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Abstract: In the context of pharmaceuticals, drug-drug interactions (DDIs) occur when two or more
drugs interact, potentially altering the intended effects of the drugs and resulting in adverse patient
health outcomes. Therefore, it is essential to identify and comprehend these interactions. In recent
years, an increasing number of novel compounds have been discovered, resulting in the discovery
of numerous new DDIs. There is a need for effective methods to extract and analyze DDIs, as the
majority of this information is still predominantly located in biomedical articles and sources. Despite
the development of various techniques, accurately predicting DDIs remains a significant challenge.
This paper proposes a novel solution to this problem by leveraging the power of Relation BioBERT
(R-BioBERT) to detect and classify DDIs and the Bidirectional Long Short-Term Memory (BLSTM)
to improve the accuracy of predictions. In addition to determining whether two drugs interact, the
proposed method also identifies the specific types of interactions between them. Results show that the
use of BLSTM leads to significantly higher F-scores compared to our baseline model, as demonstrated
on three well-known DDI extraction datasets that includes SemEval 2013, TAC 2018, and TAC 2019.

Keywords: drug-drug interactions; relation extraction; natural language processing; bidirectional
long short-term memory; relation biobert; deep learning

1. Introduction

Drug-drug interactions (DDIs) refer to the effects produced when two or more drugs
interact, potentially impacting the behavior of the drugs [1]. In certain circumstances,
DDIs can cause adverse drug reactions (ADRs), which pose serious health hazards and
life-threatening issues [2]. The use of multiple drugs simultaneously increases the risk of
DDIs, which can endanger patients’ lives and lead to fatalities. DDIs pose a significant
bottleneck for drug administration and patient safety, making them a critical factor affecting
drug-related side effects and patient health [3].

According to U.S. center reports, ADRs cause 300,000 deaths each year in the U.S.
and Europe [4]. Furthermore, 10% of individuals take five or more drugs simultaneously,
with 20% of the elderly population taking at least ten drugs at the same time [5], dra-
matically increasing the risk of ADRs. Due to the significance of DDIs in providing vital
information to patients, medical researchers and public health physicians must possess ac-
curate and up-to-date knowledge of DDIs in order to prescribe drugs safely and effectively.

With the increasing use of drugs, it has become essential to maintain databases that
store comprehensive drug information. However, keeping these databases up to date with
the exponential growth of biomedical literature is a significant challenge [6,7]. Despite
the integration of databases such as DrugBank [8], Therapeutic Target DB [9], and Phar-
mGKB [10], which provide drug information and DDIs to medical researchers and scientists,
a substantial amount of DDIs information remains locked in biomedical articles rather
than being incorporated into databases. As a result, there is a need to develop automatic
methods for extracting DDIs information from these resources. Automatic DDIs extraction
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has the potential to greatly benefit the pharmaceutical industry by reducing the time spent
by healthcare professionals in reviewing medical literature. Therefore, the development of
automatic methods for extracting DDIs from texts is necessary.

DDIs extraction is a relation classification task that involves categorizing pairs of drug
entities into predefined categories within the context of the sentence. Unlike typical text
classification tasks, DDIs extraction requires the model to have knowledge of the drug
entities to accurately learn and perform the classification task.

Numerous techniques have been proposed to extract drug-drug interactions (DDIs),
which can be classified into two categories: pattern-based methods and feature-based
machine learning methods. Pattern-based methods rely on manual patterns for DDIs
classification, which makes them time-consuming and laborious and need a set of domain
specific knowledge [11]. On the other hand, feature-based machine learning methods have
demonstrated superior performance compared to pattern-based approaches over the past
decades. However, these methods heavily rely on specific features, limiting their ability to
capture other significant patterns within texts.

In contrast, deep learning approaches enable models to automatically learn data
representations [12]. To improve the accurate representation of semantic information in
text-related tasks, some methods incorporate techniques from natural language process-
ing (NLP) [13] and employ word vector models such as Glove [14] and Word2vec [15]
to convert each processed token (i.e., the smallest unit of text processing) into a vector
representation. The remarkable performance of BERT (bidirectional encoder representation
of transformers) [16], as well as similar pre-training models, such as SciBERT [17] and
BioBERT [16] in the field of NLP, has led to their successive application in DDI extraction.
Particularly, BioBERT, a biomedical language representation model pre-trained on an exten-
sive biomedical corpus, accurately captures the semantic information embedded within
medical-related texts.

We illustrate the overview of the proposed method in Figure 1. In our model, we em-
ployed R-BioBERT with BLSTM to identify and classify DDIs in biomedical texts. Moreover,
our model goes beyond traditional approaches by extracting DDIs through comprehensive
analysis of the relationship between two drugs within a sentence, surpassing the limitations
of solely relying on drug names or targets. Specifically, our proposed model incorporates
the information from large-scale raw texts by using Relational BioBERT then uses BLSTM
to classify DDIs in sentences.

Figure 1. The model architecture.

We evaluated our method on the SemEval 2013, TAC 2018, and TAC 2019. Experimen-
tal results show that BLSTM boosts the performance of the baseline model (R-BioBERT).
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Our model (R-BioBERT with BLSTM) achieved an F1-Macro of 83.32% on SemEval 2013,
80.23% on TAC 2019, and 60.53% on TAC 2018 DDIs Extraction. These findings indicate
that our model outperforms the baseline model (R-BioBERT).

The main contribution of this work can be summarized as follows:

• Our study proposes a novel approach that leverages the power of integrating BLSTM
and Relation BioBERT to accurately extract drug-drug interactions (DDIs) and classify
their respective types of relationships.

• To evaluate the efficacy of our proposed model, we conducted experiments on three
distinct datasets: SemEval 2013, TAC 2018, and TAC 2019 DDIs Extraction, all of which
involve drug-drug interactions (DDIs) extraction tasks. Our experimental results
demonstrate that our proposed method (is R-BioBERT with BLSTM) outperforms the
baseline model.

The subsequent sections of this paper are organized as follows: In Section 2, we review
related works in the field of drug-drug interactions (DDIs) extraction. Section 3 presents a
detailed literature review pertaining to the subject matter of this study. Section 4 presents
the dataset and our proposed method, which utilizes R-BioBERT with BLSTM. In Section 5,
the experiment setup and our evaluations metrics are explained. Section 6 reports and
analyzes the experimental results, demonstrating the superior performance of our method
compared to the baseline. Finally, Section 7 provides conclusions and summarizes the
contributions of this work.

2. Related Works

DDIs extraction entails discovering semantic relationships between pairs of drugs. Su-
pervised methods [18–20] are the predominant approaches used in this task employing deep
learning techniques. Recently, the application of recurrent neural networks (RNNs) [21],
convolutional neural networks (CNNs) [22], and recursive neural networks (recursive NNs)
in DDIs extraction has demonstrated their ability to acquire significant information and
outperform conventional machine learning techniques.

Convolutional Neural Networks (CNNs) are a powerful deep learning technique
that has gained significant attention in various real-world applications, such as image
classification [23], object detection [24], and several engineering applications [25]. CNNs are
also applicable to natural language processing tasks, such as sentiment analysis [26], search
query [27], and semantic parsing [28]. CNNs have been applied in DDIs extraction tasks.
The first application of CNNs in DDIs extraction was developed by Liu, Shengyu et al. [29].
Asada et al. [30] proposed a method that combined attention mechanisms with CNN,
which outperformed the CNN-based model [29] in DDIs extraction. Some studies, such
as [31,32], have increased the depth of the CNN architecture by creating deeper networks.
Additionally, Asada, Masaki, et al. [9] proposed a model that applied CNNs with a graph
that encoded sentences and molecular drug pairs in the DDIs extraction task. MCCNN [33]
introduced a method that utilizes distributed word embedding and a multichannel convo-
lutional neural network for biomedical relation extraction. Finally, Sun et al. [34] developed
a method based on Bidirectional Long Short-Term Memory (BLSTM) to capture semantic
knowledge from texts and a CNN to extract sentence features.

Recurrent Neural Networks (RNNs) are a popular deep learning method that excels
at capturing sentence features, making them particularly well-suited for natural language
processing tasks. Kavuluru et al. [35] developed a method that combines an original word-
based RNN with a character-based RNN. D. Huang et al. [36] proposed a two-stage LSTM
model that uses an SVM model to recognize negative and positive DDIs, and an LSTM
model to classify DDIs into a specific category. Z. Yi and S. Li [37] proposed the 2ATT-RNN,
which includes two attention layers that are a word-level attention layer and a sentence-
level attention layer. Another RNN-based method is the joint AB-LSTM model, which is
proposed by Sahu et al. [20] for DDIs extraction. Zhou et al. [38] presented the PM-BLSTM
model, which incorporates a position-aware attention mechanism to encode the relative
position information of the target entities with the hidden states of the BLSTM layer.
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Contextualized embedding-based methods have gained significant attention recently,
and have shown promising results in various NLP tasks [39]. Deep transformer-based
methods are trained using contextualized embeddings on large text data. BERT, a pre-
trained language model, has been extensively applied in many NLP tasks due to its
bidirectional encoder transformer architecture, which captures richer context compared
to other word embedding methods such as Glove and Word2vec. BERT has been shown
to improve the performance of models by integrating contextual information in sentences.
For example, Datta et al. [40] developed a BERT-based model for extracting DDIs from
sentences. Similarly, Zaikis et al. [41] proposed a deep learning model based on the
transformer architecture and the BERT language model for DDIs extraction tasks. Moreover,
bio-specific BERT models such as BioBERT [42], SciBERT [10], and Med-BERT [43] have been
applied in several DDIs extraction tasks such as [44,45] that combine BioBERT and SciBERT
to obtain richer sequence semantic information. In addition, [46] proposed a method called
IK-DDI that uses instance position embedding and key external text for DDI extraction
tasks. Huang, Zhong, et al. [47] proposed a EMSI-BERT method to improve pre-trained
BERT performance in DDI classification tasks using a drug entity dictionary, an Entity-Mask
strategy, and a Symbol-Insert structure. The paper [48] proposes a neural network-based
method using output-modified BioBERT and multiple entity-aware attentions for drug-
drug interaction classification.

3. Literature Review

This section of the paper aims to establish a foundation for our proposed model by
providing an overview of BERT, BioBERT, R-BioBERT, and BLSTM.

3.1. BERT Language Model

In NLP tasks, the use of language representation models has become essential in order
to learn word representations from unlabeled texts. While previous language models,
such as Glove and Word2vec, are context-free and focus on learning word representations
without considering the context of words in sentences, recent language representation
models, such as ELMO [49], Cove [50], OpenAI GPT [51], and BERT, are context-sensitive
and emphasize on learning contextual word embeddings. These models have been proven
effective in various NLP applications and are gaining popularity within the field.

BERT, which stands for Bidirectional Encoder Representations from Transformers,
is a pre-trained language representation model that utilizes a context-sensitive approach
for word representation [16]. BERT is a general-purpose language model that has been
trained on massive datasets, including English Wikipedia and Books Corpus, to obtain
contextualized representations of words in sentences. BERT utilizes the encoder part of
transformers to encode the semantic and syntactic information of a text in embedding
form, thus functioning as a language model. The pre-training procedure of BERT has two
primary objectives: masked language modeling (MLM) and next sentence prediction (NSP).
By using MLM, BERT can learn to predict the masked words in a sentence based on the
context of the surrounding words, while NSP aims to predict whether two sentences are
consecutive in a document.

The masked language modeling (MLM) objective in BERT involves randomly masking
some tokens from the input and optimizing the model to predict the original vocabulary ID
of the masked word based on its context. On the other hand, the BERT model has also been
trained using the next sentence prediction (NSP) task to predict the text-pair representation.
In BERT, a special token called ’[CLS]’ is added to every input sequence, whether it is a
single sentence or a pair of sentences, denoted as < Question, Answer >. For classification
tasks, the final hidden state corresponding to the ’[CLS]’ token is used as an aggregated
sequence representation [16].
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3.2. BioBERT

BioBERT, which stands for Bidirectional Encoder Representations from Transformers
for Biomedical Text Mining, is a specialized version of BERT designed for biomedical
applications [16]. BioBERT is based on the contextualized language representation model
of BERT, which was trained on various general and biomedical datasets, including PubMed
Abstracts and PMC full-text articles. Compared to BERT and other state-of-the-art models,
BioBERT has demonstrated superior performance in many NLP tasks, such as Named Entity
Recognition (NER) from biomedical data, relation extraction, and question-and-answer
tasks in the biomedical field.

The biomedical domain has its own specific jargon, including nouns and terms that
are not present in general corpora. This creates a challenge when using general-purpose
language representation models, such as BERT, for NLP tasks in the biomedical domain,
as they may not perform well. To address this issue, this work utilizes BioBERT which is a
biomedical domain-specific Language Representation Model based on BERT.

3.3. Relation BERT

Relation classification tasks involve predicting the semantic relationship between pairs
of nominal entities. Given a sentence S and a pair of nominals e1 and e2, the objective
is to identify the relationship between them [52]. Numerous deep learning approaches
have been proposed for relation classification, including those based on convolutional or
recurrent neural networks [53,54]. Recently, pre-trained BERT models have been applied
to various natural language processing tasks and have achieved state-of-the-art results
in classification and SQuAD question-answering problems [55]. Although the sentence’s
information is crucial in classification problems, relation classification tasks also require
information about the target entities.

Wu et al. [56] employed the pre-trained BERT model to improve relation classification.
The authors utilized the pre-trained BERT language model and incorporated information
about the target entities in the sentence to enhance the relation classification task. In general,
R-BERT comprises two components: pre-trained BERT as a feature representation and
additional layers that serve as a relation classifier.

The key difference between BERT and Relation BERT lies in the inputs used for their
classification layers. BERT employs the final hidden state vectors of the ’[CLS]’ token as
input, whereas R-BERT utilizes the final hidden state vectors of both the ’[CLS]’ token and
the two entities of interest. In both cases, the ’[CLS]’ token is added to the beginning of each
sentence and the final hidden state corresponding to the ’[CLS]’ token from the transformer
output is used as the sentence representation for classification tasks.

3.4. Bi-Directional Long Short-Term Memory Network

LSTM networks, which stands for Long Short-Term Memory networks, are a type of
recurrent neural networks (RNNs) that have the ability to learn long-term dependencies
in sequence prediction tasks [57]. The architecture of LSTM networks involves three
non-linear gates, namely forget gate, input gate, and output gate, which regulate the
flow of information in and out of the LSTM cells. While unidirectional LSTM captures
time dependencies in a single direction (either forward or backward), bidirectional LSTM
preserves information in both directions (past to future and future to past) [58]. In this study,
a bidirectional LSTM was utilized to extract hidden features that can access sequential data
in both directions.

4. Materials and Methods

We introduce a novel method for the DDIs extraction task, leveraging a combination
of R-BioBERT and BLSTM. Our proposed model is illustrated in Figure 1, and is designed
to extract interactions between drugs from a sentence and classify them into specific DDIs
types. In this section, we begin by outlining the dataset and the necessary steps taken
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for data preprocessing. Subsequently, we describe how we incorporated R-BioBERT with
BLSTM to enhance performance in the DDIs extraction task.

4.1. Datasets

In this study, we employed three datasets for DDIs extraction: the DDIs corpus from
SemEval 2013 [59], TAC 2018 [60], and TAC 2019 DDIs Extraction [61].

4.1.1. SemEval 2013 DDIs Extraction

The DDIs Extraction 2011 [62] was developed for detecting drug-drug interactions
in biomedical texts. Its successor, the DDIs Extraction 2013, was introduced to support
additional tasks such as recognition and classification of pharmacological substances [59].
This dataset includes DrugBank with 730 documents and MEDLINE with 175 abstracts
for extracting DDIs. The dataset is divided into a training set with 714 documents and a
test set with 191 documents for the development and evaluation of various systems [59].
This dataset consists of four crucial DDI types: Advice, Effect, Int, and Mechanism. Drug
entity pairs that are not related to these four DDI types are considered Negative, and there
are significantly more negative DDI instances than positive ones.

• Advice: Advice is a type of DDI that refers to recommendations or cautions given
in a document about the concurrent use of two drugs. For instance, an example of
advice could be “Extreme caution should be exercised when taking alosetron and
ketoconazole together”.

• Effect: This type in the DDIs corpus refers to the resulting effect or pharmacodynamic
mechanism of interaction between two drugs. For instance, an example sentence
for this type could be: “After a single administration of oxytocin, PGF2alpha caused
significantly increased vasoconstriction”.

• Int: This refers to an interaction between drugs without providing any further infor-
mation. An example of this would be “Possible interaction between atorvastatin and
cyclosporine”.

• Mechanism: This type of DDI refers to a description of the pharmacokinetic mecha-
nism, as in the example, “Withdrawal of rifampin decreased the warfarin requirement
by 50%”.

• Negative: This refers to drug entity pairs that do not have any interaction. For exam-
ple, “Ibogaine, but not 18-MC, decreases heart rate at high doses”.

4.1.2. TAC 2018 and TAC 2019 DDIs Extraction

The U.S. Food and Drug Administration (FDA) and the National Library of Medicine
(NLM) collaborated to curate a dataset for effective deployment of drug safety information,
as stated in [60]. The TAC track aims to assess the performance of NLP approaches for
information extraction in DDIs, and also provides data for other tasks, such as entity ex-
traction, relation extraction, and normalization, as mentioned in the same source. The TAC
2018 DDIs track dataset comprises 325 structured product labels (SPLs), which are divided
into a training set of 22 drug labels and a test set of 57 drug labels. The types of DDIs in
this dataset are classified into three categories:

• Pharmacokinetic (PK)
• Pharmacodynamic (PD)
• Unspecified (U)

The primary difference between TAC 2019 and TAC 2018 DDIs Extraction is that while
TAC 2018 included information from structured product labels (SPLs) as well as other text
types such as literature and social media, TAC 2019 only utilized SPLs. The TAC 2019 DDIs
Extraction dataset comprises 406 SPLs and is divided into a training set of 211 drug labels
and a test set of 81 drug labels, similar to TAC 2018. However, the types of DDIs remain
consistent between the two datasets. Table 1 presents the statistics of the dataset with the
official data split.
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Table 1. Statistics of TAC 2018 and TAC 2019 dataset.

Train Test

DDIs TAC 2018 TAC 2019 TAC 2018 TAC 2019

Pharmacodynamic (PD) 47 553 335 292
Pharmacokinetic (PK) 60 494 296 118

Unspecified 62 665 440 202

4.2. Data Preprocessing

The following steps were employed for the extraction datasets of TAC 2018 and TAC
2019 DDIs:

• Firstly, instances with the same drug names in a pair were removed, as a drug can-
not interact with itself. In addition, instances with only one drug in a sentence
were eliminated.

• Secondly, to identify the location of two drugs in a pair, a special token < e1 > was
added before and < /e1 > was added after the first drug, and < e2 > was added
before and < /e2 > was added after the second drug. Unlike many other related
studies, the original drug names were retained.

In the SemEval 2013 DDIs Extraction, there were significantly more negative interac-
tions than positive interactions. This created an imbalanced class distribution problem,
leading to decreased performance accuracy of the deep learning model. To address this,
Zhao et al. [19] constructed a less imbalanced corpus by removing extra negative instances
from the SemEval 2013 DDIs Extraction dataset using specific rules. We used a similar num-
ber of data pairs as the released code and data from this study, and applied the second step
of the TAC preprocessing method to the dataset. Table 2 shows the statistics of the dataset.

Table 2. Statistics of SemEval-2013 dataset.

Training Test

DDI Samples Original Filtered Original Filtered

Positive 4020 3840 979 971
Negative 23,772 8989 4782 2084

Total 27,792 12,829 5761 3055
Ratio 1:5.9 1:2.3 1:4.9 1:2.2

4.3. Model Architecture

Our proposed model employs Relation BioBERT and Bidirectional Long Short-Term
Memory (BLSTM) to detect and classify of DDIs. To implement the R-BioBERT model
architecture, we needed to identify the location of drugs involved in the interaction and
add a masked symbol before and after each target drug. As drug names do not have a fixed
length, our model added < e1 > before the name of the first drug and < /e1 > at the end
of the first drug. We repeated the same process for the second drug, but replaced < e1 >
with < e2 >. Once the location of the drugs was identified, the input was passed through
BioBERT to generate the feature representation.

To demonstrate the process, consider a sentence containing target entities of “Gano-
derma_lucidum_extract” and “antibiotics”. After inserting special tokens to indicate the
target entities, the sentence is transformed as follows:

“Antimicrobial activity of < e1 > Ganoderma_lucidum_extract < /e1 > alone and in
combination with some < e2 > antibiotics < /e2 >.”

Our proposed model uses BioBERT instead of BERT, as the task of DDIs extracting
involves biomedical relation extraction. Therefore, a language model trained on biomedical
corpora is necessary for the model to perform accurately. Using BioBERT enhances the
performance of our model by allowing it to learn from the domain-specific language and
the relationships between biomedical entities.



Mach. Learn. Knowl. Extr. 2023, 5 676

Given a sentence S containing two entities e1 and e2, we use the BioBERT model as an
embedding method to obtain the final hidden state output, denoted as H. The final hidden
state vectors from BioBERT for the first entity e1, which is composed of tokeni to tokenj, are
represented as Hi to Hj. Similarly, for the second entity e2, composed of tokenk to tokenm,
the final hidden state vectors are denoted as Hk to Hm.

To obtain vector representations for the two target entities, we take the average of
the final hidden state vectors for each entity and apply an activation function (i.e., tanh).
Subsequently, we add a fully connected layer to each average vector to obtain the output
for e1 and e2, which are denoted as H′1 and H′2, respectively. The calculation process is as
follows in Equations (1) and (2):

H′1 = W1(tanh(
1

j− i + 1

j

∑
n=i

Hn)) + b1 (1)

H′2 = W2(tanh(
1

k− l + 1

k

∑
n=l

Hn)) + b2 (2)

W1 ∈ Rd∗d and W2 ∈ Rd∗d represent the vector dimension of the output layer of the
BioBERT model. For more information on Relation BERT, please refer to [56].

We concatenate H′1 and H′2, then apply a BLSTM layer separately to each of them.
By using BERT to obtain contextualized sentence-level representations, the LSTM is better
able to capture sentence semantics [63]. Recent studies have demonstrated that combining
LSTM with word embedding models can yield substantial improvements in results [64].
Therefore, incorporating LSTM with BERT can lead to even better predictions, indicating a
higher level of understanding of semantic meaning by the proposed model. The calculation
process of BLSTM model is as follows in Equations (3)–(9):

~ft = σ( ~W f ht−1 + ~U f Xt + ~b f ) (3)

~it = σ( ~Wiht−1 + ~UiXt + ~bi) (4)

ct = tanh( ~Wcht−1 + ~UcXt + ~bc) (5)

~ct = ~ft ∗~ct−1 +~it ∗ ct (6)

~oi = σ(~Wht−1 + ~UXt +~b) (7)

~ht = ~ot ∗ tanh(~ct) (8)

~ht = LS ~TM(xt), t ∈ [1, T] (9)

Here, ~ft,~it, and ~ot refer to the components of the forward LS~TM gate, namely the
forget gate, input gate, and output gate at time t, respectively. The activation function
sigmoid is denoted by σ. ct represents the input gate candidate cell. After updating at
time t, ~ct represents the output of the forward memory control unit. ~W and ~U are the
weight matrices associated with the forward class, while~b represents the offset vector of
the forward class.

For the backward counterpart, denoted as LS ~TM, it follows the same structure as
the forward gate in the formula. The input vector is represented by xt. The forward~ht is
learned from x1 to xt at time t, and backward ~ht is learned from xt to x1 at time t, and ~ht
and~ht are concatenated to obtain the final hidden layer representation ht as [~ht ⊕ ~ht].
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Finally, The output of the BLSTM layer (ht) is passed through a fully connected layer
and a softmax layer to classify the DDIs type. The proposed model’s architecture is depicted
in Figure 1.

5. Experimental Evaluation

In this section, we provide details on the experimental settings and the final results
obtained. We also compare our results with state-of-the-art models.

5.1. Experimental Setup

The key experimental parameters are presented in Table 3. Our experiments were
carried out on a computer with a Windows operating system, equipped with a single
Nvidia GeForce RTX 2070 GPU with 8GB memory. The model was implemented using
the PyTorch library and the Python programming language. To prevent overfitting, early
stopping was employed. Moreover, Figure 2a–c depict the training and validation loss for
SemEval 2013, TAC 2018, and TAC 2019 DDI extraction datasets, respectively.

Table 3. Parameter settings.

Batch size 8
Max sentence length 400
Adam learning rate 2 × 10−5

Number of epochs 10
Dropout rate 0.1

(a) (b) (c)
Figure 2. These figures display the training and validation loss for three datasets. (a). This plot
represents the loss values for SemEval 2013. (b) This plot represents the loss values for TAC 2018.
(c) This plot represents the loss values for TAC 2019.

5.2. Evaluation Metrics

The primary evaluation metrics widely used in the DDIs extraction task are F1-Macro
and F1-Weighted. In this study, we assessed the performance of our R-BioBERT with
BLSTM model using the Weighted-average and Macro-average F1-score on all types for
SemEval 2013, and the Macro-average on all types for TAC 2018 and TAC 2019 DDIs
extraction datasets.

Precision =
TP

(TP + FP)
(10)

Recall =
TP

(TP + FN)
(11)

F1Score = 2 ∗ ( Recall ∗ Precision
Recall + Precision

) (12)

F1Macro =
Σ5

i=1F1score

5
(13)
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F1Weighted =
Σ5

i=1Ni ∗ F1i

Σ5
i=1Ni

(14)

Ni denotes the number of instances in class i. TP (true positive) represents the number
of positive instances that are correctly classified, FP (false positive) represents the number
of negative instances that are incorrectly classified as positive, and FN (false negative) rep-
resents the number of positive instances that are incorrectly classified as negative. Precision
is the ratio of correctly predicted positive observations to the total predicted observations.
Recall is the ratio of correctly predicted positive observations to all observations in the
actual class. The F1Score metric is the harmonic mean of Precision and Recall metrics.
The F1Macro score is the unweighted mean of all the per-class F1 scores, treating all classes
equally. The F1Weighted score is calculated by taking the mean of all per-class F1 scores while
considering the number of actual samples of each class.

6. Results
6.1. Results on SemEval 2013 DDIs Extraction

Table 4 displays the performance of our proposed model and state-of-the-art models
on the SemEval 2013 DDI extraction task, allowing us to position our work. We calculated
the Macro-average F1-score of our proposed model based on five classes, including the
Negative DDI class. To facilitate comparison with related studies that employed RNNs,
CNNs, or BERT, we present the results of some DDI extraction tasks, including join AB-
LSTM [20], MCCNN [33], RHCNN [34], BioBERT [48], BERT-D2 [40], EMSI-BERT [47],
TP-DDI [41], BERTChem [44], IK-DDI [46], and R-BioBERT (the baseline method) [65].
As shown in Table 4, BERT-based models achieved higher overall F1-scores than RNNs and
CNNs-based models.

Table 4. Model performance on SemEval 2013 DDI extraction.

F1-Score (F) Overall Performance

Model Negative Mechanism Effect Advice Int F1-Score F1-Macro

Joint AB-Lstm [20] - 72.26 65.46 80.26 44.11 69.39 65.52
MCCNN [33] - 72.2 68.2 78.0 51.0 70.21 -
RHCNN [34] - 78.3 73.5 80.5 58.9 75.5 -

BioBERT [48] - 84.6 80.1 86 56.6 80.09 (micro-averaged) -
BERT-D2 [40] - - - - - 81.97 -
EMSI-BERT [47] - 86.6 80.07 86.8 56 82 (micro-averaged) -
TP-DDI [41] - - - - - 82.4 -
BERTChem [44] 87 80 88 58 83 -
IK-DDI [46] - - - - - - 79.04
R-BioBERT (Baseline) [65] - 97.42 77.80 87.32 57.31 - 80.89
R-BioBERT with BLSTM(Our method) 95.70 86.47 82.5 90.79 61.12 91.79 (weighted) 83.32

Table 4 presents the performance comparison of various DDIs extraction models.
Among the CNN and LSTM-based models, the Joint AB-Lstm model had the lowest overall
F1-score (69.39%), and its best F1-score is reported for Mechanism (72.26%), while the worst
performance belonged to Int (44.11%). In comparison, MCCNN achieved a better overall
F1-score of 70.21% than the Joint AB-Lstm, but was inferior to RHCNN (75.5%).

Regarding BERT-based models, BioBERT had the lowest overall F1-Micro (80.09%).
On the other hand, BERT-D2 had a better overall F1-score (81.97%) than BioBERT, al-
though it was inferior to EMSI-BERT F1-Micro (82%). Additionally, TP-DDI achieved an
F1-micro of 82.04%, while BERTchem achieved a higher F1-Micro of 83%. Furthermore,
the IK-DDI obtained an overall F1-Macro of 79.04%. However, the R-BioBERT, which was
the baseline model, outperformed the IK-DDI model with an F1-Macro of 80.89%.

Finally, our proposed model, R-BioBERT with BLSTM, achieved the best overall F1-
weighted (91.79%) and F1-Macro (83.32%) compared to the state-of-the-art models.
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Table 4 highlights that R-BioBERT achieved the highest F1-score (97.42%) while MC-
CNN reported the lowest F1-score (72.2%) in Mechanism. However, our model (R-BioBERT
with BLSTM) achieved F1-score of 86.47% in Mechanism which was lower than the perfor-
mance of R-bioBERT model in the Mechanism class. The observed significant difference
can likely be attributed to several factors. Firstly, the baseline model (R-BioBERT) did
not account for negative types of interactions and only considered four classes of DDIs.
In contrast, our work considered five classes, namely Mechanism, Effect, Advice, Int,
and Negative. Additionally, a comparison in Table 4 reveals that our model outperformed
both the baseline model and other state-of-the-art models in classifying the four DDIs types,
including Negative (95.70%), Effect (82.5%), Advice (90.79%), and Int (61.12%). This com-
prehensive evaluation demonstrates that our model excels across these classes, highlighting
its superiority and establishing its reliability.

The worst F1-scores for Effect and Int belonged to the Joint AB-Lstm. Additionally,
in Advice, the highest F1-score belonged to the R-BioBERT with BLSTM model, while
MCCNN had the worst F1-score. The highest F1-scores are indicated in bold in Table 4.

Furthermore, R-BioBERT with BLSTM exhibited the best overall performance with
the highest F1-score (91.79%) and F1-Macro (83.32%). Our proposed model significantly
outperforms previous CNN and LSTM-based models, especially the baseline method [65].
The F1-Macro of R-BioBERT with BLSTM is 83.32, which is substantially better than the
previous best solution on the SemEval 2013 dataset. Our model also achieves better
performance in the Negative, Effect, and Int classes compared to previous research [65].
Notably, the Int class exhibits limited performance across all models, possibly due to
insufficient training data.

6.2. Results on TAC 2018

Table 5 presents the evaluation results of our proposed model and the state-of-the-art
models on the TAC 2018 DDIs extraction task. In this task, the F1-macro of our proposed
model is calculated based on three classes.

Table 5. Model performance on TAC 2018 DDI extraction.

F1-Score (F) Overall Performance

Model Unspecified PK PD F1-Score

[66] - - - 40.90
[67] - - - 56.98

R-BioBERT with BLSTM (Our method) 64 58.8 58.8 60.53 (Macro)

The results in Table 5 indicate that Tang et al. [66] achieved the lowest F1-score (40.90%),
even though they used not only the TAC 2018 dataset but also NLM-180 and HS datasets.
On the other hand, the model proposed in [67] achieved a better F1-score (56.98%) than
Tang et al. [66]. However, our proposed model, R-BioBERT with BLSTM, outperforms all
the state-of-the-art models with an F1-Macro score of 62.64%.

The relatively small size of the TAC 2018 dataset compared to SemEval 2013 and TAC
2019 may be one reason for the low F1-scores in this task. Therefore, achieving a higher
F1-score on the TAC 2018 dataset is challenging and our proposed model demonstrates
superior performance in this regard.

6.3. Results on TAC 2019

Table 6 presents the performance of our proposed model and the state-of-the-art
models on the TAC 2019 DDIs extraction task. We can observe that the model proposed by
Mahajan et al. [68] had the lowest F1-score (40.39%), while UTDHLTRI 2 [61] achieved a
slightly better F1-score (49.2%) than IBMResearch 1 [61] (50.1%). Our proposed model, R-
BioBERT with BLSTM, outperforms the state-of-the-art models by a large margin, achieving
the highest F1-score of 80.26%.
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Table 6. Model performance on TAC 2019 DDI extraction.

F1-Score (F) Overall Performance

Model Unspecified PK PD F1-Score

[68] 48.3 63.2 43.4 40.39
UTDHLTRI 2 [61] - - - 49.2

IBMResearch 1 [61] - - - 50.1
R-BioBERT with BLSTM (Our method) 76.2 81.2 83.3 80.23 (Macro)

The superior performance of our proposed model can be attributed to the use of the
BioBERT language model, which is specifically pre-trained on biomedical texts, and the
BLSTM layer, which is effective in capturing long-range dependencies in text data. The TAC
2019 dataset is more challenging than TAC 2018, and our model’s excellent performance
indicates its effectiveness in extracting DDIs from complex biomedical texts.

In conclusion, our proposed model achieves state-of-the-art performance on both TAC
2018 and TAC 2019 DDIs extraction tasks, demonstrating its effectiveness in biomedical
text mining applications.

7. Conclusions

The present study introduces a novel method for DDIs extraction by integrating
Relation-BioBERT and BLSTM. Our experimental results demonstrate that the proposed
approach outperforms existing models for DDIs extraction on Semeval 2013, TAC 2018,
and TAC 2019 datasets. Specifically, our model achieves an F1-Macro score of 83.32% on
SemEval, 80.23% on TAC 2018, and 60.53% on TAC 2018 for DDI extraction.

There are several potential directions for improving and extending our approach.
Firstly, our model’s performance in classifying mechanism interactions is not yet satis-
factory, and we plan to explore strategies to improve performance with limited training
data. Additionally, we aim to apply our proposed method to other relation extraction tasks
beyond DDI extraction.
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