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Abstract: Applications of deep learning (DL) in autonomous vehicle (AV) projects have gained
increasing interest from both researchers and companies. This has caused a rapid expansion of scien-
tific production on DL-AV in recent years, encouraging researchers to conduct systematic literature
reviews (SLRs) to organize knowledge on the topic. However, a critical analysis of the existing
SLRs on DL-AV reveals some methodological gaps, particularly regarding the use of bibliometric
software, which are powerful tools for analyzing large amounts of data and for providing a holistic
understanding on the structure of knowledge of a particular field. This study aims to identify the
strategic themes and trends in DL-AV research using the Science Mapping Analysis Tool (SciMAT)
and content analysis. Strategic diagrams and cluster networks were developed using SciMAT, al-
lowing the identification of motor themes and research opportunities. The content analysis allowed
categorization of the contribution of the academic literature on DL applications in AV project design;
neural networks and AI models used in AVs; and transdisciplinary themes in DL-AV research, in-
cluding energy, legislation, ethics, and cybersecurity. Potential research avenues are discussed for
each of these categories. The findings presented in this study can benefit both experienced scholars
who can gain access to condensed information about the literature on DL-AV and new researchers
who may be attracted to topics related to technological development and other issues with social and
environmental impacts.

Keywords: artificial intelligence; deep learning; autonomous vehicles; autonomous driving;
systematic review; research agenda

1. Introduction

Given the massive increase in vehicle traffic worldwide, issues such as road safety,
traffic congestion, CO2 emissions, and sustainability are becoming critical [1]. Concerning
safety, according to the World Health Organization [2], every year road traffic accidents
cause 1.35 million deaths worldwide; additionally, 20 to 50 million people experience
non-fatal injuries. Furthermore, the negative impact of traffic congestion on pollution,
greenhouse gas emissions, and people’s health is well documented [3,4].

In this context, autonomous vehicles (AVs) have grown in importance as a potential
solution to these challenges, boosted by the rapid expansion of artificial intelligence (AI)
applications in this area [1,5]. Both safety and sustainability factors contribute to this
increased interest. In terms of safety, critical reasons for car crashes were estimated to
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be more than 90% related to human errors, whereas vehicle failures were responsible for
2% [6]. Furthermore, AVs can help with fuel economy, reduced pollution, car sharing, and
improved traffic flow [5].

Given the rapid increase in scientific production of AVs and AI, this topic has become
conducive to conducting systematic literature reviews (SLRs) to organize knowledge on
the topic. For instance, Nascimento et al. [1] conducted a SLR to investigate how AI-based
systems impact AV safety, and Parekh et al. [7] looked into the current state of research and
development in environment detection, pedestrian detection, path planning, motion control,
and vehicle cybersecurity for AVs. Some authors have been expanding the discussions
on AVs to address topics of paramount importance to society; for instance, Kostrzewski
et al. [8] discussed the Internet of Vehicles (IoV) and sustainability, specifically focusing on
issues related to Environmental, Social, and Corporate Governance (ESG). From another
perspective, some authors have focused on particular aspects; Jebamikyous and Kashef [9]
focused on AV perception related to Semantic Segmentation and Object Detection; Pavel
et al. [10] on RGB camera vision; and Fayyad et al. [11] on sensor fusion algorithms for
perception, localization, and mapping. Other studies have concentrated on specific area of
AI, such as deep learning (DL). Mozaffari [12] reviewed research on DL-based approaches
for vehicle behavior prediction, whereas Cui et al. [13] studied DL applications for data
fusion approaches that leverage both image and point cloud.

A critical analysis of the existing SLRs on AI and AVs reveals some methodological
similarities, including the absence of quantitative methods and the use of traditional
approaches such as content analysis to examine a limited number of documents. Thus,
using quantitative approaches to investigate the academic production regarding AI and AVs
can be of great value, especially when bibliometric software are used, which are powerful
tools for analyzing large amounts of data and for providing a holistic understanding on
strategic themes of a particular field of knowledge [14].

To address this gap, the objective of this paper is to identify the strategic themes and
trends in DL-AV research. To accomplish this, it employs the Science Mapping Analysis
Tool (SciMAT) and content-centric analysis to identify how DL has been applied in AV
projects, as well as the main techniques, models, and datasets. Based on that, two research
questions guided this study:

• RQ1: What are the strategic themes of DL and AVs?
• RQ2: What are the trends and opportunities related to DL-AV for researchers and

practitioners?

The remainder of this paper is organized as follows. Section 2 describes the method-
ological procedures to conduct scientific mapping and contributions of the SciMAT appli-
cation. Section 3 presents the results and discussion based on the strategic diagrams and
cluster networks generated by SciMAT, in addition to the outcomes of content analysis.
Finally, Section 4 presents the conclusions, limitations, and suggestions for future studies.

2. Materials and Methods
2.1. Research Protocol

The databases chosen for this research were Scopus and Web of Science (WoS) due to a
combination of important features, including their wide global and regional coverage of
scientific journals [15], which encompasses journals from other relevant databases such as
Emerald and IEEE; its high-quality peer-reviewed journals in the areas of interest when
compared to EBSCO, Google Scholar, or others [15]; and the availability of compatible
metadata for bibliometric analysis software [16].

Prior SLRs, e.g., [1,8,11], were used as a basis for developing the search string, which
was defined as follows: (“artificial intelligence” OR “deep learning”) AND (“autonomous
vehicle*” OR “autonomous driv*” OR “self-driv*”). The following criteria were used as
filters: only journal articles and reviews; publications from 2017 to 2022; document available
in English; and search terms appear in the title, abstract, or keywords.
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The identification of studies followed the PRISMA protocol as depicted in Figure 1.
The PRISMA 2020 Checklist proposed by Page et al. [17] can be found in the Supplementary
Material.
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After applying these filters and removing the duplicates, the initial search resulted in
1914 articles. The screening process commenced by having two reviewers independently
examine the titles, abstracts, and keywords of the articles. Subsequently, the researchers’
analyses were compared, and a total of 89 articles were chosen for the subsequent stage
of analysis. Then, a content analysis following Elo and Kyngäs’s [18] recommendations
was performed to evaluate the adequacy of the studies for the scope of the research. This
process resulted in 61 articles that were fully read to determine scope appropriateness.
Only two documents were excluded as the research did not have access, resulting in a final
sample of 59 articles.

This process was conducted in June 2022. As recommended by Tranfield et al. [19], an
update search to identify potential studies was conducted in June 2023, with no changes to
the final sample. The data from the 59 articles was then extracted from the Scopus and WoS
databases by creating a file in the RIS (Research Information Systems) extension, which
allowed uploading to the SciMAT software [20]. This review was not registered.

2.2. Science Mapping Analysis Tool (SciMAT) Application

After the data retrieval, the recommendations of Cobo et al. [20] were followed to
structure the application of SciMAT as summarized in Figure 2.
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Figure 2. Methodological procedures for the application of SciMAT. Source: Developed by the authors
based on Cobo et al. [20].

In the preprocessing stage, similar terms were grouped using singular/plural, 1- and
2-character difference, and manual evaluation by meaning (e.g., “Internet of Things” and
“IoT”). This process resulted in 573 groups of words.

As proposed by Cobo et al. [20] and Furstenau et al. [21], the sample was divided
into time periods (TP) in order to facilitate chronological analysis and the identification of
evolutionary patterns: TP1 (2017–2018), TP2 (2019–2020), and TP3 (2021–2022), with 2, 22,
and 36 articles, respectively.

SciMAT’s co-word analysis capabilities allow researchers to identify key topics, con-
cepts, and themes that are prevalent within a given research domain [20,22]. By analyzing
the frequency and co-occurrence of specific terms in the literature, SciMAT is a powerful
tool to uncover the underlying thematic structure of a field and identify emerging research
areas or interdisciplinary connections [23]. The main graphic outcomes from SciMAT are
the strategic diagrams and network structures.

The strategic diagram (Figure 3) represents the centrality (degree of importance) of
the themes on the X axis and the density (degree of development) on the Y axis, resulting
in four quadrants: (Q1) motor themes, which are important topics with high development;
(Q2) basic and transversal themes, which may become motor themes in the future due
to their high centrality; (Q3) emerging or declining themes, which require a qualitative
analysis to determine the extent to which they are emerging or declining; and (Q4) highly
developed and isolated themes, which are themes that have lost importance because of the
appearance of a new concept or technology [21,22].
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on Cobo et al. [20].

SciMAT generates cluster networks to support the analysis of theme co-occurrence,
providing a view of the degree of interaction between themes and subthemes [20]. The
network structures are useful for the analyses, since they help in understanding the mag-
nitude of the impact of a theme in the area and the strength of the connection between
themes [20,24–26].
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It is important to mention that this study concentrated on the thematic network
structures of the motor themes with the highest density and centrality indicators. The
choice to focus on motor themes is suitable for the objective of this study, which is to analyze
the thematic evolution and trends in DL-AV research, as proposed by Gibbin et al. [23].

2.3. Content-Centric Analysis

In addition to the bibliometric analysis, a content-centric analysis [27] of the arti-
cles was performed. The methodological procedures followed the recommendations of
Bardin [28]. Among the content analysis approaches proposed by this author, the categori-
cal analysis technique was used, which is appropriate for data analysis through coding and
thematic organization. Figure 4 shows its integration into the methodological approach of
the study.
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Content-centric analysis is an essential methodological approach for advancing knowl-
edge, particularly in rapidly evolving fields characterized by significant advancements in
recent years [27], such as the case of DL-AV.

This stage of the study was performed based on the following steps: pre-analysis,
coding, classification, and interpretation. According to Bardin [28], pre-analysis refers to the
construction of the corpus, which consists of the material to be analyzed (see Section 2.1 of
Materials and Methods, which explains the methodological procedures followed to define
the sample). The coding and classification of the articles was performed considering the
following elements: themes, DL techniques, components of AV project design, AI models,
and datasets. Finally, the interpretation involved combining the results of bibliometric
analysis with SciMAT and content analysis, which served as the basis for developing
this paper.

3. Results and Discussion

Due to the main characteristic of the software used being its visual power, it was
deemed pertinent to present the results and discussion in an integrated manner in this
section, allowing for greater clarity of the relationship between the findings and the figures
generated by SciMAT. Thus, the results and discussion for this study were organized as
follows: strategic diagrams (Section 3.1), cluster networks (Section 3.2), and content analysis
(Section 3.3).

3.1. Strategic Diagrams

SciMAT generated two strategic diagrams: 2019–2020 (Figure 5a) and 2021–2022
(Figure 5b). There were no motor themes identified for the period 2017–2018.
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The cluster “OBJECT-DETECTION” appears in Q2 of 2019–2020 and then moves to
Q1 as the most relevant motor theme in 2021–2022. According to Cobo et al. [20], Q2 refers
to basic and transversal themes. These are important topics, but they have not yet been
fully developed; thus, the shift to Q1 in the subsequent period indicates that researchers
began to explore further and increased academic production on this theme.

The literature analysis helps to understand this finding. Fujiyoshi et al. [29] presented
techniques used before and after DL in the context of convolutional neural networks
(CNNs), revealing the impact on image recognition (i.e., object detection and image classi-
fication, among other image-related tasks). Furthermore, Wen and Jo [30] presented the
evolution of several computer vision tasks in AVs, including object detection, demonstrat-
ing how these were fueled by new sensors used in AV perception. Thus, the evolution of
the topic of object detection in AVs in recent years can be associated with the revival of
CNN research and sensor innovations. As examples, LiDAR [31] and RADAR [32] sensors
contributed to enhancing the precision of environment recognition. With the advancement
of AV hardware, current models account for not only images captured by cameras, but also
the LiDAR point cloud and/or distance measured by the RADAR [13].

The cluster “CONVOLUTION-NEURAL-NETWORK” is the only one that is posi-
tioned in Q1 in the period 2019–2020 and, despite its reduced density, remains a motor
theme in the period 2021–2022. CNN and object detection are both hot topics in DL and AV
research. It is worth noting that, while object detection is a type of problem to be solved,
CNN is a potential approach to solving it [33].

The analysis of the remaining quadrants reveals additional important themes in DL-
AV research. For the period 2019–2020 (Figure 5a), Q2 shows the presence of the cluster
“ENVIRONMENT-PERCEPTIONS”, which is directly related to perception tasks including
object detection and recognition. It is also interesting to note that the cluster “REINFORCE-
MENT LEARNING”, which is related to the learning process in which an agent learns
based on feedback from the environment [34], was placed between the quadrants, despite
not becoming a motor theme.

The most recent strategic diagram (2021–2022) (Figure 5b) reveals additional important
DL-AV research topics, such as the Q1 cluster “NETWORK-SECURITY”. Given that AI
models are in control of AV behaviors [12], this is a critical motor theme. In Q2, the cluster
“IMAGE-FUSION” is directly related to sensor fusion, which is a process of perception of the
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environment using various types of sensors such as cameras, LiDAR, and RADAR [12,28].
Furthermore, the cluster “TRAFFIC SIGNS” should be noted as it refers to the importance
of advancing knowledge on the detection process and correct classification of traffic signs
in order for AVs to take the appropriate actions in accordance with traffic laws [26,31].

3.2. Cluster Networks

Considering the motor themes with highest density and centrality, network structures
were generated by SciMAT for the periods 2019–2020 (Figure 6a) and 2021–2022 (Figure 6b):
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For the period 2019–2020 (Figure 6a), the cluster “CONVOLUTION-NEURAL-NETWORK”
is the main one, which is associated with 17 articles. This central cluster (motor theme) connects
to other clusters (sub-themes) related to technical aspects (e.g., deep neural networks and
network architecture) and applications (e.g., computer vision and object recognition). As
observed in the strategic diagrams, although the cluster related to CNN decreased in density
and centrality in the period 2021–2022 (see Figure 5), its position as a motor theme was sustained,
and it is worth noting that it is linked to 13 articles in this period.

Considering the network structure for the period 2021–2022 (Figure 6b), the central
cluster is “OBJECT-DETECTION” with 36 articles. The connections observed indicate a
strong association with cluster “OBJECT-RECOGNITION”, as well as with “OPTICAL-
RADAR” and “CAMERAS”.

The integrated examination of strategic diagrams, cluster networks, and content anal-
ysis provides a chronological and conceptual understanding of the relevance of the motor
themes and their connections. Object detection techniques reached a critical threshold in
2010, as the simplest techniques for extracting features from images became saturated [35].
The reinvention of CNN studies [33] transformed research on DL tasks with images, includ-
ing object detection. The main advancement of CNNs was the capability of robust learning
regarding high-level image feature representation [33,36]. The Region CNN (RCNN) [37]
contributed to the evolution of object detection studies. Following this, a number of
other models emerged, including: Spatial Pyramid Pooling Networks (SPPNets) [38], Fast
RCNN [37], Faster RCNN [39], Feature Pyramid Networks (FPNs) [40], You Only Look
Once (YOLO) [41], Single Shot MultiBox Detector (SSD) [42], and RetinaNet [43]. This
demonstrates that the increased interest in DL techniques for object detection is directly
related to the increase in CNN research, indicating that the motor theme associated with
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CNN loses some space to object detection, despite their evolution being closely linked in
most cases [33,34,44].

3.3. Content-Based Thematic Analysis

To complement the analysis performed using the strategic diagrams and cluster net-
works generated by SciMAT, content analysis was used to improve the robustness of the
results. The iterative process of analyzing and classifying the articles yielded three useful
categories for organizing DL-AV research knowledge: DL applications in AV project design;
neural networks and AI models used in AVs; and transdisciplinary themes in DL-AV
research. Each of the categories is discussed in the following sections.

3.3.1. DL Applications in AV Project Design

According to Pendleton et al. [45], AV architecture is typically composed of four com-
ponents: perception, localization, planning, and control. The first component, perception,
is concerned with understanding the environment and detecting obstacles. The second
component, localization, enables the AV to locate itself, i.e., to estimate its position in
the environment accurately. Planning entails predicting the future position of the targets
(relative to the vehicle) in order to anticipate and plan the vehicle’s trajectory from point A
to point B. The system can operate once it has a trajectory plan. The execution is conducted
by the control component, which produces the correct generation of the car’s movements,
including the angular position of the steering wheel and the specified speed control flow,
in order to safely achieve the planned path [45].

Based on the framework proposed by Pendleton et al. [45], each article was categorized
in terms of the component examined. Of the 59 articles reviewed, 16 did not specify the AV
design component under consideration, and 12 addressed more than one. The results are
summarized in Figure 7.
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Figure 7. Mapping of DL applications in AV project design. Source: Authors.

The prevalence of articles dealing with perception is evident. Perception is typically
the first component designed in AV projects, as it refers to the vehicle’s perception of the
environment, including tasks such as semantic segmentation, object detection, and object
recognition [46,47]. Sensor research using cameras, LiDAR, or RADAR is included in AV
perception studies. Another area of research is sensor fusion, which involves combining
different sensors [26,48,49].

Research dealing with the control component is related to end-to-end AV projects in
both industry and universities, and it can be defined as simplified AV designs consisting
of two main parts: perception and control. End-to-end projects are trained models that
capture the environmental situation through frames of video images captured by a camera
and, based on the analysis of the environment, take driving actions by controlling vehicle
parameters such as wheel twisting angle and speed through acceleration and braking
processes [50].
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End-to-end projects are more efficient than four-component AV designs (perception,
localization, planning, and control) because they are faster to prototype; additionally, these
systems are designed to learn from a large number of experiments rather than relying on the
various parts of the entire project [48–50]. As a result, there is a limited number of articles
addressing DL applications on the localization and planning components. Moreover, these
components were not always addressed as central topics, but rather as supporting elements.
As an example, Fayyad et al. [11] discussed sensor fusion, which is normally used for
perception, but in the context of system localization by fusing data collected from various
types of sensors.

In terms of DL applications in AV project design, the main trend observed is the
improvement of techniques (and models) for object detection and recognition, as this is
a critical component of the project. Another opportunity is to develop new (or improve
existing) control techniques for use in end-to-end AV projects. Researchers can consider the
increased use of AV simulators such as Carla or ApolloScape, which allow development
and training of an external AI model before embarking on a simulator to test its behavior
in a virtual environment. Furthermore, more detailed exploration of AI models for the
localization and planning processes of AVs is required, as this is a topic that has received
little attention and offers many opportunities for innovation.

3.3.2. Neural Networks and AI Models Used in AVs

The content analysis enabled the mapping of neural network techniques used in AVs
(Figure 8).
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Figure 8. Mapping of neural network techniques used in AVs. Source: Authors.

CNN was clearly the most commented on in the sample analyzed, which is consistent
with previous analyses using SciMAT software. Another technique worth mentioning is the
Recurrent Neural Network (RNN), which is related to Long Short-Term Memory (LSTM).
These techniques are widely applied in pattern recognition in sequential data such as text,
genomes, handwriting, spoken words, sensor data, stock exchange data, videos, and so
on [51–53]. RNN can also be used in non-sequence information problems, such as computer
vision problems, e.g., [51].

Regarding neural network techniques used in AVs, a research opportunity is to further
explore new techniques such as liquid neural networks and transformers. The liquid neural
network (LNN) was created by researchers at the Massachusetts Institute of Technology’s
(MIT’s) Computer Science and Artificial Intelligence Laboratory, and its main feature is
that it learns on the fly, rather than just during training. To accomplish this, such networks
modify their equations in order to continuously adapt to new data inputs, hence the name
“liquid”. This enables decision making based on changing data streams, such as in medical
diagnostics and autonomous vehicle driving [54,55].

Transformer is an architecture designed to solve sequence-to-sequence tasks while
handling complex dependencies. This architecture computes its input and output represen-
tations without using sequence-aligned RNNs or convolutional layers, instead relying on
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the mechanism of attention [56]. Vaswani et al. [57] introduced this model, which employs
the attention mechanism while accounting for the influence of various parts of the input
data. It has primarily been used in natural language processing (NLP) tasks, but recent
research shows promising results in other tasks, such as video comprehension.

AI models used in AV design are built using one (or more) DL techniques. The content
analysis enabled the identification of more than 100 different models, of which the most
frequently mentioned are shown in Figure 9.
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Figure 9. Mapping of AI models used in AV projects. Source: Authors.

When developing a machine-learning project, one of the first things to be studied and
defined is the dataset that will be used for training, testing, and validation of the model or
algorithm. A robust and reliable database is required in the development of AV projects in
order to perform AI model training and validation. Thus, the datasets were also mapped
(Figure 10).
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The KITTI benchmark [56] is a popular and widely used benchmark in the design of
AVs. This dataset was developed by researchers at the Karlsruhe Institute of Technology
and the Toyota Technological Institute (KITTI). Its goal is to contribute to the research
and development of AV projects, specifically stereo tasks, optical flow, visual odometry or
SLAM, and 3D object detection.

Geiger et al. [56] asserted that KITTI is composed of 389 stereo and optical flow image
pairs, 39.2 km of stereo visual odometry sequences, and over 200,000 annotations of 3D
objects captured in cluttered scenarios. Hours of recordings of various traffic scenarios, in
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daytime and various weather conditions, were used to collect the data. As illustrated in
Figure 11, the dataset for vision tasks was created using the standalone driving platform.
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Other datasets identified, such as CityScapes, BDD100K, ApolloScape, Caltech, CamVId,
nuScenes, PASCAL, and Waymo Open Dataset, are very similar to KITTI but were created by
other research groups from universities or companies, using different platforms and sensors
for data collection.

Finally, it is worth mentioning that more than 73 different datasets were found. A
total of ten articles did not present specific datasets, and eight articles presented their own
datasets, which means that the researchers developed an AI project in which a dataset was
created for training, validation, and testing of the proposed model (or technique) [58].

3.3.3. Transdisciplinary Themes in DL-AV Research

In addition to the topics with a more technical focus related to DL and AV, it is
important to recognize emerging issues that transcend the limits of disciplines.

Four themes stand out as having a high potential for development in future research:

• Energy: Vega et al. [59] and Balasekaran et al. [60] highlighted the issue of energy
efficiency, owing to the fact that AI models, in general, have a high computational cost
and, as a result, require large amounts of energy resources;

• Legislation: Thiele-Evans et al. [61] and Ning et al. [62] discussed the legislation of
commercial implementation of AVs, comparing the progress in this area in various
countries;

• Ethics: Cunneen et al. [63] addressed ethics in AV projects, a topic that is directly
related to legislation, because in many countries, the main debate for approving
commercial use of AVs is about ethical barriers. The trolley problem is the most
well-known ethical issue concerning AVs [60];

• Cybersecurity: Khan et al. [64] and Deng et al. [48] concentrated on AI models that can
aid in the detection of AV computational system attacks. Furthermore, Jiang et al. [65]
investigated how attacks on AVs are carried out by experimentally replicating some
scenarios. One possible attack is on the interaction of corrupted data in vehicle model
training, so that the AV model is trained with “poisoned” data, causing it to make
errors in actual decisions.
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3.4. Research Agenda Proposal and Future Perspectives

Based on the insights from the strategic diagrams and cluster networks generated by
SciMAT and the content analysis of the selected articles, a research agenda was developed.
Table 1 presents the research questions and suggested references.

Table 1. Research agenda for DL-AV.

Topics Research Questions References

DL application in AV
project design

• How can DL techniques be applied to optimize the design and
performance of AV projects?

[66,67]

• What are the key challenges and considerations in integrating DL
algorithms into AV design processes?

[6,68,69]

• How can DL contribute to enhancing safety, efficiency, and user
experience in AVs?

[9,12,70]

Neural networks and AI
models used in AVs

• How can specific neural network architectures, including CNNs
and RNNs, be used in innovative ways in AVs for tasks such as
object recognition, path planning, and decision making?

[71,72]

• What specific training and fine-tuning approaches can be employed
to optimize the performance of neural networks in enhancing object
recognition, path planning, and decision-making capabilities
in AVs?

[73]

• What are the limitations and potential risks associated with neural
network-based techniques in AV applications?

[74,75]

• What cutting-edge AI models are tailored for AVs, and how do they
enhance functionalities like adaptive decision making and real-time
environment perception?

[74,76,77]

• How do dataset availability and quality impact the performance
and reliability of AI models in AVs, and how can dataset limitations
be addressed to improve model robustness and generalization?

[78,79]

• What are the ethical challenges in using AI models and datasets in
AV research, specifically regarding biases in decision making,
privacy concerns, and societal impact? How can these challenges be
mitigated to ensure responsible deployment of AI in AVs?

[80–82]

Transdisciplinary themes
in DL-AV

• What DL approaches can be used to address energy efficiency
challenges in AVs, such as optimizing power consumption,
maximizing battery life, and minimizing energy waste
during operations?

[83]

• What are the legal and regulatory challenges of integrating DL
algorithms into AVs, including liability, safety regulations, and
compliance with transportation laws? How can these challenges be
addressed to facilitate the widespread adoption of DL technologies
in AVs?

[84–86]

• What ethical and cybersecurity challenges arise from using DL in
AVs, specifically in terms of privacy, data integrity, adversarial
attacks, and system vulnerabilities? How can these challenges be
effectively addressed to ensure safe and secure operations while
maintaining ethical standards and protecting user privacy?

[79,87]
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Several potential research avenues emerge when considering DL applications in AV
project design. The exploration of DL techniques has the potential to revolutionize the
design and performance of AV projects. By leveraging DL algorithms, researchers can
delve into unexplored territories and uncover new possibilities for optimizing the overall
functionality, efficiency, and safety of AVs. This includes developing advanced perception
systems, adaptive decision-making algorithms, and intelligent control strategies that can
significantly enhance the capabilities of AVs, leading to a paradigm shift in the field [66,67].
Furthermore, integrating DL algorithms into AV design presents a complex landscape
with various challenges and considerations. Researchers must navigate issues such as
computational resource requirements, algorithmic complexity, model interpretability, and
real-time constraints. Moreover, ensuring seamless integration with existing components
and systems, addressing hardware limitations, and designing robust validation and testing
frameworks are crucial aspects to overcome in order to successfully harness the power of DL
in AV design [6,68,69]. In addition, the potential of DL in enhancing safety, efficiency, and
user experience in the realm of AVs is substantial. DL techniques enable more accurate and
reliable perception of the environment, allowing AVs to make better-informed decisions and
react swiftly to changing situations. Additionally, DL can optimize energy consumption,
improve route planning, and enhance the overall comfort and convenience for passengers,
revolutionizing the way we perceive and interact with AVs [9,12,70].

The future perspectives of DL applications in AV project design are promising. By
leveraging the power of DL algorithms, researchers can unlock new frontiers in enhancing
the capabilities and performance of AVs [35,77]. This includes advancements in perception
systems, decision-making algorithms, and control strategies, enabling autonomous vehicles
to navigate complex environments with improved efficiency and safety [1,88]. Additionally,
DL can drive innovation in areas such as advanced sensor fusion, real-time object detection
and recognition, and adaptive path planning, leading to the development of more robust
and reliable AVs [7].

Regarding neural network techniques used in AVs, the revolutionary utilization of spe-
cific neural network architectures, such as CNNs and RNNs, has the potential to transform
AVs. By leveraging CNNs, researchers can achieve state-of-the-art performance in object
recognition, enabling AVs to accurately identify and track objects in their surroundings.
RNNs, on the other hand, offer the capability of modeling sequential data and making
informed predictions, facilitating tasks like path planning and decision making in complex
and dynamic environments [71,72]. The full potential of neural networks can be unlocked
by employing advanced training and fine-tuning approaches. Through techniques like
transfer learning, data augmentation, and ensemble methods, researchers can enhance the
object recognition, path planning, and decision-making capabilities of AVs. By leveraging
large-scale datasets and adopting sophisticated training strategies, neural networks can
achieve higher accuracy, robustness, and adaptability, leading to more reliable and efficient
AV systems [73]. Moreover, neural network-based techniques in AV applications come
with limitations and potential risks that need to be carefully investigated. These include
issues such as interpretability, potential biases in decision making, robustness to adversarial
attacks, and safety concerns. Researchers must delve into these challenges, striving to
develop methods that provide transparency, fairness, and resilience to ensure the safe and
reliable operation of AVs in real-world scenarios [74,75].

Embracing cutting-edge AI models tailored for AVs opens up new possibilities for
enhancing functionalities such as adaptive decision making and real-time environment
perception. State-of-the-art AI models, including reinforcement learning algorithms, gener-
ative adversarial networks, and transformer models, can revolutionize how AVs perceive,
analyze, and interact with their environment. These models enable advanced cognitive
abilities, adaptability, and intelligent responses, significantly elevating the capabilities of
AVs [74,76,77]. Dataset availability and quality play a crucial role in the performance and
reliability of AI models in AVs. Researchers need to illuminate the impact of datasets on
model performance, ensuring that the data used for training and testing is representative,
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diverse, and accurately annotated. Moreover, addressing limitations such as data scarcity,
domain shifts, and biases is essential to improve the robustness and generalization of AI
models, enabling more reliable and trustworthy AV systems [78,79]. From another per-
spective, navigating the ethical challenges in using AI models and datasets in AV research
requires careful consideration to ensure responsible AI deployment. Mitigating biases
in decision-making algorithms is essential to avoid unfair or discriminatory outcomes.
Privacy concerns related to data collection and usage must be addressed to protect the
personal information of users and maintain their trust. Moreover, considering the societal
impact of AVs is crucial to ensure that they align with ethical principles and contribute
positively to communities, fostering equitable access and social well-being [80–82].

The integration of neural networks and AI models in AVs holds immense potential for
shaping the future of transportation. Neural networks enable AVs to process vast amounts
of data, learn from them, and make intelligent decisions in real time [89]. With the ad-
vancement of AI models, autonomous vehicles can exhibit enhanced capabilities in various
aspects, including perception, decision making, and behavior prediction. This opens up
avenues for improving the overall performance, reliability, and safety of AVs, paving the
way for widespread adoption and acceptance of this transformative technology [86].

Finally, transdisciplinary themes in DL-AV have high potential to advance knowledge
and practice in the field. Pioneering DL approaches is essential to overcome energy
efficiency challenges in AVs. Optimizing power consumption and maximizing battery life
are critical factors in extending the range and endurance of AVs. DL techniques can be
utilized to develop innovative algorithms that minimize energy waste during operation,
leading to more sustainable and environmentally friendly AV systems. By harnessing the
power of DL, researchers can drive advancements in energy-efficient technologies and pave
the way for a greener future of transportation [83]. Tackling the legal and regulatory hurdles
associated with integrating DL algorithms into AVs is paramount for their widespread
adoption. Ensuring liability and safety compliance are crucial aspects to build public trust
and confidence in autonomous systems. Navigating transportation laws and regulations is
necessary to address challenges related to accountability, responsibility, and potential legal
implications. Collaboration between researchers, policymakers, and industry stakeholders
is essential to establish a comprehensive legal framework that promotes the safe and
lawful integration of DL technologies into AVs [84–86]. Lastly, addressing the ethical
and cybersecurity challenges posed by DL in AVs is imperative to ensure safe and secure
operations. Safeguarding privacy and data integrity is crucial to protect the personal
information collected by AVs from unauthorized access or misuse. Mitigating the risk
of adversarial attacks, where malicious actors manipulate sensor inputs to deceive the
system, is vital for maintaining the integrity and reliability of AVs. Implementing robust
cybersecurity measures, such as encryption and intrusion detection systems, is essential to
safeguard against potential vulnerabilities and maintain the trust of users in the security of
autonomous systems [79,87].

The transdisciplinary themes that emerge from the intersection of DL and AVs offer
exciting possibilities for the future. DL techniques can be applied not only to enhance
the technical aspects of AVs but also to address broader societal and ethical considera-
tions [8]. For example, research can explore how DL can improve the interpretability and
transparency of autonomous systems, enabling better human–machine collaboration and
trust [88]. Furthermore, investigations into the socio-economic impacts, legal frameworks,
and ethical implications of deep learning in autonomous vehicles can shape the develop-
ment and deployment of this technology in a responsible and inclusive manner [82]. By
embracing a transdisciplinary approach, researchers can unlock new insights and drive
paradigmatic advancements in the field of DL-AV, as well as in science and engineering
more broadly [90].
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4. Conclusions

In a scenario of rapid increase in scientific production on topics related to AVs and AI,
the systematization of knowledge is of great value so that discoveries are enhanced and
new projects are created.

The integrated bibliometric and content analysis approach enabled the identification of
strategic themes (RQ1) and trends (RQ2) in DL-AV research. The findings presented in this
study can benefit both experienced scholars who can gain access to condensed information
about the literature on DL-AV and new researchers who may be attracted to topics related
to technological development and other issues with social and environmental impacts (e.g.,
safety and sustainability).

Identification of motor themes and research opportunities can fuel collaboration
among researchers from all areas of knowledge, integrating concepts, theories, and methods
primarily from computing, environmental, and social sciences for enhancing debates on
themes such as energy, legislation, ethics, and cybersecurity in the context of AVs. Another
significant contribution of this study was the proposal of a research agenda and future
perspectives regarding three topics: DL application in AV project design; neural networks
and AI models used in Avs; and transdisciplinary themes in DL-AV. It is expected that
research will advance in these areas and provide valuable contributions to individuals,
organizations, and society as a whole.

It is important to state the limitations of this study. The methodology’s shortcomings
involve the focus on the Scopus and WoS databases considering publications from 2017
to June 2023. Despite the fact that these are high-quality, representative bases of global
scientific production, it is important that future research include other recognized databases
and increase the sample analyzed. Another methodological limitation is the use of only
one type of software, SciMAT. This tool has proven suitable for the intended objective, but
it would be of great value to have studies that complement and compare the results with
other extensively used software, such as VOSviewer, while also leveraging its additional
benefits, such as bibliometric data on authorship and research collaboration. Regarding
the scope of the analyzed documents, this study primarily focuses on journal articles. It is
crucial for future studies to incorporate recent contributions published in other scientific
dissemination channels. More comprehensive approaches can be adopted, including grey
literature. Finally, the methodology used in this study was centered on examining the
structures of networks of motor themes with the highest degrees of density and centrality,
which opens up several avenues for future research to expand the analysis of transversal,
highly developed, and/or new emerging themes.
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