [62]
and Chengara et al. [11].

When the thickness of the liquid wedge exceeds one particle diameter, nanoparticles accumulate
in ordered layers. This layered arrangement of nanoparticles increases the excess pressure in the liquid
wedge with the structural disjoining pressure described based on the theory of thin liquid films [63]:

I (h) = Iy cos(wh + @2)e ™ + Tle =) 1 > d

(14)
Ist(h) = =P, 0 <h <d

where d is the nanoparticle diameter, P the osmotic pressure of nanofluid, and all other parameters (I1p,
Iy, w, @, x and J) are fitted as cubic polynomials varying with particle concentration. Contributions
from van der Waals, electrostatic and structural forces have been considered by Chengara et al. [11]
(Figure 10). The structural forces are long range and govern the behavior of thick liquid films, with
nanoparticle size, concentration, temperature, and fluid salinity, all contributing to the magnitude of
the structural disjoining pressure.

Wettability modification by nanoparticles enhances oil droplet displacement when nanoparticles
deposit on the solid surface. The deposition/adsorption is influenced by electrostatic forces, with the
nanoparticle decorated solid surface more water-wet due to deposition of hydrophilic particles to form a



Colloids Interfaces 2018, 2, 30 13 of 23

heterogeneous surface and increased nano/micron-scale roughness [64-68]. Wettability of heterogeneous
surfaces has been described by Cassie-Baxter [69], with the apparent contact angle on a composite solid
surface given by, cos0cp = f1 cos 01 + f, cos 8, where f; is the fractional area of the surface with contact
angle 61, f, is the fractional area of the surface with contact angle 6, and 6y is the Cassie-Baxter contact
angle. The Cassie-Baxter model can be combined with the Wenzel wetting model [70] to account for
surface roughness effects, cosfyy = R’ cosfcp, where R’ is the ratio of the true area of the solid to
its planar projection. With R’ always greater than 1, the Wenzel model confirms nano/micron-scale
roughness lowers the contact angle of a water-wet surface, thus increasing the potential for oil droplet
displacement. For example, metal oxide nanoparticles (ZrO, and NiO < 50 nm) were shown to deposit
on an oil-wet surface modifying the contact angle from 152° (untreated surface) to 44° and 86° for ZrO,
and NiO, respectively. The mean roughness of those surfaces was shown to increase from 70.6 nm
(untreated surface) to 2.32 um (ZrO, treated surface) and 330 nm (NiO treated surface) [71].

QOil film displacement can be enhanced when nanoparticles are mixed with surfactants. Fluid
blends lower the oil-water interfacial tension below a surfactant only system, with surfactants
increasing the interfacial activity of nanoparticles [72]. The decrease in oil-water interfacial tension
depends on the surfactant-particle interaction and surfactant concentration [73]. The effect of
nanoparticles is lessened at surfactant concentrations greater than the CMC. The use of surfactant
blends and composite particles (polymer-coated particles) to enhance oil film displacement have also
been considered but such mechanisms are considered outside the scope of this paper [74,75]. Recent
studies, which have considered composite fluids (particles), have been summarized in Table A3.

6. Conclusions

While demand for oil continues to rise, challenges in extraction become ever more complex.
Extraction from confined, unfavorable environments, and production of unconventional oil is
increasing the dependence on alternative extraction methods to deliver enhanced oil recovery. Often
the interaction between the oil and solid surface limits recovery with oil strongly adhered to an oil-wet
surface. Oil film recession is spontaneous when the solid surface is water-wet, and the adhesion force
to be overcome to liberate an oil droplet from a solid surface diminishes with decreasing contact angle
and oil-water interfacial tension. The rate of oil film recession and oil droplet equilibrium contact
angle can be modified through the careful selection of chemicals. Surfactants have extensively been
considered and used in production to lower oil-water interfacial tension and modify the solid surface
to more water-wet. An alternative mechanism for oil film displacement has been identified when using
nanofluids. Accumulation of nanoparticles in a liquid wedge between oil and solid surface results in a
long range structural disjoining pressure gradient causing the three-phase contact line to move (i.e., oil
film recede due to super-spreading of the nanofluid).

Controlling interfacial behavior in the reservoir provides a route for enhanced oil recovery.
Significant research effort is ongoing to design more effective chemicals that perform in challenging
environments (temperature, pressure, salinity, clays), deliver performance at the targeted site
(i.e., minimize material loss), and do not impact the environment. Enhanced oil recovery will
ensure effective utilization of crude oil resources, and the fundamental mechanisms governing oil
film displacement and oil droplet detachment are underpinned by knowledge of interfacial and
colloidal forces.
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Table A1l. Surfactants.
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Surfactants Conc. Solid Surface Oil Type Remarks 2 Ref.
Cationic surfactants
. . o Crude oil mixed with Contact angle = 57°, .
n-Cg-N(CHjs)3Br (C8TAB) in brine 4.0 wt % Chalk heptane IFT® = 2.85 mN/m [44]
. o . Decane mixed with _ )
n-Cq0-N(CHj3)3Br (C10TAB) in water 0.4 wt % Calcite naphthenic acids IFT = 2.67 mN/m [45]
. o . Decane mixed with _ /
n-Cq2-N(CHj3)3Br (C12TAB) in water 0.4 wt % Calcite naphthenic acids IFT = 0.59 mN/m [45]
. . o Crude oil mixed with Contact angle = 12°, )
n-Cq-N(CH3)3Br (C12TAB) in brine 5.0 wt % Chalk heptane IFT = 0.81 mN/m [44]
. . o Crude oil mixed with Contact angle = 27°, "
n-C14-N(CH3)3Br (C16TAB) in brine 1.0 wt % Chalk heptane IFT = 0.38 mN/m [44]
Cetyltrimethylammonium bromide (CTAB) in brine 0.3 wt % Quartz Crude oil Contact angle = 57° [76]
. . . . o . Decane mixed with _ )
n-Decyl triphenylphosphonium bromide (C10TPPB) in water 04wt % Calcite naphthenic acids IFT =3.56 mN/m [45]
Cocoalkyltrimethyl ammonium chloride (CAC) in brine 75-2620 ppm Dolomite Crude oil [47]
(0.0075-0.262 wt %)

. . . . . o . . Contact angle = 69°,
Dodecyltrimethylammonium bromide (DTAB) in brine 0.5 wt % Calcite Crude oil IFT = 4.8 mN/m [77]
Dodecyltrimethylammonium bromide (DTAB) in brine 0.06 wt % Quartz Crude oil Contact angle =95, [78]

: IFT =2.49 mN/m
. . o Crude oil mixed with Contact angle = 26°, »
n-(Cg-C13)-N(CHj3),(CHy-Ph)Cl (ADMBACI) in brine 0.5 wt % Chalk heptane IFT = 0.41 mN/m [44]
S . o Crude oil mixed with Contact angle = 21°, »
n-Cg-Ph-(EO),-N(CH3)2(CH;-Ph)Cl (Hyamine) in brine 0.2 wt % Chalk heptane IFT = 048 mN/m [44]
Coconut oil alkyl tr1methylar'nmomum chloride (ARQUAD 0.4 wt % Calcite Decane m1>'<ed ‘.Nlth IFT = 0.53 mN/m [45]
C-50) in water naphthenic acids
Trimethyl tallowalky ammonium choride (ARQUAD T-50) in 0.4 wt % Calcite Decane m1>'<ed Wlth IFT = 0.69 mN/m [45]
water naphthenic acids
Methyldodecylbis ammonium tribromide 0.0001-1 mM Mica Kerosene mixed with Contact angle =877, [79]

n-decane

IFT = 0.18 mN/m
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Surfactants Conc. Solid Surface Oil Type Remarks ? Ref.
Anionic surfactants
o o Crude oil mixed with Contact angle = 63°, )
1-(C12-Cy5)-(EO)15-SO3Na (S-150) in brine 0.5 wt % Chalk heptane IFT = 2.29 mN/m [44]
. . o Crude oil mixed with Contact angle = 40°, )
n-Cq3-(EO)g-SO3Na (B 1317) in brine 0.5 wt % Chalk heptane IFT = 078 mN/m [44]
. . o Crude oil mixed with Contact angle = 49°, ,
n-Cg-(EO)3-SO3Na (S-74) in brine 0.5 wt % Chalk heptane IFT = 6.72 mN/m [44]
S o Crude oil mixed with Contact angle = 44°, »
1-(C12-C15)-(PO)4-(EO)»-OSO3Na (APES) in brine 1.0 wt % Chalk heptane IFT = 0.082 mN/m [44]
R o Crude oil mixed with Contact angle = 55°, )
1-(CgO,CCH;)(n-CgO,C)CH-SO3Na (Cropol) in brine 0.5 wt % Chalk heptane IFT = 877 mN/m [44]
s o Crude oil mixed with Contact angle = 48°, )
n-Cg-(EO)s-OCH,-COONa (Akypo) in brine 0.5 wt % Chalk heptane IFT = 2.99 mN/m [44]
. . o Crude oil mixed with Contact angle = 75°, .
n-Cy-Ph-(EO)x-PO3Na (Gafac) in brine 0.5 wt % Chalk heptane IFT = 042 mN/m [44]
. o o Crude oil mixed with Contact angle = 39°, "
Sodium dodecyl sulfate (SDS) in brine 0.1 wt % Chalk heptane IFT = 2.95 mN/m [44]
Sodium dodecyl sulfate (SDS) in water 0.4 Wt % Calcite Decane mixed with IFT = 4.77 mN/m [45]
naphthenic acids
Sodium dodecyl 3EO sulfate in brin 0.05 wt % Calcit Crude oil Contact angle ~457, [80]
odium dodecy sulfate e . o alcite ude o IFT = 0.003 mN /m
Alkyldiphenyloxide disulfonate in NayCO3 /NaCl 0.05 wt % Calcit, Crude oil Contact angle ~110%, [50]
yldiphenyloxide disulfonate a;CO3/Na .05 wt % alcite ude o IFT = 0.0011 mN/m 5
Polyether sulfonate in Na,CO3/NaCl 0.30 wt % Calcite Crude oil Contact angle ~80°, [50]
Y 23 : ° IFT = 0.00812 mN/m :
Sodium nonyl phenol ethoxylated sulfate (4EO) in o . . Contact angle ~60°,
NayCOs /NaCl 0.05 wt % Calcite Crude oil IFT = 0.003 mN/m [50]
. o . . Contact angle ~40°,
C12-C13 propoxy sulfate (8PO) in Na,CO3/NaCl 0.05 wt % Calcite Crude oil IFT = 0.0001 mN/m [50]
Alkyldiphenyloxide disulphonate + C;4T-isofol propoxy o . . Contact angle ~70°,
sulfate (8PO) in NayCO5 /NaCl 0.075 wt % Calcite Crude oil IFT = 0.116 mN/m (501
. . . o . . Contact angle = 38°,
Methyl alcohol+Proprietary sulfonate in brine 0.02-0.20 wt % Shale (siliceous) Crude oil IFT = 0.4 mN/m) [81]
. . . o . Contact angle ~110°,
Sodium laureth sulfate in brine 0.02-0.05 wt % Quartz Crude oil IFT = 2.007 mN/m [76]
Sodium lauryl monoether sulfate in brine 0.035 wt % Quartz Crude oil Contact angle = 116.1%, [78]

IFT =2.49 mN/m
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IFT =249 mN/m

Surfactants Conc. Solid Surface Oil Type Remarks ? Ref.
Nonionic surfactants
oy 750-1050 ppm . . B
Poly-oxyethylene alcohol (POA) in brine (0.075-0.105 wt %) Dolomite Crude oil IFT =2.0 mN/m [47]
Ethoxylated C;1-C;5 secondary alcohol (Tergitol 15-5-3) in 0.4 wt % Calcite Decane m1>'<ed W1th IFT = 4.44 mN/m [45]
water naphthenic acids
Ethoxylated C;;-C;5 secondary alcohol (Tergitol 15-5-7) in 0.4 wt % Calcite Decane m1>'<ed W1th IFT = 1.39 mN/m [45]
water naphthenic acids
Ethoxylated C;1-C;5 secondary alcohol (Tergitol 15-5-40) in 0.4 wt % Calcite Decane m1>.<ed W1th IFT = 11.5 mN/m [45]
water naphthenic acids
Nonylphenoxypoly(ethyleneoxy)ethanol (Igepal CO-530) in 04wt % Calcite Decane m1>.<ed W1th IFT = 0.33 mN/m [45]
water naphthenic acids
C12-Cj5 linear primary alcohol ethoxylate (Neodol 25-7) in 04wt % Calcite Decane m1>.<ed Wlth IFT = 2.02 mN/m [45]
water naphthenic acids
. o . . Contact angle ~20°,
Secondary alcohol ethoxylate in Na,CO3/NaCl 0.10 wt % Calcite Crude oil IFT = 0.0017 mN /m [50]
Nonyl phenol ethoxylate in Na,CO3/NaCl 0.10 wt % Calcit Crude oil Contact angle ~80°, [50]
onyl phenol ethoxylate i 2,CO;3 . o cite ude oi IFT = 0.0006 mN /m
Branched alcohol oxyalkylate in brin 0.02-0.20 wt % Shale (siliceous) Crude oil Contact angle = 607, [81]
a yalkylate e . . o a ceou ude IFT = 9.8 mN/m
Polyoxyethylene octyl phenyl ether in brin, 0.04 wt % Quartz Crude oil Contact angle =957, [76]
olyoxyethylene octyl phenyl ethe e . o ua ude o IFT = 4.05 mN/m
Alkylpolyglycosides in brine 0.05 wt % Quartz Crude oil Contact angle = 58.87, [78]

2 not all studies reported contact angle or interfacial tension data. b IFT is interfacial tension.
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Table A2. Nanoparticles/fluids.
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Nanoparticles/Fluids Solid Surface Oil Type Remarks 2 Ref.
Metal oxides
TiO, . o
(0.01-1 wt %) Sandstone Heavy oil Contact angle = 90 [82]
TiO, : . b : —
(0.01-0.10 wt %) Sandstone Heavy crude oil Slight IFT ® reduction ~Ay =1 mN/m [52]
TiO, . Contact angle change from 127° to 81°,
(0.01-0.05 wt %) Sandstone Heavy ol Slight IFT reduction [53]
Al,O5 . ; : —
(0.01-0.10 wt %) Sandstone Heavy crude oil Slight IFT reduction ~Ay =1 mN/m [52]
NiO . . .
(0.01-0.10 wt %) Sandstone Heavy crude oil Slight IFT reduction ~Ay =1 mN/m [52]
Organic
Janus nanoparticles c B
(0.0025-0.0004 mM) NA Hexane IFT =12 mN/m [83]
Carbon nanotubes . .
(0.05-0.50 wt %) Glass Crude oil IFT reduction ~3 mN/m [84]
Nanocellulose :
(0.2-1.0 wt %) Glass Crude oil IFT = 0.7 mN/m [85]
Inorganic
Si0; . e
(0.1-0.6 Wt %) Carbonate Crude oil Contact angle = 51 [86]
SiO, . . — 900
(0.5-4.0 wt %) Calcite (oil-wet) n-decane Contact angle = 20 [87]
Si0, . .
(0.1-5 wt %) Glass Crude oil Contact angle =0 [88]
SiO; . . _ o
(0.025-0.2 wt %) Calcite (oil-wet) n-heptane Contact angle = 41.7 [89]
SiO; .
(0.4 effective volume fraction) Glass Model oil [60]
SiO, . Contact angle = 22°,
(0.01-0.10 wt %) Sandstone Crude oil IFT = 7.9 mN/m [57]
SiO, Sandstone Light crude oil Contact angle change from 34° to 32°, [58]

(0.10 wt %)

IFT reduced from 20 to 10 mN/m
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Nanoparticles/Fluids Solid Surface Oil Type Remarks 2 Ref.
Si0, . . . _
(0.01-0.10 wt %) Sandstone Heavy crude oil Slight IFT reduction ~Ay =1 mN/m [52]
Hydrophilic silica . . Contact angle ~20°,
(0.01-0.10 wt %) Glass/Sandstone Light crude oil IFT ~8 mN /m [59]
Hydrophilic, neutralized, and
hydrophobic silica Sandstone Crude oil Contact angle ~35° [57]
(0.2-0.3 wt %)
Hydrophobic silica . Contact angle = 95.4°,
(0.1-0.4 wt %) Sandstone Crude oil IFT = 1.75 mN/m 0]
Nanostructure particles . . Wettability index = 0.36 (wettability
(0.05-0.50 wt %) Sandstone Light crude oil index = 1 is water-wet) [51]
Silica colloidal nanoparticles . . Wettability index = 0.57 (wettability
(0.05-0.50 wt %) Sandstone Light crude oil [91]

index = 1 is water-wet)

2 not all studies reported contact angle or interfacial tension data. b IFT is interfacial tension. ¢ NA is not available.
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Table A3. Composite fluids.

Composite Fluids Solid Surface Oil Type Remarks ? Ref.
Blend systems
SDS and SiO, . 1o

(Patented nanofluid—No reported concentration) Glass Crude oil Contact angle =1.2 [62]

SDS and hydrophilic and hydrophobic SiO, b
(Surfactant: 100-6000 ppm, particle: 1000-2000 ppm) Sandstone Kerosene [FT® =181 mN/m [72]

SDS and ZrO, c B
(Surfactant: 0.001-5 CMC, particle: 0.001-0.050 wt %) NA n-heptane IFT =10 mN/m [52]

Composite nanoparticles
Zwitterionic polymer and SlO? (coated) Sandstone n-decane IFT = 35 mN/m [74]
(No reported concentration)

2 not all studies reported contact angle or interfacial tension data. ® IFT is interfacial tension. © NA is not available.
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