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Abstract: A Bayesian network (BN) is a probabilistic graphical model that can model complex and
nonlinear relationships. Its structural learning from data is an NP-hard problem because of its search-
space size. One method to perform structural learning is a search and score approach, which uses a
search algorithm and structural score. A study comparing 15 algorithms showed that hill climbing
(HC) and tabu search (TABU) performed the best overall on the tests. This work performs a deeper
analysis of the application of the adaptive genetic algorithm with varying population size (AGAVaPS)
on the BN structural learning problem, which a preliminary test showed that it had the potential to
perform well on. AGAVaPS is a genetic algorithm that uses the concept of life, where each solution
is in the population for a number of iterations. Each individual also has its own mutation rate, and
there is a small probability of undergoing mutation twice. Parameter analysis of AGAVaPS in BN
structural leaning was performed. Also, AGAVaPS was compared to HC and TABU for six literature
datasets considering F1 score, structural Hamming distance (SHD), balanced scoring function (BSF),
Bayesian information criterion (BIC), and execution time. HC and TABU performed basically the
same for all the tests made. AGAVaPS performed better than the other algorithms for F1 score, SHD,
and BIC, showing that it can perform well and is a good choice for BN structural learning.
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1. Introduction

A Bayesian network (BN) is a probabilistic graphical model that can model complex
and nonlinear relationships between variables [1–4]. It is composed of a directed acyclic
graph (DAG) and conditional probabilities tables (CPTs) that are used to quantify the de-
pendence relationships between random variables defined as nodes [1,5–7]. BNs have been
applied to a variety of research fields, including water quality [3], medical problems [2],
network traffic prediction [8], and risk assessment [9].

To learn the BN model from data, the DAG (also called structure) must first be learned
from it [10]. BN structure learning is challenging because the search space has a super-
exponential character [11,12]. This characteristic makes the structural learning of BN an
NP-hard [13] problem [11]. Three different kinds of methods can achieve structural learning:
constraint-based (CB) methods, search and score methods (also called score-based (SB)),
and hybrid methods, that combine the two previous methods [10,14,15]. The CB methods
are based on applying conditional independence (CI) tests to the data. In contrast, the SB
methods are based on a search throughout the space of possible structures using a score
function to determine the fit of the structures to the data [10,15].

There are recent papers that tackle BN structural learning methods. In [16], a review
of 74 algorithms, including CB and SB methods, was performed. It described these al-
gorithms, including state-of-the-art, well-established, and prototypical approaches, and
discussed how they were evaluated and compared. In addition to that, it also discussed
approaches to deal with data noise and approaches on how to include expert knowledge in
structural learning.
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Complementing this work, in [14], 15 structural learning algorithms were investi-
gated, and their performance was compared. Four CB algorithms were tested (PC-Stable,
FCI, Inter-IAMB, and GS), six SB algorithms (FGES, HC, TABU, ILP, WINASOBS, and
NOTEARS), and five hybrid methods (GFCI, RFCI-BSC, MMHC, H2PC, and SaiyanH). The
experiments showed that HC and TABU were the algorithms that performed the best in
most of the tests made. Hill climbing (HC) is a gradient ascent algorithm that searches the
space of DAGs by adding, removing, or inverting edges [14,17]. The TABU algorithm is
an improved version of HC in which candidates considered on previous iterations are not
considered again to search new regions [14,17].

Recent works have also proposed new algorithms to perform BN structural learning.
A discrete firefly optimization algorithm is proposed in [18]. The firefly algorithm imitates
the behavior of fireflies being attracted to light [18]. In [19], a Prufer-leaf coding genetic
algorithm was proposed. This algorithm prioritizes connection to nodes with high mutual
information [19]. Finally, in [20], the adaptive genetic algorithm with varying population
size (AGAVaPS) is proposed. In this algorithm, each solution has its own mutation rate
and number of iterations that will be a part of the population. This algorithm was tested
for different applications and performed well in problems with huge search spaces. A
preliminary test on BN structural learning was also carried out and showed that it could be
a good algorithm to be used on it [20].

In this paper, a deeper analysis of the application of AGAVaPS in BN structural learning
is carried out. A small-scale analysis of different algorithm parameters was performed.
Finally, AGAVaPS was compared to HC and TABU, considering datasets from the literature
with different sizes. In this comparison, the score value, F1 score, structural Hamming
distance (SHD), balanced scoring function (BSF) and execution time were considered.
Thirty executions for each algorithm were performed, and the algorithms’ performance
was compared.

2. Materials and Methods

This section describes the algorithms used and the tests and analysis performed.

2.1. Algorithms

For the comparison, three algorithms were considered: AGAVaPS, the algorithm under
analysis, and HC and TABU, which are used for comparison. These two algorithms were
chosen based on the results of [14] that showed that HC and TABU were the best-performing
algorithms overall in the tests.

2.1.1. Genetic Algorithm Terminology

In genetic algorithms (GAs), a population of possible solutions is evolved to perform
a search over the problem search space. A solution in the population can be named
an individual. At each iteration, solutions are selected to create new solutions. These
solutions can be named parents. The parents undergo crossover or reproduction to generate
some new solutions. These new solutions can be named descendants or children. The
children undergo mutation, a process that changes a part of these solutions to increase
the randomness of the search. Then, these new solutions and the current population are
combined, creating a new population. A more extensive explanation of these terminologies
and an example can be found in [21].

In this process, many parameters are used, such as reproduction rate, which affects
the reproduction process, mutation rate, which affects the mutation process, and the initial
population size. Some of these parameters are selected to improve the search in a specific
problem, and some are determined from the project to result in an algorithm behavior. The
specific parameters for AGAVaPS, their meaning, and how many of them were chosen can
be seen in [20], the article where AGAVaPS was proposed.
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2.1.2. Adaptive Genetic Algorithm with Varying Population Size (AGAVaPS)

AGAVaPS was proposed in [20], and a detailed explanation of its procedure and
parameters can be seen in this work. A shorter description of the algorithm and details of
how it was used in this article can be seen below.

On AGAVaPS, each individual has its own mutation rate; there is a slight possibility
that an individual will undergo mutation twice, and each individual has a life parameter
that determines the number of iterations that the individual will undergo in the population.

The mutation rate for each individual is sampled from a normal distribution with
mean µmut and standard deviation σ = 0.1, with the mutation rate being in the interval
[0, 1]. µmut is updated every iteration considering the last value of µmut and µpop, the mean
mutation rate of the current population. The update follows the equation:

µmut(n)′ = µpop(n− 1)− (µmut(n− 1)− µpop(n− 1))

µmut(n) =


µmut(n)′, if 0.3 < µmut(n)′ < 0.7
µpop(n− 1)−U (0.1, 0.3), if 0.7 ≤ µmut(n)′

µpop(n− 1) + U (0.1, 0.3), if µmut(n)′ ≤ 0.3

(1)

U (0.1, 0.3) is a sampling of a uniform distribution between 0.1 and 0.3. This variation
enables the algorithm to balance between exploration and exploitation.

The mutation procedure is performed considering Equation (2). There is a 15% chance
of an individual undergoing mutation twice. This double mutation increases the exploration
capacity of the algorithm. This procedure is performed by sampling a value r from U (0, 1)
and following Equation (2).

mutate twice, if r < 0.15 ·mutation rate
mutate once, if 0.15 ·mutation rate ≤ r < mutation rate
do not mutate, otherwise

(2)

Regarding the life parameter, its value is obtained by

life = 10 · N (0.5, 0.15) (3)

where N (0.5, 0.15) is a sampling of a normal distribution with µ = 0.5 and σ = 0.15, and
life ∈ N∗. At the end of each iteration, the life of the individuals is decremented by one.
The best 10% of individuals are spared from the decrement. All individuals that reach
a zero value of life are removed from the population. Because of this life parameter, the
population size is not constant.

For this application, the multi-objective version of AGAVaPS was used. For this, for
each parent selection, one of the objectives is randomly chosen to be used. The protection of
the best 10% of individuals was achieved by equally dividing this protection between the
objectives being used in the search. The parent selection was achieved using a tournament
of size 3, with two parents generating one individual. The reproduction rate (γ) controls
the number of new individuals that are generated at each iteration.

The mutation was performed by randomly adding, removing or inverting an edge.
Meanwhile, reproduction was performed by obtaining the common edges between the
parents and adding a random number of the different edges while keeping the structure a
DAG. Also, the first population was created by selecting a random number of edges and
adding them to an empty structure as long as it did not create a cycle. When randomly
selecting edges for adding in the first population and in the mutation procedure, the mutual
information (MI) between the variables was used as the weight for the sampling.

One of the objectives used was the Bayesian information criterion (BIC). This score is
based on the Schwarz information criterion. Its objective is to minimize the conditional
entropy of the variables considering their parents [22]. This score is a maximization score of
negative values. The other objective used was the number of edges. This objective was used
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to make the algorithm search smaller structures, since structures with a higher number of
edges tend to have better scores. However, structures with fewer edges often have very
close scores to those with more straightforward and more desirable structures.

A small-scale analysis of different algorithm parameters was performed. In this
analysis, µmut and γ were varied, and ten executions were performed for the datasets
used in the analysis. The mean score was used to rank the performance of each parameter
configuration for each dataset. Then, a mean rank was also employed to evaluate which
parameters were best for the algorithm comparison. Table 1 shows the values tested for
each parameter.

Table 1. Parameter values used in the AGAVaPS parameter analysis for BN structural learning,
including the initial mutation mean (µmut), reproduction rate (γ), and number of evaluations.

Parameter Values

µmut 0.1, 0.3, and 0.5
γ 0.3 and 0.5

Number of evaluations 10,000

2.1.3. Hill Climbing (HC)

HC is a gradient ascent algorithm that tests all possible changes considering adding,
removing, or inverting an edge. The change that brings the most significant increase in
the objective function is selected. The search is halted when all possible changes to the
DAG currently under analysis would only decrease the value of the objective function
compared to the current DAG score. The HC algorithm is often used for performing BN
structural learning [7,14]. The pgmpy implementation HillClimbing was used for the tests
with tabu_size = 0 [23]. The score used was also BIC for consistency of comparison.

2.1.4. Tabu Search (TABU)

TABU is a variant of HC where a k number of the last structures evaluated are not
re-evaluated. This restriction is to increase the search for new regions. For the tests, the
pgmpy implementation HillClimbing was used with tabu_size = 500 [23]. The score used
was also BIC for consistency of comparison.

2.2. Datasets

The datasets used in the tests are from the bnlearn library and its Bayesian Network
Repository [24]. The details of the datasets can be seen in Table 2.

Table 2. Dataset parameters, including number of nodes (number of variables), number of edges,
which is the number of edges of the expected structure, number of samples of the dataset, and the
number of possible DAGs that the BN structure search space for the dataset has.

Dataset Number of
Nodes

Number of
Edges

Number of
Samples

Number of
DAGs

Alarm 37 46 20,000 3.01 × 10237

Asia 8 8 5000 7.84 × 1011

Coronary 6 9 1841 3.78 × 106

Hailfinder 56 66 20,000 �2.11 × 10303

Insurance 27 52 20,000 1.90 × 10129

Sachs 11 17 100,000 3.16 × 1022

Sachs 2 × 104 11 17 20,000 3.16 × 1022

2.3. Test Procedure

All three algorithms were executed for all the datasets thirty times for the test. For
each execution, five metrics were measured and saved to compare the algorithms. These
metrics were the BIC score of the best structure found, execution time, F1 score, structural
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Hamming distance (SHD), and balanced scoring function (BSF). F1, SHD, and BSF use
the concepts of true positives (TPs), false positives (FPs), true negatives (TNs) and false
negatives (FNs). An example of how these concepts are considered in BN structure learning
can be seen in Figure 1. For the AGAVaPS, which is multi-objective, all the solutions in
the final Pareto set were measured for the metrics, and the highest value was used for
comparison. This decision was made because when a multi-objective algorithm is used, the
user can choose whichever solution in the Pareto set it thinks is the best.
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Figure 1. Examples of true positives (TPs), false positives (FPs), true negatives (TNs), and false
negatives (FNs) for BN structural learning used for calculating F1 score, SHD, and BSF for the
comparison of the performance of the search algorithms.

F1 is the harmonic mean between precision and recall and is given by Equation (4) [25].
It ranges from 0 to 1, where 1 is the highest score and 0 is the lowest.

F1 score = 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
(4)

The SHD score compares the structure learned to the real networks. It penalizes having
extra edges, inverted edges, and not having edges from the real network [26]. The SHD is
given by Equation (5) [27]. The best score for the SHD is 0.

SHD = FN + FP (5)

The BSF score is a score that removes the bias of the SHD score and is given by
Equation (6), where a is the number of edges of the real network, and i is the independence
of the real network that is calculated using Equation (7), where |N| is the number of
variables [27]. The BSF score ranges from −1 to 1, where 1 is the highest score and −1 is
the lowest.

BSF = 0.5 ·
(

TP
a

+
TN

i
− FP

i
− FN

a

)
(6)

i =
|N|(|N| − 1)

2
− a (7)

All the executions were performed on a computer running on Ubuntu 22.04.3 LTS
with processor Intel Core i7-8750H and 12 GB of RAM. For the datasets Asia, Coronary, and
Sachs, the value of 10,000 evaluations for the AGAVaPS was kept for this test. Meanwhile,
the number of evaluations was increased for the Alarm, Hailfinder, and Insurance datasets,
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which have much bigger search spaces (bigger than 1× 10100 possible DAGs). The number
of evaluations for the AGAVaPS for each dataset can be seen in Table 3. Table 3 shows the
max in-degree used in the structural learning. The max in-degree limit is used to limit the
CPT size, which can cause memory overflow if not limited. This limitation is effective by
limiting the number of parents a variable can have (in-degree) as the CPT size is given by

qv

p

∏
i=1

qi (8)

where qv is the number of states of the variable, p is the number of parents of the variable,
and [q1, . . . , qp] are the number of states of the parent variables [28]. These maximum
in-degree values were used for all the algorithms.

Table 3. Maximum in-degree value used by all algorithms for each dataset and number of evaluations
used for AGAVaPS for each dataset for comparison with the other search algorithms.

Dataset Number of Evaluations Max In-Degree

Alarm 1,000,000 4
Asia 10,000 4

Coronary 10,000 5
Hailfinder 1,000,000 4
Insurance 100,000 3

Sachs 10,000 3
Sachs 2×104 10,000 3

The results were compared pairwise using the Wilcoxon signed-rank test with a signif-
icance level 0.05. The Wilcoxon test tests if two observations from different populations
have a median difference between them equal to zero [29]. This test was used to group
the algorithms by performance and rank them. If the Wilcoxon test indicated that the
algorithms had the same performance, the algorithms received the same rank. The mean
rank for each algorithm in all test cases was also calculated and used to compare the
performance of the algorithms.

3. Results and Discussion

In this section, the results obtained are presented and discussed. The results of the
AGAVaPS parameter analysis can be seen in Tables 4 and 5. Table 4 shows the mean BIC
score of each parameter combination for the datasets tested, considering the highest BIC
score of the structures included in the Pareto set. Table 5 shows the ranks of each parameter
combination for the datasets tested considering the values from Table 4. From the results,
it can be seen that in many of the cases, the difference between them was minimal. The
best combination was γ = 0.5 and µmut = 0.5, performing best for four test cases. Thus,
γ = 0.5 and µmut = 0.5 are the parametrizations used for the comparison test with the
other algorithms.

The results of the comparison between the algorithms can be seen in Tables 6–10.
In Tables 6–8, the mean, standard deviation, and rank of the F1, SHD, and BSF metrics
can be seen. In Tables 9 and 10, the mean, standard deviation, and rank of the BIC score
and execution time can be seen. For each dataset and metric, the best value obtained is
highlighted, and in the row “Mean Rank” the mean rank for the algorithm for all test cases
is shown.
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Table 4. Results obtained for the parameter analysis. For each combination of parameters, the mean
BIC score value is shown. µmut is the initial mutation mean and γ is the reproduction rate. The best
values for each dataset are marked in bold.

Dataset γ = 0.3
µmut = 0.1

γ = 0.3
µmut = 0.3

γ = 0.3
µmut = 0.5

γ = 0.5
µmut = 0.1

γ = 0.5
µmut = 0.3

γ = 0.5
µmut = 0.5

Alarm −237,238.73 −236,307.90 −236,341.33 −236,970.01 −237,319.48 −236,152.09
Asia −11,113.07 −11,113.09 −11,112.20 −11,113.08 −11,112.26 −11,111.43

Coronary −6717.78 −6718.03 −6718.03 −6717.71 −6718.35 −6717.65
Hailfinder −1,058,908.27 −1,056,481.45 −1,056,888.71 −1,055,479.40 −1,055,095.71 −1,053,574.88
Insurance −279,586.47 −279,470.58 −278,965.12 −279,035.66 −279,547.27 −279,198.98

Sachs −719,733.24 −720,224.68 −720,133.82 −720,506.56 −720,161.80 −720,588.25

Table 5. Results obtained for the parameter analysis. For each combination of parameters, the ranks
for each problem in the parameter analysis are shown. The mean rank of each combination for all the
tests made is also shown on the line “Mean”. All the best values between the parameter combinations
are marked in bold.

Dataset γ = 0.3
µmut = 0.1

γ = 0.3
µmut = 0.3

γ = 0.3
µmut = 0.5

γ = 0.5
µmut = 0.1

γ = 0.5
µmut = 0.3

γ = 0.5
µmut = 0.5

Alarm 5 2 3 4 6 1
Asia 4 6 2 5 3 1

Coronary 3 5 4 2 6 1
Hailfinder 6 4 5 3 2 1
Insurance 6 4 1 2 5 3

Sachs 1 4 2 5 3 6

Mean 4.17 4.17 2.83 3.50 4.17 2.17

Table 6. Result of the comparison of the algorithms. The mean and standard deviation (mean (std)) of
F1 for each dataset and algorithm are shown in the first half of the table. In the second half, the rank
of each algorithm for that test is shown. On the “Mean Rank” line, the mean rank of the algorithm for
all tests is shown. The best values are marked in bold.

Dataset HC F1 TABU F1 AGAVaPS F1

Alarm 0.744 (0.049) 0.732 (0.054) 0.776 (0.026)
Asia 0.655 (0.135) 0.732 (0.118) 0.899 (0.032)

Coronary 0.892 (0.060) 0.879 (0.060) 0.859 (0.051)
Hailfinder 0.554 (0.053) 0.560 (0.043) 0.554 (0.042)
Insurance 0.683 (0.064) 0.661 (0.072) 0.659 (0.023)

Sachs 0.823 (0.099) 0.836 (0.120) 0.926 (0.021)
Sachs 2 × 104 0.843 (0.112) 0.850 (0.103) 0.932 (0.022)

Alarm rank 2 2 1
Asia rank 2 2 1

Coronary rank 1 1 1
Hailfinder rank 1 1 1
Insurance rank 1 1 1

Sachs rank 2 2 1
Sachs 2 × 104 rank 2 2 1

Mean Rank 1.57 1.57 1.00

When considering the F1 score, the algorithms showed a tied performance for half of
the test cases. Despite that, AGAVaPS performed better for the other half of the test cases
and ranked first for all the tests. Interestingly, HC and TABU performed the same for all
tests, with no improvement observed when using the tabu list.

When considering the SHD metric, AGAVaPS was again the best-performing algo-
rithm, ranking first for all the test cases. The algorithms were all tied in rank for Coronary,
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the smallest test case, with six nodes. In addition to that, HC and TABU were tied for all
test cases.

Table 7. Result of the comparison of the algorithms. The mean and standard deviation (mean (std))
of SHD for each dataset and algorithm are shown in the first half of the table. In the second half,
the rank of each algorithm for that test is shown. On the “Mean Rank” line, the mean rank of the
algorithm for all tests is shown. The best values are marked in bold.

Dataset HC SHD TABU SHD AGAVaPS SHD

Alarm 28.367 (6.253) 30.033 (7.418) 18.467 (2.045)
Asia 6.500 (2.872) 4.933 (2.421) 1.533 (0.499)

Coronary 1.867 (0.991) 2.100 (0.978) 2.400 (0.841)
Hailfinder 68.900 (10.543) 67.867 (8.671) 45.700 (2.923)
Insurance 34.167 (7.572) 36.967 (8.503) 30.533 (1.688)

Sachs 6.500 (3.704) 6.067 (4.546) 2.533 (0.763)
Sachs 2 × 104 5.700 (4.157) 5.467 (3.845) 2.367 (0.752)

Alarm rank 2 2 1
Asia rank 2 2 1

Coronary rank 1 1 1
Hailfinder rank 2 2 1
Insurance rank 2 2 1

Sachs rank 2 2 1
Sachs 2 × 104 rank 2 2 1

Mean Rank 1.86 1.86 1.00

Table 8. Result of the comparison of the algorithms. The mean and standard deviation (mean (std)) of
BSF for each dataset and algorithm are shown in the first half of the table. In the second half, the rank
of each algorithm for that test is shown. On the “Mean Rank” line, the mean rank of the algorithm for
all tests is shown.

Dataset HC BSF TABU BSF AGAVaPS BSF

Alarm 0.852 (0.045) 0.839 (0.040) 0.728 (0.018)
Asia 0.520 (0.203) 0.636 (0.162) 0.836 (0.045)

Coronary 0.748 (0.121) 0.719 (0.118) 0.728 (0.088)
Hailfinder 0.613 (0.053) 0.622 (0.040) 0.445 (0.055)
Insurance 0.642 (0.072) 0.621 (0.081) 0.563 (0.024)

Sachs 0.760 (0.144) 0.776 (0.175) 0.899 (0.030)
Sachs 2 × 104 0.785 (0.162) 0.797 (0.149) 0.911 (0.038)

Alarm rank 1 1 2
Asia rank 2 2 1

Coronary rank 1 1 1
Hailfinder rank 1 1 2
Insurance rank 1 1 2

Sachs rank 2 2 1
Sachs 2 × 104 rank 2 2 1

Mean Rank 1.43 1.43 1.43

When considering the BSF metric, all algorithms were tied in the overall mean rank.
Again, HC and TABU were tied for all the test cases. Moreover, AGAVaPS outperformed
the other algorithms for three test cases (Asia, Sachs, and Sachs 2 × 104), and they were
all tied for the first rank for Coronary. These results indicate that AGAVaPS deals better
with datasets with fewer nodes when considering the BSF. Meanwhile, HC and TABU
performed better in the datasets that had a higher number of variables.

When considering the BIC score, it can be seen that AGAVaPS performed better than
the other two algorithms for four test cases (Asia, Coronary, Sachs, and Sachs 2 × 104),
and all algorithms were tied for Insurance. The datasets for which AGAVaPS performed
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best all have 27 nodes or less, indicating that AGAVaPS could have performed better for
datasets with more variables. However, this may be a result of AGAVaPS not evaluating
enough structures; this is especially true for the Hailfinder dataset, where the execution
time of AGAVaPS is closer to the execution time of HC and TABU than in other test cases
and where the search space is much bigger than the other datasets. Also, again, HC and
TABU had the same ranks for all the test cases.

Table 9. Result of the comparison of the algorithms. The mean and standard deviation (mean (std))
of the BIC score for each dataset and algorithm are shown in the first half of the table. In the second
half, the rank of each algorithm for that test is shown. On the “Mean Rank” line, the mean rank of the
algorithm for all tests is shown. The best values are marked in bold.

Dataset HC Score TABU Score AGAVaPS Score

Alarm −2.232759 × 105 (1.8 × 103) −2.230440 × 105 (1.7 × 103) −2.275161 × 105 (1.1×103)
Asia −1.116352 × 104 (1.4 × 102) −1.113056 × 104 (1.7 × 101) −1.111352 × 104 (4.7)

Coronary −6.719031 × 103 (1.4) −6.719848 × 103 (2.3) −6.717676 × 103 (6.9 × 10−1)
Hailfinder −1.002213 × 106 (6.5 × 103) −1.001578 × 106 (4.9 × 103) −1.043391 × 106 (6.7 × 103)
Insurance −2.735643 × 105 (4.4 × 103) −2.749877 × 105 (5.9 × 103) −2.744720 × 105 (1.1 × 103)

Sachs −7.299457 × 105 (9.5 × 103) −7.302275 × 105 (1.1 × 104) −7.201837 × 105 (1.4 × 103)
Sachs 2 × 104 −1.466913 × 105 (2.2 × 103) −1.465159 × 105 (1.9 × 103) −1.447779 × 105 (2.8 × 102)

Alarm rank 1 1 2
Asia rank 2 2 1

Coronary rank 2 2 1
Hailfinder rank 1 1 2
Insurance rank 1 1 1

Sachs rank 2 2 1
Sachs 2 × 104 rank 2 2 1

Mean Rank 1.57 1.57 1.28

Table 10. Result of the comparison of the algorithms. The mean and standard deviation (mean (std))
of the execution time for each dataset and algorithm are shown in the first half of the table. In the
second half, the rank of each algorithm for that test is shown. On the “Mean Rank” line, the mean
rank of the algorithm for all tests is shown. The best values are marked in bold.

Dataset HC Time TABU Time AGAVaPS Time

Alarm 88.35 (68.35) 77.44 (38.65) 18,319.84 (3005.39)
Asia 0.55 (0.09) 0.53 (0.06) 357.56 (29.58)

Coronary 0.26 (0.04) 0.26 (0.02) 500.70 (30.09)
Hailfinder 1128.75 (1245.82) 1233.54 (1455.88) 15,699.09 (946.69)
Insurance 13.12 (1.22) 11.44 (0.94) 784.67 (34.78)

Sachs 71.80 (9.80) 66.62 (13.84) 418.22 (6.50)
Sachs 2 × 104 3.87 (0.61) 3.66 (0.60) 70.04 (3.81)

Alarm rank 1 1 2
Asia rank 1 1 2

Coronary rank 1 1 2
Hailfinder rank 1 1 2
Insurance rank 2 1 3

Sachs rank 1 1 2
Sachs 2 × 104 rank 1 1 2

Mean Rank 1.14 1.00 2.14

When looking at the execution time, TABU was faster for all datasets. However, it was
tied with HC in five of seven test cases. This result was expected since the HC and TABU
are much simpler search algorithms than AGAVaPS.
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4. Conclusions

From the parameter test, it was indicated that γ = 0.5 and µmut = 0.5 was the best
overall parameter combination to be used when performing BN structural learning. From
the comparative test between HC, TABU, and AGAVaPS, it was seen that for basically all
metrics, HC and TABU performed the same, having a difference in only one of the execution
times. This result means no relevant difference between HC and TABU was seen in this work.
Looking at the proposed method, AGAVaPS performed better for the F1 score, SHD, and
BIC score.

For the F1 score and SHD, AGAVaPS was ranked first for all test cases, tying with
other algorithms for some of the tests. For the BIC score, AGAVaPS was ranked first in test
cases with 27 nodes or less, showing that it could not beat HC and TABU for the bigger
test cases. However, there may be a need to let the algorithm evaluate enough structures,
especially for the Hailfinder dataset, where the execution of AGAVaPS was relatively close
to the execution time of HC and TABU compared to other test cases. For BSF, all algorithms
were tied as the best-performing algorithms. AGAVaPS performed the best for test cases
with a smaller number of nodes.

This better performance of the AGAVaPS over HC and TABU can be associated with the
strong diversity preservation mechanism that AGAVaPS has, and that is something necessary
to search complex spaces and escape local optima. The high capacity for coverage of the
search space of the AGAVaPS was seen and better analyzed in [20]. In [20], it was also seen
that the AGAVaPS has a behavior of changing between global and local search according to
what is achieving better results. This behavior could be one of the reasons that AGAVaPS
obtained better results than HC and TABU for datasets with a smaller number of nodes.

When considering the execution time, the results were that HC and TABU were
the quickest. This result was expected, as HC and TABU are much simpler algorithms.
Although AGAVaPS takes longer, since the BN structural learning is only performed
once in most cases, taking more time to learn a better structure can be considered when
modeling a system. AGAVaPS performed very well, being the best-performing algorithm
for three out of four structure quality metrics. AGAVaPS performed poorer on datasets with
many variables for two of the metrics. With this in mind, future work will study how to
improve AGAVaPS’s performance in this kind of dataset, exploring the form of the problem
definition, reproduction, and mutation process, and parameter analysis for datasets with
many variables. Another thing to explore is using parallelism in AGAVaPS to speed it up
and thus obtain a better execution time.
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