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Abstract: Mixed fatty acids or mixed phospholipids systems with saturated-unsaturated hydrocarbon
chains are of biological interest. In this work, the monolayers of oleic acid-stearic acid
(OA-SA) and palmitoyloleoylphosphatidylcholine-dipalmitoylphosphatidylcholine (POPC-DPPC)
have been studied. From the surface pressure-area isotherms, elastic modulus values and virial
equation coefficients can be obtained. Thermodynamic treatment also yields excess (GE) and mixing
(∆Gmix) free energies. Results indicate positive GE values, that is, molecular interactions in the
mixed films are less favourable, due to the presence of unsaturation; however, the mixture is slightly
favourable due to the entropic factor that affords positive ∆Gmix values. For the OA-SA system, a high
SA content and surface pressure facilitate the phase separation, even though a certain miscibility
between both components still remains. For the POPC-DPPC system, the most favourable mixing
conditions occur for XPOPC ≈ 0.4. For these mixed systems, the values of the elastic modulus are
more similar to those of more fluid components (OA or POPC); analysis of the virial coefficients
shows that the b1 virial coefficient values lie between those of the individual components and are
higher than values suitable for an ideal mixing.
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1. Introduction

Fatty acids and phospholipids have been widely studied with the Langmuir technique, because
they are amphiphilic compounds, ideal for forming ordered and compact monolayers, and for their
biological interest in systems as biomembranes and tear films. Bibliographic references to previous
studies can be found in [1–3]. Articles on single component fatty acids or related amphiphiles published
in the last years are those of [4–16], and articles on single component phospholipids are those of [17–22].

As mixtures of fatty acids or phospholipids are found in biological systems, the study of such
mixtures is more interesting. One of the main aspects of these mixtures is the miscibility and
phase separation. Recent articles on mixed fatty acids systems are those of [23–32]. Furthermore, since
fatty acids or phospholipids usually present unsaturations in the hydrocarbon chains, the study of
mixtures of saturated and unsaturated compounds is of interest. Recent articles on fatty acid systems
with mixed saturated-unsaturated hydrocarbon chains are those of [33,34], and on phospholipids
systems with mixed saturated-unsaturated hydrocarbon chains are those of [35–44]. The main
achievements reported in these works will be commented in the discussion section, in connection
with the results of the present work. Briefly, an important point considered in these works is
the miscibility and phase separation of Langmuir films composed of a mixture of a lipid with a
saturated chain and a lipid with an unsaturated chain. Ocko et al. [33] found that stearic acid and
elaidic acid were poorly miscible in monolayers at all surface pressures, and phase separation was
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always observed. Seoane et al. [34] studied the miscibility of cholesterol with several fatty acids, and
found immiscibility between stearic acid and cholesterol and partial miscibility between unsaturated
fatty acids and cholesterol. Wydro et al. [44] found that DPPG mix non-ideally with DPPE, DSPE
and DOPE. They suggest that in the DPPG-DOPE system, and due to the presence of the double
bonds in the acyl chains of DOPE molecule, the distance between DPPG and DOPE molecules is
greater; this weakens the strength of molecular interactions. Their results indicate that DPPG mix
more favourably with PE possessing saturated acyl chains as compared to DOPE, and also suggests
the existence of a phase separation for DPPG-DOPE monolayers. Dynarowicz-Latka et al. [37] found
immiscibility between DPPC and erucylphosphocholine, a synthetic one-chained-PC with a double
bond, at high surface pressures, but miscibility at low surface pressures. Domenech et al. [35] observed
miscibility between POPC and POPE, and using the virial equation of state, analysed the interactions
between both. In other works [43], the influence of cholesterol in mixed films has been studied; the
results indicate an important effect of cholesterol in the monolayer structure.

Despite the wide literature in the field, no recent articles in the study in deep of stearic acid
and oleic acid mixed films or DPPC-POPC mixed films, which are of biological relevance [45], have
been reported. Mixed films of a lipid with a saturated acyl chain and a lipid with an unsaturated acyl
chain were selected, since unsaturation seems to have a great influence in the miscibility of both lipids.
In this work, these mixed films have been studied using the surface pressure-area, π-A, isotherms.
The thermodynamic behaviour of the mixed films has been analysed through the excess area, the
elastic modulus, and the virial state equation, the latter not being very usual in the treatment of
monolayer films.

The elastic modulus, Cs
−1, was determined according to Equation (1) [46–49]

C−1
s = −A

(
dπ
dA

)
T

(1)

In this study, the virial state equation, Equation (2), has been applied, where b0, b1 and b2 are
the virial coefficients. The virial state equation is useful and allows, through the virial coefficients,
for an examination of molecular interactions [35,50]; in this case, it will be applied to the effect of an
unsaturation in the acyl chain over the molecular interactions. The value of b0 is attributed to the
aggregation state of the film-forming molecules, and the value of b1 provides information about the
exclusion volumes and the interaction between the molecules in the film.

πA/(kT) = b0 + b1·π + b2·π2 (2)

The following treatment can be applied to the virial coefficients in a mixture [35], where X refers
to the molar fraction, the subscripts 1 and 2 refer to the individual components, the subscripts m and
12 refer to the mixture, and the superscripts id and E referring to an ideal behaviour and to an excess
magnitude, respectively:

b1)m = b1)1·X1
2 + b1)2·X2

2 + 2b1)12·X1·X2 (3)

b1)m
id = b1)1·X1 + b1)2·X2 (4)

b1
E = b1)m − b1)m

id (5)

The thermodynamic behaviour of the system can also be analysed from Equations (6) to (9), where
AE is the excess area, A12 is the mean area per molecule for the mixture, A1 and A2 are the area per
molecule and X1 and X2 are the molar fraction, for the individual components. On the other hand,
NA is Avogadro’s number, R is the gas constant and T is the absolute temperature. GE refers to the
excess free energy, ∆Gmix and ∆Gid refer to the Gibbs energy of mixing and its ideal value, respectively.

AE = A12 − (X1 A1 + X2 A2) (6)
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GE = NA

∫ π

0
AEdπ (7)

∆Gmix = ∆Gid + GE (8)

∆Gid = RT(X1·ln X1 + X2·ln X2) (9)

Introducing the virial equation, Equation (2), in the former equations, then Equation (10) is
obtained for the excess free energy, GE, which can be calculated from the values of the virial coefficients
according to Equations (11)–(13). This treatment is rarely seen in bibliography, and offers an alternative
way to calculate excess free energy values.

GE = RT [B0·ln π + B1·(π − 1) + B2/2·(π2 − 1)] (10)

B0 = b0)m − X1·b0)1 − X2·b0)2 (11)

B1 = b1)m − X1·b1)1 − X2·b1)2 (12)

B2 = b2)m − X1·b2)1 − X2·b2)2 (13)

2. Materials and Methods

2.1. Materials

Stearic acid (SA) was provided by Sigma-Aldrich and oleic acid (OA) by Fluka.
Dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylcholine (POPC) were
purchased from Avanti Polar Lipids. See Scheme 1 for chemical structures. KH2PO4.
NaCl and analytical grade chloroform from Sigma-Aldrich (Saint Louis, MO, USA) were used in
solution preparation. Water was ultrapure MilliQ® (18.2 MΩ·cm).
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Scheme 1. Structural formula of the studied compounds: SA, OA, DPPC and POPC. 

2.2. Techniques 

Langmuir monolayer formation was carried on a trough (Nima Technology, Cambridge, UK) 
model 1232D1D2 equipped with two movable barriers. The surface pressure was measured using 
paper Whatman 1, held by a Wilhelmy balance connected to a microelectronic system registering the 
surface pressure (π). The subphase used in these experiments was MilliQ® quality water. Prior to the 
subphase addition, the trough was cleaned twice with chloroform and once with MilliQ® quality 
water. Residual impurities were cleaned from the air|liquid interface by surface suctioning. The good 
baseline in the surface pressure-area, π-A, isotherms confirms the interface’s cleanliness. Solutions of 
the lipids were prepared using chloroform; 100 μL were spread at the air|liquid interface, using a 
high precision Hamilton microsyringe. Individual solutions were prepared at a concentration of 0.5 
mg/mL for the fatty acids and 1 mg/mL for the phospholipids, and from them the mixtures were 
obtained. The barrier closing rate was fixed at 50 cm2·min−1 for isotherm registration (4.7 
Å2·molecule−1·min−1 for fatty acids and 6.1 Å2·molecule−1·min−1 for phospholipids), but no noticeable 
influence of the compression rates between 25 and 50 cm2·min−1 was observed on the isotherm shape. 

Scheme 1. Structural formula of the studied compounds: SA, OA, DPPC and POPC.

2.2. Techniques

Langmuir monolayer formation was carried on a trough (Nima Technology, Cambridge, UK)
model 1232D1D2 equipped with two movable barriers. The surface pressure was measured using
paper Whatman 1, held by a Wilhelmy balance connected to a microelectronic system registering the
surface pressure (π). The subphase used in these experiments was MilliQ® quality water. Prior to the
subphase addition, the trough was cleaned twice with chloroform and once with MilliQ® quality water.
Residual impurities were cleaned from the air|liquid interface by surface suctioning. The good baseline
in the surface pressure-area, π-A, isotherms confirms the interface’s cleanliness. Solutions of the lipids
were prepared using chloroform; 100 µL were spread at the air|liquid interface, using a high precision
Hamilton microsyringe. Individual solutions were prepared at a concentration of 0.5 mg/mL for the
fatty acids and 1 mg/mL for the phospholipids, and from them the mixtures were obtained. The barrier
closing rate was fixed at 50 cm2·min−1 for isotherm registration (4.7 Å2·molecule−1·min−1 for fatty
acids and 6.1 Å2·molecule−1·min−1 for phospholipids), but no noticeable influence of the compression
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rates between 25 and 50 cm2·min−1 was observed on the isotherm shape. Isotherm recording was
carried out by adding the solution, drop by drop, to the subphase, and waiting 15 min for a perfect
spreading and solvent evaporation. Experiments were conducted at 22 ± 1 ◦C and repeated a minimum
of three times for reproducibility control.

3. Results and Discussion

3.1. SA-OA Mixture

The π-A isotherms for the mixed films of SA and OA, together to those of the individual
components, are shown in Figure 1; in Figure 2 the values of mean area are plotted vs. the molar
fraction at several surface pressures.
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Figure 1. π-A isotherms for mixtures of OA-SA. 1, (blue) OA; 2, (magenta) XOA = 0.816;
3, (yellow) XOA = 0.625; 4, (cyan) XOA = 0.425; 5, (violet) XOA = 0.217; 6, (brown) SA. Area represents
the mean area per molecule.
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Figure 2. Area vs. composition for mixtures OA-SA, at different surface pressures: (blue) 2, (magenta) 5,
(yellow) 10, (cyan) 15, (violet) 20, (brown) 25 mN/m. The straight lines correspond to the
ideal behaviour.

Mixed monolayers show a first collapse that practically coincides with that of OA (π = 30 mN·m−1),
and when the proportion of SA increases, a second collapse is observed (isotherms 4 and 5 in Figure 1)
which does not reach the value observed for SA (π = 58 mN·m−1). This is an indication that at
high surfaces pressures, OA forms a separated phase from SA which collapses at surface pressure
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(30 mN·m−1); meanwhile, the collapse of the SA phase is influenced by the presence of OA. Thus, the
OA molecules strongly distort on the compactness of the SA molecules and hamper the formation of a
more rigid film.

A study of the mean area per molecule (Figure 2) shows positive deviations from the straight line;
these deviations are more pronounced at low surface pressures and when the OA content is XOA = 0.425.
At high surface pressures and with all compositions except for the OA content of XOA = 0.425, the mean
area approaches a straight line. Positive deviations indicate mixing but with unfavourable interactions
with respect to pure components. Null deviations indicate an ideal mixing or phase separation. As two
collapses can be observed in the isotherms when the SA is in high proportion, this indicates that a
phase separation has occurred. As experimental points are not on the straight line, this means that
partial miscibility still exits, that is, a partial segregation of one component occurs but the rest of this
component remains on the mixed film.

Figure 3 presents the variation of the elastic modulus, Equation (1), along the isotherm
compression for the different mixed films of SA and OA. According to the reported criteria, that
is Cs

−1: <100 mN·m−1 for LE state, 100–250 mN·m−1 for LC state, >250 mN·m−1 for S state [47,51],
OA shows an LE state, meanwhile SA shows an LE state below 9 mN·m−1, an LC state between
9–24 mN·m−1 and an S state up to 24 mN·m−1. On the other hand, mixed films show an LE state, and
for those with higher OA content, the compressibility behaviour is similar to that of pure OA; however,
when the SA content is high, an LC state appears at higher surface pressures.
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Figure 3. Elastic modulus for mixtures of OA-SA. 1, (brown) OA; 2, (green) XOA = 0.816;
3, (violet) XOA = 0.625; 4, (cyan) XOA = 0.425; 5, (orange) XOA = 0.217; 6, (blue) SA.

It is also seen that when the SA content increases, the surface pressure at the inflection point in
the isotherm, or at the first maximum point in the elastic modulus plot, decreases. In contrast, the
second maximum point in the elastic modulus plot increases with more SA content. These results also
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point to a partial mixing at low surface pressures but a segregation at high surface pressures, especially
at high SA content.

To gain a deeper understanding at the molecular level, the surface pressure-area isotherms of
SA-OA mixtures were further analysed using the equation of state. For this study, the virial state
equation, Equation (2), was applied. Figure 4 shows the plots of (πA/kT) vs. π for the several
studied compositions, which can be adjusted with a polynomial of 2n degree. The values of the virial
coefficients are tabulated in Table 1. The values of b1)12 and b1

E, obtained from Equations (3)–(5), are
tabulated in Table 2.
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XOA = 0.625; 4, (violet) XOA = 0.425; 5, (cyan) XOA = 0.217; 6, (orange) SA.

Table 1. Virial coefficients (see Equation (2)) for mixtures of OA and SA.

Virial
Coefficient OA OA-SA

XOA = 0.816
OA-SA

XOA = 0.625
OA-SA

XOA = 0.425
OA-SA

XOA = 0.217 SA

b0 0.0055 0.0050 0.0046 0.0048 0.0007 −0.0021
b1 0.1255 0.1208 0.1080 0.1064 0.0883 0.0566
b2 −0.0015 −0.0015 −0.0014 −0.0013 −0.0011 −0.00018
R2 0.9994 0.9994 0.9994 0.9997 0.9999 0.9974

Table 2. Virial coefficient b1 (see Equations (3)–(5)) for mixtures of OA and SA.

XOA b1)m b1)12 b1
E

0 0.0566 0
0.217 0.0883 0.1403 0.0167
0.425 0.1064 0.1330 0.0205
0.625 0.1080 0.1088 0.0083
0.816 0.1208 0.1176 0.0080

1 0.1255 0
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Results for b1 coefficients (see Table 2) indicate a gradual decrease from the OA pure component
to the SA one. A similar fact occurs for the b0 coefficient. The higher value for b1 of OA is due to the
higher repulsive interactions between molecules in this fatty acid, relative to the SA. The higher value
for b0 of OA is due to a lesser degree of aggregation in this fatty acid with respect to the SA. The values
of b1)m are in between those of the SA and OA, but higher than those of the ideal behaviour, that is,
the b1

E values are positive. This indicates more repulsive interactions in the mixed films between SA
and OA molecules with respect to the separate components. The values of b1)12 are positive and higher
than the mean value (b1)1 + b1)2)/2 = 0.09105, which also indicates more repulsion in the mixed film
between molecules. The higher values of b1)12 occur when the content of OA is low, being higher than
the value of b1 of pure OA. This fact can be attributed to the fact that OA breaks the compactness of SA,
which results in an increase of the b1 coefficient (much more repulsion in respect to pure components).

As positive deviations are higher for low OA content, low XOA, this means that OA places partially
in between SA, destabilizing the compactness of SA. When there is a low SA content, it can better mix
with the fluid phase of OA, the interactions are less unfavourable and the positive deviations are lower.
Thus, the domain formation or phase separation could be more notable for low XOA, that is, for high
SA content.

Introducing the values of virial coefficients in Equations (6)–(9) and (10)–(13), values of GE

and ∆Gmix were calculated and are reported in Table 3. It is seen that GE exhibits positive values
which were considered as small deviations from zero excess free energy; the values of ∆Gmix are
slightly negative. These values are in agreement with the previous comments about the mixing of the
components in the film, that is, the interaction between components is not favoured but the entropic
factor (see Equation (9)) leads to energetically favourable mixing, even with slightly negative values
of ∆Gmix. Mixing is less favoured especially at higher SA contents and higher surface pressures.

Table 3. Values of excess free energy and mixing energy at different compositions and surface pressures
for OA-SA mixed films.

π (mN/m) XOA 0.816 0.625 0.425 0.217

5 GE (J/mol) 75 78 199 150
∆Gmix (J/mol) −1096 −1545 −1473 −1133

15 GE (J/mol) 213 191 575 409
∆Gmix (J/mol) −958 −1432 −1097 −874

25 GE (J/mol) 291 204 809 510
∆Gmix (J/mol) −880 −1419 −863 −773

3.2. DPPC-POPC Mixture

Figure 5 shows the π-A isotherms of mixed films of DPPC and POPC, together with those of the
individual components. It was observed that the phase change of DPPC at π = 8 mN/m (the first
inflection point) are influenced by the presence of POPC, as well as the collapse pressure, indicating
that DPPC and POPC are partially miscible. The inflection point is clearly visible at the lowest content
of POPC and the surface pressure at which this point occurs increases with the POPC content.

Figure 6 shows the mean area per molecule vs. the POPC molar fraction, at several π. Positive
deviations respect to the ideal case (straight line) were generally observed, but at low and high π,
the mixed film with XPOPC = 0.394 presents negative deviations which indicate less repulsive
interactions or more attractive interactions (favourable interactions in respect to the individual
components). In both cases, deviations from the straight line indicate a certain degree of miscibility.
This fact will be commented upon later.
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Figure 6. Area vs. composition in mixtures POPC-DPPC, at the surface pressures of 1, 10, 20, 30 and
40 mN/m.

Figure 7 shows the elastic modulus of DPPC, POPC and DPPC-POPC mixed films, obtained
from the isotherms of Figure 5 using Equation (1). DPPC presents a phase change from LE to LC at π
around 8 mN/m, and POPC only presents LE state. The fact that DPPC can present the LC state in the
monolayer is related to the chain melting temperature of 41 ◦C for DPPC, against that of −2 ◦C for
POPC [52]. Thus, at the temperature of the present work, POPC is always in the LE state; however,
DPPC can change from the LE to the LC state when compressing. The DPPC-POPC studied mixed
films only presents the LE state, with an inflection at high DPPC contents, and the inflexion surface
pressure increasing when the DPPC content decreases. This fact clearly confirms that POPC mixes
with DPPC, and thus that POPC molecules hamper a more compaction of DPPC molecules and the
phase change to a LC state.
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An analysis of the isotherms using the virial state equation has been done.
The plot of πA/(kT) vs. π (Figure 8) can be fitted with a polynomial of 2n degree (see Equation (2)),

and the treatment reported in Equations (3)–(5) is applied to them. The values of the obtained virial
coefficients are tabulated in Table 4 and the values of b1)12 and b1

E in Table 5.
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Figure 8. Plots of (πA/kT) vs. π for the mixtures of POPC-DPPC. 1, (green) POPC; 2, (blue)
XPOPC = 0.798; 3, (orange) XPOPC = 0.596; 4, (cyan) XPOPC = 0.394; 5, (violet) XPOPC = 0.191;
6, (brown) DPPC.
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Table 4. Virial coefficients (see Equation (2)) for mixtures of POPC and DPPC.

Virial
Coefficient POPC POPC:DPPC

XPOPC = 0.798
POPC:DPPC
XPOPC = 0.596

POPC:DPPC
XPOPC = 0.394

POPC:DPPC
XPOPC = 0.191 DPPC

b0 0.0319 0.0856 0.0923 0.0832 0.0978 0.1930
b1 0.2002 0.1991 0.1984 0.1744 0.1736 0.1333
b2 −0.0017 −0.0016 −0.0019 −0.0016 −0.0016 −0.00068
R2 0.9994 0.9995 0.9992 0.9989 0.9970 0.9916

Table 5. Virial coefficient b1 (see Equations (3)–(5)) for mixtures of POPC and DPPC.

XPOPC b1)m b1)12 b1
E

0 0.1333 0
0.191 0.1736 0.256 0.0275
0.394 0.1744 0.198 0.0147
0.596 0.1984 0.219 0.0252
0.798 0.1991 0.205 0.0124

1 0.2002 0

It is shown in Table 4 that the b1 values increase with the POPC content. This indicates more
repulsive interactions for POPC, and that the presence of POPC in the DPPC matrix also increases the
repulsive interactions between molecules with respect to DPPC molecules. The value of b0 for POPC
is lower than that of DPPC, indicating more aggregation in POPC than in DPPC (even POPC has an
unsaturation in the hydrocarbon chain, the oleoyl chain is larger. Another explanation could be in
the phase change of DPPC that makes the polynomial fit more problematic). The values of b1)m are in
between those of the DPPC and POPC, but higher than those of the ideal behaviour, that is, the b1

E

values are positive. This indicates more repulsive interactions in the mixed film between DPPC and
POPC molecules with respect to the separate components. The values of b1)12 are positive and higher
than the mean value (b1)1 + b1)2)/2 = 0.1667, which also indicates more repulsion in the mixed film
between molecules.

The higher values of b1)12 occur when the content of POPC is low, being higher than the value of b1

of pure POPC, except for XPOPC = 0.394. This fact can be attributed to POPC breaking the compactness
of DPPC, which results in an increase of the b1 coefficient (much more repulsion in respect to pure
components). As has been seen previously, when XPOPC = 0.394, the excess area is negative, which is
in agreement with the fact seen now that the b1)12 is the lowest value for the mixed films, and lower
than that of pure POPC. Thus, the mixed film with XPOPC = 0.394 is the most favourable among them.

Introducing the values of virial coefficients in Equations (6)–(9) and (10)–(13), values of GE

and ∆Gmix have been calculated and reported in Table 6. It is seen that values of GE are slightly
positive, except for XPOPC = 0.394 at low surfaces pressures; the values of ∆Gmix are slightly negative.
These values are in agreement with the previous comments about the mixing of the components
in the film, that is, the interaction between components is not favoured but the entropic factor
(see Equation (9)) leads to energetically favourable mixing. The mixing is especially favoured for
XPOPC = 0.394, including the case of 35 mN/m of surface pressure which is close to the lateral pressure
of biological membranes. Nevertheless, the positive values of GE at 35 mN/m could indicate a
propensity for phase separation, as is discussed in reference [45].
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Table 6. Values of excess free energy and mixing energy at different compositions and surface pressures
for POPC-DPPC mixed films.

π (mN/m) XPOPC 0.798 0.596 0.394 0.191

5 GE (J/mol) 202 211 −53 −6
∆Gmix (J/mol) −1032 −1444 −1698 −1202

15 GE (J/mol) 538 667 56 318
∆Gmix (J/mol) −696 −988 −1588 −878

25 GE (J/mol) 817 980 106 556
∆Gmix (J/mol) −417 −675 −1539 −640

35 GE (J/mol) 1061 1144 48 645
∆Gmix (J/mol) −174 −510 −1597 −551

3.3. Discussion

Isotherms indicate that a certain miscibility between components can be present in both cases:
SA-OA and DPPC-POPC mixed films. The area vs. molar fraction (A vs. X) analysis shows this
effect of miscibility, but with less favourable interactions in respect to the individual components.
Thus, the miscibility should be attributed to entropic factors. The less favourable interactions could
be due, at least in part, to the presence of unsaturation in the hydrocarbon chains. The effect of
unsaturations has also been discussed in reference [53] for the case of mixed films of a fatty acid and a
phospholipid. The less favourable interactions lead to the partial phase segregation that is observed
for the SA-OA system at high pressures and/or at high SA content. For the DPPC-POPC system,
there is a composition (XPOPC ≈ 0.4) where the mixed film is more energetically favourable. A notable
difference between both systems is that while the OA-SA system at XOA ≈ 0.4 presents less favourable
interactions, those of the POPC-DPPC system at XPOPC ≈ 0.4 are more favourable.

The values of the elastic modulus are more similar to those of the more fluid component (OA or
POPC). The behaviour of the elastic modulus plot at high surface pressures is different, comparing
both systems. The DPPC-POPC system presents only one maximum, meanwhile the OA-SA system
presents two maxima with a clear phase in SA for the second maximum.

The analysis of the virial coefficients is similar in both systems, with the b1 values between those
of the individual components. When comparing the b1 values for the fatty acids OA, SA and their
mixed films with the b1 values for the phospholipids POPC, DPPC and their mixed films, lower values
are observed, which indicates that these fatty acids can compact more easily than phospholipids.
However, when analysing the excess values of b1

E the differences are less significant, and give rise to
the results derived from the area and energy analysis.

Ocko and Kelley [33] studied mixed monolayers of saturated stearic acid and of monounsaturated
elaidic acid (the trans isomer of the oleic acid), and also observed poor miscibility with
phase separation. Seoane et al. [34] reported mixed films of cholesterol with saturated or unsaturated
fatty acids, but these are not discussed here due to the peculiar characteristics of cholesterol.
Several authors [23,25–27,30,32] have also observed phase separation in fatty acid mixed monolayers
of fluorinated and hydrogenated amphiphiles.

Comparing the behaviour of the POPC-DPPC mixed films with that of the unsaturated
phospholipids POPC-POPE [35], it is shown that POPC-POPE mixed films demonstrate favourable
mixing at all compositions, with negative values of the excess area, AE, and with more negative
values of the mixing energy, ∆Gmix. Comparing the values of the virial coefficient b1 for DPPC, POPC
and POPE [35], it was observed that DPPC presents the lowest value. As b1 is related to exclusion
volumes and interactions between molecules, this means that the presence of a double bond provides
higher exclusion volumes and more repulsive interactions between molecules. In contrast, the excess
values b1

E are always negative for the POPC-POPE mixed films [35] but positives for the POPC-DPPC
ones (present work). This is in agreement with the obtained values of GE which are positive for the
POPC-DPPC mixed films, but negative for the POPC-POPE ones. Thus, mixed films of a saturated and
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an unsaturated phospholipid seems to be energetically less favourable than those of two unsaturated
phospholipids, at least from the cited systems that do not present enormous differences. On the other
hand, Domenech et al. [36] suggest that cardiolipin and POPE can form separated phases under certain
conditions, and that cardiolipin might be laterally segregated from POPE, even though thermodynamic
analysis indicates miscibility.

Wydro and Witkowska [44] studied mixed films of phospholipids with different chains and
unsaturations, through the mixtures of DPPG with DPPE, DSPE and DOPE. The results proved non
ideal behaviour, as in the present case, and that the presence of the double bond in DOPE hamper the
mixing and the layer compactness. The behaviour is also influenced by the type and length of the
acyl chain. The values of GE for DPPG-DOPE mixtures are positive (as in the present case) compared
to the negative values of GE for DPPG-DPPE and DPPG-DSPE mixed films, in which they exhibit
saturated chains. The values of ∆Gmix for DPPG-DOPE are negative (as in the present case) but less
negative than those for DPPG-DPPE and DPPG-DSPE. Thus, as in the present case of the mixed films
of POPC-DPPC, those of DPPG-DOPE present mixing due to the entropic factor. Dynarowicz et al. [37]
studied miscibility and phase separation in mixed PC monolayers and found miscibility at low surface
pressures but phase separation at high surface pressures.

Thus, phase separation is usual in mixed lipid monolayers due to differences in length, chemical
groups or unsaturations in the acyl chain, differences in the headgroup, or the composition and surface
pressure conditions.

4. Conclusions

The presence of an unsaturation in the aliphatic chain of a fatty acid, e.g., oleic acid, or
a phospholipid, e.g., POPC, in a mixed film with a saturated one, e.g., stearic acid or DPPC,
respectively, makes molecular interaction less favourable, and causes the excess free energy to take
positive values. Nevertheless, the entropic factor leads to slightly negative values in the mixing
free energy. This situation facilitates phase separation (even partial mixing remains), especially with
high contents of the saturated lipid and high surface pressures, since the saturated lipid tends to
a more compact state. For the OA-SA mixed films, the most favourable mixing situation occurs at
XOA ≈ 0.6; meanwhile, for the POPC-DPPC it occurs at XPOPC ≈ 0.4. The second virial coefficient
b1 for the mixed films takes values between those of the individual components, but above those of
an ideal mixing. The analysis of the mixed films with the virial state equation yields information on
the molecular interactions, and permits us to easily calculate thermodynamic parameters. The elastic
modulus behaviour for the mixed films exhibits closer values to the corresponding ones for the
unsaturated component. For the POPC-DPPC mixed films, these are always in the LE state, similarly
to POPC; meanwhile, for OA-SA mixed films, the LC state forms at high SA content and high surface
pressures, probably due to the phase separation induced by SA.
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