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Abstract: Social networks have captured the attention of many people worldwide. However, these
services have also attracted a considerable number of malicious users whose aim is to compromise
the digital assets of other users by using messages as an attack vector to execute different types of
cyberattacks against them. This work presents an approach based on natural language processing
tools and a convolutional neural network architecture to detect and classify four types of cyberattacks
in social network messages, including malware, phishing, spam, and even one whose aim is to
deceive a user into spreading malicious messages to other users, which, in this work, is identified as a
bot attack. One notable feature of this work is that it analyzes textual content without depending on
any characteristics from a specific social network, making its analysis independent of particular data
sources. Finally, this work was tested on real data, demonstrating its results in two stages. The first
stage detected the existence of any of the four types of cyberattacks within the message, achieving an
accuracy value of 0.91. After detecting a message as a cyberattack, the next stage was to classify it as
one of the four types of cyberattack, achieving an accuracy value of 0.82.

Keywords: bot; CNN; cyberattack; deep learning; malware; NLP; phishing; social networks; spam

1. Introduction

One of the services people utilize most on the Internet is social networks. The popular-
ity of these sites derives from the advances in information technology, which provide users
with the practicality and simplicity to use these digital media, allowing them to access
these services from anywhere with an Internet connection through an electronic device.
Nowadays, social networks have become an excellent medium for sharing information,
reaching places humanity could hardly have imagined. In these interaction spaces [1], users
are the main actors, who involuntarily participate in the generation of data, which happens
from the moment they post a comment about an event that attracts their attention.

The amount of information that circulates on social networks minute by minute is
enormous because the data are generated and published not only by member users but
also by public and private institutions, government entities, and even electronic devices
such as sensors and actuators [2], which integrate intelligent systems as processes within
the Internet of Things (IoT) technology [3].

With events such as COVID-19, people were forced to work remotely, which caused
many individuals to engage in digital interactions to conduct various activities such as
homework, reports, meetings, and other activities on the Internet. Traditional communica-
tions changed to digital platforms such as social networks, and being the most used service,
they became a broader panorama to carry out attacks on different users and institutions,
facts that have been worrisome and recurring for victims of these threats within these plat-
forms. Furthermore, just as social networks have captured the attention of many people,
in the same way, these services have attracted various malicious users whose purpose is to
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compromise the assets of other members through different cyberattacks, which represent a
threat within these communities [4].

The practicality, security controls, and mechanisms implemented on current web
platforms [5] to prevent different types of cyberattacks demonstrate that threats grow along
with advances and technological developments. These facts have concerned many re-
searchers, institutions, and companies, in such a way that it has prompted the development
of different works, mechanisms, and software tools as a countermeasure against different
threats from malicious users or groups who have contemplated using social networks as an
attack vector to compromise the assets of their victims.

Therefore, this paper presents a novel approach based on a convolutional neural net-
work (CNN) architecture to detect and classify four different cyberattacks such as malware,
phishing, spam, and even one whose aim is to deceive a user into spreading malicious
messages to other users, which, in this work, is defined as a bot attack. An essential feature
of this approach involves utilizing natural language processing (NLP) techniques such
as filtering, Part-of-Speech (POS) tagging, lemmatization, tokenization, and stopword
removal. These techniques extract specific text attributes from each message to represent
and create the subsequent inputs to the deep learning (DL) architecture.

In addition to the vector that represents the content of the message, two vectors
complement the information utilized for the detection and classification activities. The first
vector comprises the features of the plaintext structure with a size equal to 16, which is the
total number of extracted values that describe how the user typed the message.

The second vector is created based on the properties of each Uniform Resource Loca-
tor (URL) mentioned in the message. Even if a URL is not present in the content, a vector
with specific attributes is utilized to indicate the absence of a URL. In general, the character-
istics extracted from each URL integrate this vector with a total of 25 properties that define
its size. It is essential to highlight that the analysis is applied to textual content and not to
multimedia such as images, audio, video, or other formats.

On the other hand, the idea of implementing an architecture based on a CNN aims to
identify significant words, which are represented sequentially in each hashing vector, for the
detection and classification activities of the four threats mentioned above. This activity is
the extraction of characteristics necessary for the entry to the next stage of this architecture.
Unlike traditional CNN architectures, this work proposes to implement an additional layer
within this architecture to avoid extrapolating information from the message content with
characteristics related to the morphology of the text and the properties of the existing URLs.
Hence, this additional layer concatenates the three vectors proposed before entering the
final stage of the architecture.

One remarkable feature of this work is that it detects the previously mentioned four
types of cyberattacks using just the proposed approach without needing to employ different
models for each type of threat, allowing users to expand the detection landscape of these
threats in social network messages, even if the message does not have a URL. This CNN
architecture was tested on real data, demonstrating its results in two stages. The first stage
detects the existence of any of the four types of cyberattacks within the message, achieving
an accuracy value of 0.91. On the other hand, after detecting a message as a cyberattack,
the next stage is to classify it as one of the four types of cyberattack, achieving an accuracy
value of 0.82.

This paper is organized as follows. First, a review of the related works in the literature
is presented in Section 2. The methodology for analyzing messages is described in Section 3.
The cyberattack detection model is explained in Section 4. Section 5 presents the relevant
numerical results, evaluations, and a discussion of the results. Finally, Section 6 presents the
conclusions.

2. Related Works

The diversity of topics within social networks has allowed for the consideration of
the content of messages as an information source. Research and studies on different



Mach. Learn. Knowl. Extr. 2023, 5 1134

topics analyze the posted messages on these sites, such as the acceptance and trends of a
product in the market [6,7], the study of preferences and reactions to a new law [8,9], and
movements in the stock market [10,11], among other topics. These demonstrate that users
perform a function similar to observers of social events or preference indicators, and all
this information is helpful for further analysis.

Similarly, the information from these sites is analyzed to identify malicious content
within the messages shared among users on social networks to prevent diverse forms of
cyberattacks from affecting the assets of users or institutions using this route as an attack
vector [12]. Kunwar et al. [13] mentioned that social networks have become a new attack
vector, and various malicious users are looking for opportunities to take advantage of them.
Meanwhile, Saidi et al. [14] examined the importance of analyzing the communities and
information in social networks, concluding that modeling and semantic analysis can extract
information from these sites to provide a profound vision of the operations of clandestine
groups of cybernetic terrorists.

It is important to mention that activities involving the analysis of information con-
tained in social network messages for the detection of cyberattacks cannot be compared to
the performance of software tools and mechanisms used in cybersecurity, such as antivirus
software, firewalls, Intrusion Detection Systems (IDS), and Intrusion Prevention Systems
(IPS), among others. However, due to the popularity of social networks, cybercriminals
have found these sites to be a way of accessing the assets of victims and avoiding security
controls, turning these services into spaces for the propagation of cyberattacks.

Lippmann et al. [15] contributed to the creation of an automated process for extracting
cybersecurity discussions from online forums, arguing that this would reduce the amount
of time an analyst needs to remove irrelevant content in their investigation in this area.
Similarly, information sources such as blogs and discussion forums have been analyzed
to find malicious content in shared messages. In this sense, Grishman et al. [16] proposed
a method for identifying messages containing information or distribution characteristics
of malware applications to determine the users that spread threats in deep/dark web
forums and blogs. They used a recurrent neural network (RNN) architecture and analyzed
connections among users using graphs.

The following works focus on detecting the existence of some variant of a cyberattack
in messages from social networks. Unlike traditional security controls, these works do
not contain, mitigate, or eliminate threats. However, these report findings to the user to
evaluate the actions to take.

Liao et al. [17] presented “iACE”, a framework for extracting Indicators of Compro-
mise (IoC) from unstructured texts. The IoC [18] concept describes malicious activities
or artifacts relevant to a cybersecurity incident by analyzing their behavior patterns for
identification. Liao et al. [17] proposed using NLP NER/ER techniques to gather infor-
mation from public sources such as blogs, articles, and other publicly accessible written
media, creating a series of tokens and terms that allow defining unique characteristics of
different cyberattacks.

A study aimed at detecting phishing was carried out by Liew et al. [19], who developed
a real-time security alert mechanism using a classification model derived from a supervised
machine learning technique called Random Forest (RF). They identified 11 classification features
that yielded a 94.75% accuracy value after analyzing 200 phishing URLs collected from Twitter
and PhishTank to determine the effectiveness of their model.

Erkal et al. [20] proposed an alert system for detecting cybersecurity threats such as
spam and malware spread through Twitter messages, utilizing a Naive Bayes classifier
and vectorization based on the weights of the Term Frequency/Inverse Document Fre-
quency (TF/IDF) values. They achieved a success rate of 70.03% in detecting phishing and
spam content.

Ashour et al. [21] evaluated the performance of their classifier based on n-grams for
spam detection in Twitter messages and obtained better results than those achieved using
TF/IDF techniques. They achieved an F1 value of 0.794, according to their reported results.
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Wu et al. [22] proposed a model based on deep learning techniques to address spam
detection, where the syntax of each tweet was learned using the WordVector technique for
preprocessing and converting them into high-dimension vectors, achieving an F-measure
value of up to 0.942.

Meanwhile, Feng et al. [23] proposed a framework based on DL for spam detection,
which sets up a detection system at the mobile terminal and the server. This model utilizes
the Word2vec tool to convert words into vectors, achieving an accuracy value of 0.9136 in
the classification model on the server side.

Madisetty et al. [24] presented a method that combines five CNN models and one
feature-based model through a neural network for spam detection at the tweet level. Each
CNN was trained with word embeddings of different dimensions, and the feature-based
model utilized three types of features (user-based, content-based, and n-gram features),
achieving an F-measure value of 0.894.

Chen et al. [25] proposed an analysis to detect low-quality content in real time in
Twitter messages, which involves identifying valueless content of different types from
the perspective of the user, including spam and phishing content. The method requires
direct and indirect Tweet features, as well as word-level analysis, to capture the content
characteristics of the text. The results of their research show that this method achieved an
F1 score of 0.8379 through an RF classifier.

Djaballah et al. [26] presented an approach to detect phishing in Twitter messages that
combines a verification method in a database or “Blacklist” with a classification model
based on URLs and web page content analysis. They achieved an accuracy that exceeded
95% with the RF classifier.

The previous works analyzed messages from social networks through different models
to detect from one to three specific cyberattacks. Nevertheless, this work proposes using a
detection model that combines NLP tools and a CNN architecture to detect four types of
cyberattacks in social network messages: phishing, spam, malware, and bot cyberattacks
(which involve deceiving users into spreading malicious content). Furthermore, this
approach analyzes the messages even if there is no URL in the content. Similarly, when the
message contains more than one URL, this model examines each one to detect the possible
existence of more than one cyberattack in a single message.

One advantage of the proposed work is that it does not require consideration of
specific characteristics of social networks, such as the number of followers, likes, people
the user follows, and other details that different social networks may share, but that others
lack to analyze the content of a message.

Therefore, this work can be used to examine the content of diverse blogs, discussion
forums, and social networks as sources of information for cyberattack detection tasks.
After detecting a message with characteristics of any of the four types of cyberattacks, this
model classifies according to the specific type of cyberattack associated with the malicious
content. The following section presents the proposed methodology of this work, which
outlines the phases for analyzing each message.

3. Methodology of Social Network Message Analysis

This work aims to detect four types of cyberattacks: spam, phishing, malware distri-
bution, and bot attacks (which refers to the spreading of harmful messages among users,
whether or not the attacker interacts with the victim). Therefore, the problem is defined as
follows: given a message m, consider four subsets of a set C – C1 for spam, C2 for phishing,
C3 for malware, and C4 for a bot attack. The task is to detect whether m belongs to the C
set. If m is in C, classify m according to which subset of C it belongs to.

To address this problem, this work presents the following methodology, which in-
volves analyzing the content of texts from diverse social networks, discussion forums,
and blogs to detect and classify the content according to the previously mentioned prob-
lem. This methodology utilizes tools and techniques such as NLP and a DL model based
on a CNN to detect and classify each message. Therefore, it only considers the text and
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disregards multimedia elements like images, videos, animations, or audio. Moreover,
the importance of creating a model capable of detecting a more significant number of
threats and being utilized regardless of the data source is seen as an opportunity for
extending the landscape of cyberattack detection tasks in this kind of content.

Figure 1 illustrates the proposed pipeline for cyberattack detection in social network
messages, depicting the stages from gathering the message to detecting and classifying it
using the CNN model.

Figure 1. Pipeline of stages of cyberattack detection in social network messages.

3.1. Data Gathering

The gathered information integrates the dataset utilized for the training and testing
activities of the CNN model, making these data the corpus for the model. The messages
obtained through the following mechanisms and resources serve as inputs for the prepro-
cessing stage of this methodology:

• APIs
This software mechanism enables the execution of activities to request samples of
publications through functionalities specific to each social network. These functional-
ities include searching by keywords, specific accounts, retrieval of messages by ID,
publication dates, and other properties. For example, to collect Tweets and Retweets
from Twitter, an endpoint connection from their API was used to download available
public messages.

• Scraping
Websites such as blogs and discussion forums operate based on browsing through
the HTTP protocol. To extract messages from these interaction spaces, this work uti-
lized web-scraping and -crawling techniques to simulate recursive browsing through
different websites.

• Datasets
To complement the corpus of this work, a subset of messages from different datasets
was used from works such as Lampu [27], Behzadan [28], and Chen [25], in which the
content refers to messages labeled as spam, phishing, and spam, respectively.

3.2. Preprocessing

The next step is preprocessing, which involves using NLP techniques to create three
arrays. These arrays represent the properties of each message, such as the grammar,
lexical, and semantics through tokens, the structural composition of the message, and the
representation of features based on the URL structure.
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3.2.1. Content of Message

The details of the corpus and NLP tools utilized for content extraction from each
message in this stage are shown below:

1. Corpus
This corpus comprises two values for each message: the raw text content and the
label that categorizes the message into one of the subsets related to the initial problem.
In addition, this corpus includes a selection of messages labeled “irrelevant” due to
their non-malicious content, according to the data sources used for this work. Hence,
there are five labels in this corpus: malware, phishing, spam, bot, and irrelevant.

2. Data Cleaning
This activity removes unnecessary characters from the text without altering the main
idea of the message. To filter each message, different tasks are performed, such as
eliminating unrecognized characters, replacing repetitive line breaks and blank spaces
with only one, and removing emoticons and emojis by using regular expression rules.

3. Lemmatization
The lemmatization procedure reduces the morphological variants of a word to their
roots or lexemes. Thus, the number of words that appear in this corpus is reduced,
making it possible to minimize the diversity of the words needed to represent the
content of a message.

4. POS Tagging
The purpose of the Part-of-Speech (POS) tags in this work is to accurately define
the intended lemma based on the context and grammar of a message, rather than
assuming a generic lemma transformation of a word. By applying POS tagging
analysis to correctly convert words into lemmas, the number of words in this corpus
is reduced compared to considering the text of a message in its raw form.

5. Tokenization
Tokenization involves breaking down the text of each message from this corpus at the
word level to produce an array of individual elements called tokens.

6. Stopwords
Stopwords play a crucial role in the text by serving as the connecting point for syntax
and grammar. However, they do not have meaning when written alone. Thus,
to represent the main idea of each message with a reduced number of tokens, the
stopwords in each token array were removed.

3.2.2. Message Structure

The text structure of a message shows how the content was posted and shared on social
networks. In this sense, the use of features based on the structure of the text derives from
the following hypothesis: extracting morphological properties from the structure of the
text of a message could reveal characteristics that harmful content may share with written
messages from malicious users. Through experimental analysis of diverse characteristics
from messages in this corpus, the 16 properties that yielded the most satisfactory results
during the subsequent stages of this work were determined, as shown in Table 1.

Table 1. Features extracted from the message structure.

(1) Length of message (9) # Sentences
(2) # Tokens (10) # Mentioned users
(3) # Hashtags (11) # Uppercase
(4) # Emails (12) # Question marks
(5) # URLs (13) # Exclamation marks
(6) # Periods (14) # Emojis and emoticons
(7) # Commas (15) # Dollar symbols
(8) # Digits (16) # Other symbols
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Once information about the structure of the text has been extracted, specific text
components, such as email addresses and mentioned users, are replaced with predefined
tokens like “email_nlp” and “at_user_nlp” to simplify the message and reduce the number
of words that exist in the corpus. Furthermore, the hash symbol “#” is removed from the
aforementioned tags to be used as tokens.

3.2.3. URL Structure

URLs in a message sometimes may not show the true website domain to the user
because of URL shortening services, causing users to be redirected to a different website
than expected when clicking the URL. By utilizing software tools to reveal the final website
of shortened URLs, this stage analyzed the authentic domain and extracted characteristics
from the resulting URL. Table 2 shows 27 characteristics used to represent the properties
of a URL present in a message, which delivered the most satisfactory results during the
subsequent stages of this work.

Table 2. Features extracted from the URL structure.

(1) Length of URL (10) # Words (19) # Equal symbols
(2) Has security protocol (Y/N) (11) # IPs (20) # Question marks
(3) Creation date (Days) (12) # Digits (21) # Wave symbols
(4) Last update date (Days) (13) # Hyphens (22) # Plus signs
(5) Shortened URL (14) # Periods (23) # Colon symbols
(6) # Underscores (15) # Slashes (24) # Other characters
(7) # Strings divided by periods (16) # Uppercase (25) Has extension (Y/N)
(8) # Strings divided by hyphens (17) # Lowercase (26) Domain suffix (Tokens)
(9) # Strings divided by slashes (18) # Ampersand symbols (27) Registrant (Tokens)

Furthermore, if a message does not contain a URL, the structure uses specific values
called “URL_ZERO” to indicate the absence of a URL in the message. Sometimes, messages
may have more than one URL. In such cases, each URL is analyzed separately, resulting in
a structure for every URL included in the message.

3.3. Vectorization

This step involves encoding the arrays containing the tokens, text structure, and URL
structure into numeric values, which will serve as the input, as vectors, to the CNN
architecture. The procedures to obtain these vectors are explained below:

• Hashing Vector
Each word in the dictionary of this corpus is assigned a unique integer hash using the
hashing model. The hash acts as an identifier for each token in the array, resulting
in a vector of integers representing the initial token array. In addition to the token
array, two characteristics from the URL structure are appended as tokens, such as the
“domain suffix” and “registrant,” which complement the content using information
referring to each URL that appears. Likewise, if the message does not have a URL,
the tokens “no_domain” and “no_suffix” are appended to the URL_ZERO values.
Finally, unlike other models such as the bag-of-words model, the size of the vectors
used in this model does not depend on the number of words in the vocabulary.
Therefore, the vector size was determined based on the length of the message with the
maximum number of tokens after the content analysis from the training dataset. This
value defines the size of these vectors.

• Text Structure
This vector represents the structural and typographic characteristics of the raw text in
a message. The vector consists of the extracted values, as shown in Table 1, from the
message structure array. Thus, the size of this vector is equal to the number of extracted
features, with a total of 16 values.
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• URL Structure
This vector is created for each URL present in the message. The extracted values from
the URL structure array, as shown in Table 2, integrate this vector. Likewise, if the
message does not have a URL, this vector is created using predefined values, defined
as “URL_ZERO” values, that symbolize the lack of a URL in the message.
Although the quantity of elements in the URL structure is 27, this vector utilizes
25 because two of them (the “domain suffix” and “registrant” values) are utilized
as tokens for the hashing vector process. Therefore, the final number of elements
represents the size of the resulting URL vector.

3.4. Deep Learning Model

Kim [29] stated that a CNN model can utilize documents as a matrix of words, similar
to how it handles pixels for image recognition and computer vision tasks. For this reason,
and according to our earlier review of the works in the literature that employ this model,
this part presents a CNN architecture that utilizes the three resulting vectors from the
previous stages to detect and classify the cyberattacks defined in the initial problem.

After the flattening layer, an additional layer is added to the architecture. This layer
concatenates the resulting convolutional vector using the “text” and “URL” structure
vectors before continuing with the fully connected layers. The details of each stage in this
CNN architecture are shown below:

1. Convolution Layer
The initial layer of this architecture is a convolution layer, which extracts the features
from the hash tokens to preserve the relationship between each value. This layer
utilizes a ReLU activation function to break the linearity and increase the non-linearity
during this process.

2. Dropout Layer
This layer utilizes a downsampling operation [30] to make this model more robust to
variation, absence, and distortion.

3. Pooling Layer
The pooling operation involves sliding a two-dimensional filter to summarize the
features within a region covered by a filter and reduce the number of parameters to
learn during the computation performed in the DL model.

4. Flattening Layer
This layer converts the pooling output into a one-dimensional matrix.

5. Concatenation Layer
This layer concatenates the resulting flattened vector with the text and URL structure
vectors, creating an input vector for the fully connected layers.

6. Fully Connected Layers
These layers utilize the resulting concatenated vector as input. It is composed of input,
hidden, and output layers, where the output layer utilizes the Softmax activation as an
activation function to generate the final results.

4. Cyberattack Detection Model

Nowadays, social networks continue to demonstrate that they are a widely used
option for spreading diverse types of cyberattacks [13]. For this reason, the following
model focuses on detecting and classifying four different types of cyberattacks (spam,
phishing, malware, and bot attacks), which are related to the term social engineering
attacks. The malicious content associated with these attacks can be distributed among the
community, sometimes without any interaction between the attacker and the victim.

This section presents information about the amount of data utilized for testing and
training, the utilization of the NLP tools to analyze each message through an algorithm,
and details about the proposed CNN architecture using the TensorFlow [31] framework to
detect cyberattacks in social network messages.
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4.1. Dataset

The messages utilized in this work come from diverse sources, including social net-
works, blogs, and other referred sources. Some of these messages were obtained by sam-
pling from Twitter using its API to create a compilation of available messages, extracting
different types of content, and integrating them into a corpus.

Meanwhile, other messages were gathered from websites such as Reddit and from
software product announcements on YouTube. Moreover, this work complemented the
corpus with specific messages collected from sources such as Kaggle, including SMS
messages [27] marked as spam, and subsets of Tweets from related studies, such as those
by Behzadan et al. [28] and Chen et al. [25].

Figure 2 shows the number of messages utilized in this work, with a total of 39,670 posts,
where each item contains only the raw text and a label that identifies the type of content.
In addition, the content of the messages was reviewed to exclude details such as empty
content and duplicated items from the corpus.

Figure 2. Distribution of messages in the dataset.

This corpus contains five labels (spam, phishing, malware, bot, and irrelevant) for
messages that do not fit into the cyberattack categories. Therefore, these samples are
considered a representative portion within a scenario where the information is labeled for
the testing and training purposes of the CNN architecture.

4.2. Analysis

Once the corpus has the gathered messages, they are saved in a CSV file for the training
and testing stages of the model. The next step is to analyze each message in the CSV file
through the stages explained earlier. Algorithm 1 presents this novel approach to analyzing
each message before implementing the methodology, returning a list of three-tuple objects
that contain the tokens, text structure, and URL structure, which are then prepared for the
next stage: vectorization.

Algorithm 1 Preprocessing.

Require: Text from message
Ensure: List of 3-tuple objects

1: function ANALYZE_MESSAGE(message_text)
2: STOP_WORDS← load_stopWords()
3: structure_vector← structure_features(message_text)
4: Tokens← empty list
5: text← clean_data(message_text)
6: Sentences← text_to_sentences(text)
7: N ← len(Sentences)
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8: for i← 1 to N do
9: sentence← Sentences[i]

10: tagged_tokens← POS_tags(sentence)
11: M← len(tagged_tokens)
12: for j← 1 to M do
13: append lemmatize(tagged_tokens[j]) to Tokens
14: end for
15: end for
16: tokens_message← empty list
17: L← len(Tokens)
18: for k← 1 to L do
19: if Tokens[k] not in STOP_WORDS then
20: append Tokens[k] to tokens_message
21: end if
22: end for
23: Vectors← empty list
24: URLs← find_URLs(message_text)
25: K ← len(URLs)
26: if K = 0 then
27: URLs[1]← URL_zero
28: end if
29: for w← 1 to K do
30: URL_features← extract_URLfeatures(URLs[w])
31: append URL_features.domain_suffix to tokens_message
32: append URL_features.registrant to tokens_message
33: URL_vector← URL_features[1, · · · , 25]
34: v← (tokens_message, structure_vector, URL_vector)
35: append v to Vectors
36: end for
37: return Vectors
38: end function

The vectorization process involves taking each element from the three-tuple list and
converting it into a one-dimensional array using the corresponding vectorization model.
For the vector concerning the tokens of the message, the hashing model replaces each token
with a hash value in a vector, and the size of this vector depends on the maximum number
of tokens in the most extended analyzed message in the corpus.

Meanwhile, for the two remaining vectors, the size of the vector representing the
structural text is 16 features, and the URL vector has a size of 25 extracted features. After the
convolution process, the text and URL structure vectors are combined with the flattened
vector to create a final vector. This final vector is then fed into the input layer for the fully
connected layer of the CNN architecture.

4.3. CNN Architecture

CNNs are not standalone models; they are designed to be incorporated into a more
extensive architecture to work collaboratively and generate an outcome. In this way, the role
of the CNN layers is to extract significant data components at the level of the hash value,
where each hash represents a token, and each element corresponding to the input of the
convolution stage corresponds to a region of the text of the message.

In this work, the implementation of the convolution and pooling operations is based
on applying a non-linear function through a sliding window of k-values on each hashing
vector, resulting in a dimensional vector that represents the main properties for each sliding
window. Afterward, the pooling stage merges the vectors resulting from different windows
to create a one-dimensional vector, selecting the maximum value in each dimension over
the different windows. Together, these operations facilitate the extraction of important
values from each input vector, regardless of the location of the represented words within
the message.
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An additional aspect of this convolution stage involves the exclusive analysis of the
message content. In this sense, an additional layer is added to the architecture to prevent
the extrapolation of information from the message content with characteristics related to the
morphology of the text and the properties of the existing URLs. Hence, this proposed layer
concatenates the two additional vectors (text and URL structures) with the resulting vector
from the convolution process before entering the final stage of the architecture. Figure 3
shows the main components of the CNN architecture.

Figure 3. CNN architecture for cyberattack detection and classification.

The properties and values used for the convolution and pooling operations during the
experiments are shown below:

• Size of input vector: 93;
• Filters: 8;
• Size of kernel: 8;
• Activation function: ReLU;
• Dropout: 0.26;
• Pool size: 2;
• Size of flattened vector: 344;
• Size of concatenated vector: 385.

This architecture utilized 70% of the data for training and 30% for testing. Thus,
the main parameters and features of the architecture after the convolution process that
yielded the most satisfactory results during these tasks were as follows:

• One input layer for the concatenated vector (285 neurons);
• Six hidden layers (155, 105, 50, 25, 25, and 10 neurons);
• Output layer (5 neurons);
• Adam optimizer;
• Kullback–Leibler divergence as the loss function.

Meanwhile, for the fully connected layers, the following activation functions were
implemented from the input to the output layers: three Sigmoid, four ReLU, and one Softmax.
Once the vector from the flattened layer reaches this section of the architecture, the outcome
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should come from one of the five neurons in the final layer. In this section, the result
comes from the neuron with the maximum value, and its activation function in this layer is
defined by the Softmax function σ : RN 7→ (0, 1)N when N > 1. This result is defined by:

σ(Zi) =
eZi

N
∑

j=1
eZj

for i = 1, · · · , N and Z = (Z1, · · · , ZN) ∈ RN , (1)

where the input vector Z consists of N real numbers in the last layer, and each component
must be in the interval (0, 1). The values in the Z vector should add up to 1, and each value
represents the probability of each neuron. The maximum value from this layer represents
the outcome of this architecture.

Finally, the outcome of this architecture represents the analysis performed on the
content of messages from social networks. Its objective is to address scenarios where it
is vital to detect any of the four variants of cyberattacks mentioned above. The goal is to
prevent users from falling victim to malicious acts that can compromise both digital assets
and private personal information. However, this approach is limited to these four variants
of cyberattack due to the type of data on which it was trained, which involves supervised
learning. However, by not depending on a specific data source or a third-party service,
the design of this architecture could be trained with other types of cyberattacks that rely
on how the elements of the training dataset are categorized for the correct detection and
classification of threats.

5. Results and Discussion

This section presents, interprets, and discusses the results obtained using this CNN
architecture for cyberattack detection and classification tasks. Firstly, the results, graphs,
tables, and confusion matrices related to the outcomes and behavior of the proposed
approach are presented. Secondly, in the discussion subsection, the results of this study are
compared to the works mentioned in Section 2.

5.1. Results

The labeled messages used to conduct the training and testing tasks come from the
review tasks carried out by the research team and from previously cited information sources.
Figure 4 shows the performance of the model using the final settings of the architecture,
where the graphs represent the behavior of the loss function and accuracy value during the
training and testing processes.

Figure 4. Behavior of the CNN architecture during the training and testing processes using the values
shown in Section 4.3. (a) Value of the loss function. (b) Accuracy value of the CNN architecture.
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As can be seen, Figure 4a shows that the loss function or cost function tended to
decrease in value simultaneously during training and testing, reaching a point where the
error value of the model was much lower for the training data compared to the test data due
to the system adjusting the values during training. Meanwhile, the test data show the effect
on the model using these settings. Furthermore, this graph depicts that the performance of
the model did not fall into overfitting when the training process attempted to decrease the
error value, achieving an error cost of 0.23 on the training data and 0.64 on the test data
during the loss function evaluation.

On the other hand, Figure 4b shows the accuracy value obtained during the optimiza-
tion of the model. As can be seen, the model reached a maximum level of 0.96 on the
training data. Similarly, the behavior of the model on the test data increased, achieving an
accuracy value of 0.82, demonstrating that these values remained almost constant during
training and testing, presenting only minimal variation. Therefore, there was no reason to
continue training the model and avoid falling into overfitting.

To address the first part of the problem outlined in Section 3, which involved detecting
whether a message contains characteristics of any of the four analyzed cyberattacks, the
accuracy, precision, recall, and F1 score values were obtained using the model with the
test data, as shown in Table 3.

Table 3. Cyberattack detection results.

Precision Recall F1 Score

Irrelevant 0.89 0.93 0.91
Cyberattack 0.93 0.88 0.90

Accuracy 0.91

For the second part of the problem, the messages were classified according to the
characteristics of cyberattacks related to spam, phishing, malware, and bots, as shown
below. In addition, a subset of irrelevant messages was utilized to evaluate the accuracy
in situations where false positives occur during the detection task of the model, achieving
an accuracy value of 0.82 for this task. Table 4 shows the precision, recall, F1 score,
and accuracy values achieved in the evaluation task.

Table 4. Cyberattack classification results.

Precision Recall F1 Score

Irrelevant 0.89 0.93 0.91
Phishing 0.71 0.77 0.74
Malware 0.76 0.56 0.65
Bot 0.60 0.52 0.55
Spam 0.85 0.92 0.88

Accuracy 0.82

Figure 5 demonstrates the confusion matrices related to the results of the messages
analyzed using this CNN architecture with the test data to evaluate the cyberattack detec-
tion and classification tasks. Figure 5a shows the number of cyberattacks and irrelevant
messages correctly detected, or true positives and negatives. As can be seen, the cor-
rectly detected results are much higher than the remaining values in this confusion matrix,
validating the cyberattack detection performance with an accuracy of 0.91.

Figure 5b displays the distribution of the results when the model performs tasks to
classify the message according to the type of cyberattack identified. It shows how the
predicted results appear with respect to the actual labeled messages in the confusion
matrix that encompasses the five categories. Hence, this CNN architecture demonstrates its
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effectiveness by accurately classifying true positives and negatives while addressing the
remaining values within this matrix.

Figure 5. Confusion matrices of messages analyzed during the evaluation of the model utilizing the
proposed CNN architecture. (a) Cyberattack detection. (b) Cyberattack classification.

Even though the proposed approach achieved a lower accuracy value in the classifica-
tion process compared to the detection process, it could still identify a considerable number
of messages related to any of the four types of cyberattacks in the problem. Likewise, if the
model misclassified the content into another category, it could still identify a threat as a
possible cyberattack rather than irrelevant content.

5.2. Discussion

One of the notable aspects of this work is the integration of NLP tools with a deep
learning model, which has proven to be a synergistic approach in cyberattack detection
tasks, as demonstrated in the works by Ashour et al. [21], Wu et al. [22], and Feng et al. [23].
Table 5 shows a comparison of the results of the proposed model with the results obtained
in the works discussed in the literature review presented in Section 2.

Table 5. Comparison of cyberattack detection results.

Model Cyberattacks Accuracy F1 Score

Random Forest [19] Phishing 0.948 0.95
Random Forest [26] Phishing 0.95 0.94
Deep NN [22] Spam 0.942 0.94
Our CNN Spam, malware, phishing, and bot attacks 0.91 0.904
CNN [24] Spam 0.957 0.894
Random Forest [25] Spam, malware, and phishing 0.971 0.838
n-grams [21] Spam 0.794 0.794
CNN [23] Spam 0.9136 —
Naive Bayes [20] Spam and malware 0.703 —

These works are arranged in descending order according to the F1 scores. The F1
score is a more effective metric for solving class imbalance issues compared to the accuracy
metric, which is better suited for balanced classes.

In this comparison, it can be seen that the approaches of Liew et al. [19] and Djaballah
et al. [26] were the top performers with the highest F1 values. They analyzed URLs in
social network messages to detect phishing. However, the proposed approach performs the
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detection task regardless of whether there is a URL present in the content. Even if multiple
URLs are present, it detects any of the four types of cyberattacks mentioned earlier, making
it possible to explore whether more than one cyberattack appears in a single message.

Although this work did not obtain the highest F1 score, its score was promising with a
value of 0.904. One notable aspect of this work is its ability to detect four different types of
cyberattacks. Meanwhile, the message analysis tasks in the works by Chen et al. [25] and
Erkal et al. [20] could identify up to three different types of cyberattacks but achieved F1
values of less than 0.84.

Finally, the analysis of messages based on the content and characteristics of social
network accounts has proven to be a complementary resource in detection tasks, as demon-
strated in the works by Madisetty et al. [24] and Chen et al. [25], who developed method-
ologies based on features of specific social networks. On the other hand, the approach in
this work presents a model that relies solely on the message content, independent of the
data source, allowing its implementation for the detection and classification of cyberattacks
in content from diverse social networks.

6. Conclusions

Nowadays, social networks are being used as attack vectors to distribute malicious
content to numerous users. As an alternative countermeasure, this work presented an
approach for analyzing social network messages through a series of procedures based
on NLP tools and a CNN architecture to detect and classify four types of cyberattacks:
malware, phishing, spam, and a defined version of a bot attack.

In this work, a collection of labeled messages was utilized as a corpus, where each
element was categorized based on its content as either a cyberattack or considered irrelevant
if it did not fit into any of the established cyberattack categories. Thus, this corpus is
defined as an imbalanced dataset because the number of messages is different for each class,
allowing represent the environment where, by itself, the amount of irrelevant messages is
superior to those identified as cyberattacks.

Regarding the initial problem, this approach showed promising results in detecting
cyberattacks, or elements that belong to the set C, with an accuracy of 0.91. It also demon-
strated a favorable trend in classifying malicious content into one of the four cyberattack
categories, or the classification of elements into subsets of C (C1, C2, C3, and C4) in the
second part of the problem, with an accuracy of 0.82.

Finally, the proposed approach showed that it can operate without relying on specific
social networks, third-party services, or blacklists that identify users or addresses reported
and updated by a service provider. Therefore, this work does not rely on the specific
characteristics of particular social networks, and it can be implemented to analyze the
content from various social media services.

In future work, we will focus on enhancing the performance of cyberattack classifica-
tion tasks by considering other message characteristics or integrating other NLP techniques,
such as sentiment analysis or vector representations for words like GloVe. The idea behind
these enhancements is that they could potentially improve the results achieved in this work.
On the other hand, since this model is not dependent on a third-party service, a specific data
source, or a platform, future tasks could involve increasing the number of cyberattacks the
model can detect. This would require efforts in gathering and categorizing a comprehensive
set of messages for the training dataset, based on the different threats to be included in
this model.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
DL deep learning
IDF Inverse Document Frequency
IDS Intrusion Detection System
IoC Indicators of Compromise
IoT Internet of Things
IPS Intrusion Prevention System
ML machine learning
NER Named Entity Recognition
NLP natural language processing
NN neural network
POS Part-of-Speech
RF Random Forest
RNN recurrent neural network
TF Term Frequency
URL Uniform Resource Locator
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