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Abstract: Alzheimer’s and related diseases are significant health issues of this era. The interdisci-
plinary use of deep learning in this field has shown great promise and gathered considerable interest.
This paper surveys deep learning literature related to Alzheimer’s disease, mild cognitive impair-
ment, and related diseases from 2010 to early 2023. We identify the major types of unsupervised,
supervised, and semi-supervised methods developed for various tasks in this field, including the
most recent developments, such as the application of recurrent neural networks, graph-neural net-
works, and generative models. We also provide a summary of data sources, data processing, training
protocols, and evaluation methods as a guide for future deep learning research into Alzheimer’s
disease. Although deep learning has shown promising performance across various studies and tasks,
it is limited by interpretation and generalization challenges. The survey also provides a brief insight
into these challenges and the possible pathways for future studies.
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1. Introduction

Deep learning is a field of study that shows great promise for medical image analysis
and knowledge discovery that is approaching clinicians’ performance in a growing range of
tasks [1–3]. The interdisciplinary study of Alzheimer’s disease (AD) and deep learning have
been a focus of interest for the past 13 years. This paper aims to survey the most current
state of deep learning studies related to multiple aspects of research in Alzheimer’s disease,
ranging from current detection methods to pathways of generalization and interpretation.
This section will first provide the current definition of AD and clinical diagnostic methods
to provide the basis for deep learning. We then detail this interdisciplinary study’s main
areas of interest and current challenges.

1.1. Alzheimer’s Disease and Mild Cognitive Impairment

Alzheimer’s disease is the most common form of dementia and a significant health
issue of this era [4]. Brookmeyer et al. [5] predicted that more than 1% of the world popula-
tion would be affected by AD or related diseases by 2050, with a significant proportion of
this cohort requiring a high level of care. AD usually starts from middle-to-old age as a
chronic neurodegenerative disorder, but rare cases of early-onset AD can affect individuals
of 45–64 years old [6]. AD leads to cognitive decline symptoms: memory impairment [7],
language dysfunction [8], and decline in cognition and judgment [9]. An individual with
symptoms may require moderate to constant assistance in day-to-day life, depending on
the stage of disease progression. These symptoms severely affect patients’ quality of life
(QOL) and their families. Studies into cost-of-illness for dementia and AD reveal that
the higher societal need for elderly care significantly increases overall social-economic
pressure [10].

Mach. Learn. Knowl. Extr. 2023, 5, 611–668. https://doi.org/10.3390/make5020035 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5020035
https://doi.org/10.3390/make5020035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-0745-9386
https://orcid.org/0000-0002-4870-1493
https://doi.org/10.3390/make5020035
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5020035?type=check_update&version=4


Mach. Learn. Knowl. Extr. 2023, 5 612

The biological process that leads to AD may begin more than 20 years before symp-
toms appear [11]. The current understanding of AD pathogenesis is based on amyloid
peptide deposition and the accumulation and phosphorylation of tau proteins around
neurons [12–14], which leads to neurodegeneration and eventual brain atrophy. Factors
associated with AD include age, genetic predisposition [15], Down’s syndrome [16], brain
injuries [17], and cardiorespiratory fitness [18–20]. AD-related cognitive impairment can
be broadly separated into three stages: (1) preclinical AD, where measurable changes in
the brain, cerebral spinal fluid (CSF), and blood plasma can be detected; (2) mild cognitive
impairment (MCI) due to AD, where biomarker evidence of AD-related brain change
can be present; and (3) dementia due to AD, where changes in the brain are evident and
noticeable memory, thinking and behavioural changes appear and impair an individual’s
daily function.

The condition most commonly associated with AD is mild cognitive impairment (MCI),
the pre-dementia stage of cognitive impairment. However, not all cases of MCI develop
into AD. Since no definite pathological description exists, MCI is currently perceived as the
level of cognitive impairment above natural age-related cognitive decline [21,22]. Multiple
studies have analyzed the demographics and progression of MCI and have found the
following: 15–20% of people age 65 or older have MCI from a range of possible causes [23];
15% of people age 65 or older with MCI developed dementia at two years follow-up [24];
and 32% developed AD and 38% developed dementia at five years follow-up [25,26]. The
early diagnosis of MCI and its subtypes can lead to early intervention, which can profoundly
impact patient longevity and QOL [27]. Therefore, better understanding the condition and
developing effective and accurate diagnostic methods is of great public interest.

1.2. Diagnostic Methods and Criteria

The current standard diagnosis of AD and MCI is based on a combination of var-
ious methods. These methods include cognitive assessments such as the Mini-Mental
State Examination [28–30], Clinical Dementia Rating [31,32], and Cambridge Cognitive
Examination [33,34]. These exams usually take the form of a series of questions and are
often performed with physical and neurological examinations. Medical and family history,
including psychiatric history and history of cognitive and behavioral changes, are also
considered in the diagnosis. Genetic sequencing for particular biomarkers, such as the
APOE-e4 allele [35], is used to determine genetic predisposition.

Neuroimaging is commonly used to inspect various signs of brain changes and exclude
other potential causes. Structural magnetic resonance and diffusion tensor imaging are
widely applied to check for evidence of symptoms of brain atrophy. Various forms of
computed tomography (CT) are also used in AD and MCI diagnosis. Regarding positron
emission tomography (PET), FDG-PET [36] inspects brain glucose metabolism, while
amyloid-PET is applied to measure beta-amyloid levels. Single-photon emission computed
tomography [37] (SPECT) is likely to produce false-positive results and is inadequate in
clinical use. However, SPECT variants can be potentially used in diagnosis, e.g., 99 mTc-
HMPAO SPECT [38,39]. At the same time, FP-CIT SPECT can visualize discrepancies in
the nigrostriatal dopaminergic neurons [40]. In neuroimaging, a combination of multiple
modalities is commonly used to utilize the functionality of each modality.

New diagnostic factors of CSF and blood plasma biomarkers have been reported
in the literature and have been deployed in clinical practice in recent years. There are
three main CSF and blood plasma biomarkers: Amyloid-β42, t-tau, and p-tau. Other
biomarkers include neurofilament light protein (NFL), and neuron-specific enolase (NSE,
and HFABP [41,42]. CSF biomarkers are becoming a critical factor in AD diagnostic criteria
in some practices. However, the actual ‘ground truth’ diagnosis of AD can only be made
via post-mortem autopsy.
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Before this century, the established diagnostic criteria were the NINCDS-ADRDA
criteria [43,44]. These criteria were updated by the International Working Group (IWG)
in 2007 to include requirements of at least one factor among MRI, PET, and CSF biomark-
ers [45]. A second revision was introduced in 2010 to include both pre-dementia and
dementia phases [46]. This was followed by a third revision to include atypical prodromal
Alzheimer’s disease that shows cognition deficits other than memory impairment—IWG-
2 [47]. Another independent set of criteria, the NIA-AA criteria, was introduced in 2011.
These criteria include measures of brain amyloid, neuronal injury, and degeneration [48].
Individual criteria were introduced for each clinical stage, including pre-clinical [49,50],
MCI [51,52], dementia [53,54], and post-mortem autopsy [55].

1.3. The Deep Learning Approach

Detailed preprocessing with refined extraction of biomarkers combined with statistical
analysis is the accepted practice in current medical research. Risacher et al. [56] applied
statistical analysis on biomarkers extracted using voxel-based morphometry and parcel-
lation methods from T1-weighted MRI scans of AD, MCI, and HC. The study reveals
statistical significance in multiple measures, including hippocampal volume and entorhinal
cortex thickness. Qiu et al. [57] further confirmed this significance by analyzing regional
volumetric changes through large deformation diffeomorphic metric mapping (LDDMM).
Guevremont et al. [58] focused on robustly detecting microRNAs in plasma and used
standardized analysis to identify microRNA biomarkers in different phases of Alzheimer’s
disease. This study and its statistical analysis yielded useful diagnostic markers reflecting
the underlying disease pathology. The different biomarker information extracted was fed
into statistical analysis methods with varying numbers of variables to detect changes in
biomarkers in disease development [59]. Similar studies also employed other neuroimaging
data, genetic data, and CSF biomarkers. These studies supported the use of MRI imaging
biomarkers in AD [60] and MCI diagnosis [61], laying the basis for developing automatic
diagnostic algorithms.

Machine learning has amassed great popularity among current automated diagnostic
algorithms due to its adaptivity to data and the ability to generalize knowledge with lower
requirements of expert experience. The study by Klöppel et al. [62] proved the validity
of applying machine learning algorithms in diagnosing dementia through a performance
comparison between the Support Vector Machine (SVM) classification of local grey matter
volumes and human diagnosis by professional radiologists. Janousova et al. [63] proposed
penalized regression with resampling to search for discriminative regions to aid Gaussian
kernel SVM classification. The regions found by the study coincide with the previous mor-
phological studies. These breakthroughs led to the development of many machine-learning
algorithms for AD and MCI detection. Zhang et al. [64] proposed a kernel combination
method for the fusion of heterogeneous biomarkers for classification with linear SVM.
Liu et al. [65] proposed the Multifold Bayesian Kernelization (MBK) algorithm, where a
Bayesian framework derives kernel weights and synthesis analysis provides the diagnostic
probabilities of each biomarker. Zhang et al. [66] proposed the extraction of the eigenbrain
using Welch’s t-test (WTT) [67] combined with a polynomial kernel SVM [68] and particle
swarm optimization (PSO) [69].

There has also been considerable interest in applying deep learning (DL), a branch
of machine learning, to the field of AD and related diseases. Deep learning integrates
the two-step feature extraction and classification process into neural networks, universal
approximators based on backpropagation parameter training. [70]. Deep learning has made
considerable advances in the domain of medical data, e.g., breast cancer [71], tuberculo-
sis [72], and glioma [73]. Instead of hand-crafting features, models, and optimizers, deep
learning leverages the layered structure of neural networks for the automated abstraction
of various levels of features. For example, Feng et al. [74] used the proposed deep learning
model to extract biomarkers for MRI in neuroimaging. The study demonstrates that the
deep learning approach outperformed other neuroimaging biomarkers of amyloid and tau
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pathology and neurodegeneration in prodromal AD. A visualization of the field of this
survey is shown in Figure 1.
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1.4. Areas of Interest

The primary aim of the surveyed deep learning studies in Alzheimer’s and related
diseases is detecting and predicting neurodegeneration to provide early detection and
accurate prognosis to support treatment and intervention. The main interests of this
interdisciplinary field can be roughly categorized into three areas:

1. Classification of various stages of AD. This area targets diagnosis or efficient progres-
sion monitoring. Current studies mostly focus on AD, MCI subtypes, and normal
cognitive controls (NC). A few studies contain the subjective cognitive decline (SCD)
stage before MCI.

2. Predicting MCI conversion. This area is mainly approached by formulating prediction
as a classification problem, which usually involves defining MCI converters and
non-converters based on a time threshold from the initial diagnosis. Some studies
also aim at the prediction of time-to-conversion for MCI to AD.

3. Prediction of clinical measures. This area aims at producing surrogate biomarkers to
reduce cost or invasivity, e.g., neuroimaging to replace lumbar puncture. Prediction
of clinical measures, e.g., ADAS-Cog13 [75] and ventricular volume [76], is also used
for longitudinal studies and attempts to achieve a more comprehensive evaluation of
disease progression and model performance benchmarking.

There are also other areas of interest, including knowledge discovery, where studies
attempt to understand AD through data [77]. Another area of interest is phenotyping
and sample enrichment for clinical trials of treatments [78], where DL models are used to
select patients that will likely respond to treatment and prevent ineffective or unnecessary
treatment [79]. Interest also lies in segmentation and preprocessing, where DL models are
applied to achieve higher performance or efficiency than conventional pipelines [80].
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1.5. Challenges in Research

There is uncertainty in the diagnosis or prognosis of AD or related diseases with
still developing diagnostic criteria and scientific understanding. DL-based approaches
have already shown potential in the above areas of interest; however, there exists room for
improvement and a range of challenges:

1. Numerical representation of the differences between AD stages. Monfared et al. [81]
calculated the range of Alzheimer’s disease composite scores to assess the severity
of the cognitive decline in patients. Sheng et al. [82] made multiple classifications
and concluded that the gap between late mild cognitive impairment and early mild
cognitive impairment was small, whereas a greater difference exists between early
and late MCI patients. Studies comparing clinical and post-mortem diagnoses have
shown 10–20% false cases [83]. In addition, autopsy studies in individuals who
were cognitively normal for their age found that ~30% had Alzheimer’s-related brain
changes in the form of plaque and tangles [84,85]. Sometimes the signs that distinguish
AD, for example, brain shrinkage [86], can be found in a normal healthy brain of
older people.

2. Difficulty in preprocessing. Preprocessing medical data, especially neuroimaging data,
often requires complex pipelines. There is no set standard for preprocessing, while
a broad range of processing options and relevant parameters exist. Preprocessing
quality is also vastly based on the subjective judgment of clinicians.

3. Unavailability of a comprehensive dataset. Though the amount and variety of data
available for AD and related diseases are abundant compared with many other
conditions, the number of subjects is only moderate compared with large datasets
such as Image-Net and is below the optimal requirements for generalization.

4. Differences in diagnostic criteria. The diagnostic criteria, or criteria for ground truth
labels, can differ significantly between studies, especially in prior studies before
new methods of diagnosis (e.g., CSF biomarkers [87] and genetic sequencing [88])
became accessible.

5. Lack of reproducibility. Most frameworks and models are not publicly available. With-
out open-source code, implementation details such as specific data cohort selection,
preprocessing procedures and parameters, evaluation procedures, and metrics are
usually lacking. These are all factors that can significantly impact results. Addition-
ally, few comprehensive frameworks are designed for benchmarking different models
based on the same preprocessing/processing and testing standards [89,90].

6. Lack of expert knowledge. Researchers adept at using DL often have no medical back-
ground, while medical data are significantly more complicated than natural images
or language data. Therefore, these researchers lack expert knowledge, especially in
preprocessing and identifying brain regions of interest (ROIs).

7. Generalizability and interpretability. Current DL models are plagued by information
leakage and only provide limited measures of generalizability, the model’s perfor-
mance in real-world populations. The inherent ‘black box’ nature of neural networks
impedes the interpretation of model functions and the subsequent feedback of knowl-
edge for clinicians [91].

8. Other practical challenges include the subjectivity of cognitive assessments, the inva-
siveness of diagnostic techniques such as a lumbar puncture to measure CSF biomark-
ers and the high cost of neuroimaging such as MRI.

By analyzing the frequency of occurrence, influencing factors, and potential impact on
research results for each challenge based on evidence and observations in the literature, we
assign weights to each challenge in Table 1.
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Table 1. Summary of challenges in applying DL to AD.

Challenge Description Weight (1–5)

Numerical representation of AD stages Variability in Alzheimer’s disease composite scores and difficulty
distinguishing between stages of cognitive impairment. 3

Difficulty in preprocessing Complex pipelines for preprocessing medical data, lack of
standardization, subjective judgment of clinicians. 3

Unavailability of a comprehensive dataset Abundance of data for AD but moderate number of subjects,
below optimal requirements for generalization. 2

Difference in diagnostic criteria Variations in diagnostic criteria and ground truth labels between
studies, impacting comparability of results. 3

Lack of reproducibility Lack of publicly available frameworks, implementation details,
and comprehensive benchmarking standards. 4

Lack of expert knowledge Researchers with DL expertise may lack medical background,
particularly in preprocessing and identifying brain regions. 2

Generalizability and interpretability Limited measures of generalizability, ‘black box’ nature of neural
networks, hindering model interpretation and feedback. 5

Practical challenges Subjectivity of cognitive assessments, invasiveness and cost of
diagnostic techniques such as lumbar puncture and MRI. 3

1.6. Survey Protocol

This survey covers DL studies related to AD or related diseases from 2010 to 2023. To
identify literature related to our focus, we first queried the online libraries of IEEE, New
York, NY, USA, Springer, Berlin/Heidelberg, Germany, and ScienceDirect, Amsterdam, The
Netherlands and then concentrated search on:

1. Recognized journals, including Brain, Neuroimage, Medical Image Analysis, Alzheimer’s
and Dementia, Nature Communications, and Radiology.

2. Conferences in computer vision and deep learning, including ACM, NeurIPS, CVPR,
MICCAI, and ICCV.

The full list of search keywords is as follows: “Alzheimer’s”, “AD”, “Dementia”,
“Mild Cognitive Impairment”, “MCI”, “Neural Networks”, “Deep Learning”, “Machine
Learning”, “Learning”, “Big Data”, “Autoencoders”, “Generative”, “Multi-Modal”, “In-
terpretable”, “Explainable”. These keywords were used independently or in combination
during the search process, which yielded 360 papers from various sources. A two-stage
selection was performed, where the following conditions were first used to select the papers:

1. Related to Alzheimer’s disease, MCI, or other related diseases.
2. Related to deep learning, with the use of neural networks.
3. Contains valid classification/prediction metrics.
4. Utilizes a reasonable form of validation.
5. Written in English or contains a valid translation.
6. Contains a minimum of 180 individual subjects.

An additional constraint of subject number was applied in this survey, where 180 sub-
jects correspond to a 0.01 chance of having an approximately 10% fluctuation in accuracy
in generalization according to derivations from Hoeffding inequality [92]. However, this
is only a basic requirement since the approximate generalization bound depends on the
data available for evaluation and the independence assumptions between the classifier
parameters and data. This condition is relaxed for studies using uncommon data types and
functional MRI, where the available data are often limited compared with standard data
types, e.g., MRI and PET. This selection stage yielded a total of 165 papers.
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After the first stage of selection, the papers were evaluated on the year of publication,
data source and type, preprocessing technique, feature extraction techniques, model archi-
tecture, platform, optimization protocol, and evaluation details. Papers from unknown
sources or studies with apparent errors, e.g., information leakage, were excluded from the
selection. This selection stage yielded a total of 83 papers. Similar to previous surveys,
this survey mainly focused on neuroimaging data [93–96]. This review also expands on
the work by Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont,
Durrleman, Burgos and Colliot [89], which focuses on convolutional neural networks, to a
broader range of supervised and unsupervised neural networks, including recent advances
in graph and geometric neural networks. The survey protocol is visualized in Figure 2.
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The paper is organized as follows: Section 2 introduces the data types implemented in
deep learning research and potential data sources; Section 3 provides detailed summaries
of data preprocessing methods for the main data types, followed by four categories of data
processing for neural network data input in Section 4. Sections 5–7 constitute the main
body of deep learning architectures and methods included in this review, categorized into
unsupervised, semi-supervised, and supervised learning methods; typical models and
recent advances are included in each category, including recent developments in generative
models, recurrent and graph neural networks. Section 8 introduces various techniques,
including transfer learning, ensemble learning, and multi-modal fusion. Section 9 details
training and evaluation protocols, while Sections 10 and 11 lay possible pathways for future
research in interpretability and generalization. A taxonomy of the survey is shown in
Figure 3.
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2. Data Types and Sources

Data issues are a core aspect of the deep learning approach, and the type and quantity
of data directly impact model performance and potential generalizability. A large variety
of data from numerous sources have been utilized in the reviewed studies. In this section,
we summarize the main types of data available and the sources of these data.

2.1. Types of Data

The available data can be categorized into longitudinal data and cross-sectional data.
Longitudinal data correspond to a subject’s disease progression data collected over time,
while cross-sectional data are single-instance data that are time-independent. Longitudi-
nal data can also be treated as independent data, time-series data, or comparative data.
Demographics (Demo) is often a form of meta-data collected alongside other exams, pri-
marily information regarding age, gender, and education. Neuroimaging data of vari-
ous modalities are commonly collected. Common modalities include PET, MRI, and CT
for diagnosis, and 3D-MRI [97], fMRI [98], and SPECT for research purposes. Various
forms of cognitive assessments (CA) are also commonly available, including MMSE [29],
CDR [99], ADAS-Cog [100,101], logical memory test [102,103], and postural kinematic
analysis [104,105]. CSF, blood plasma biomarkers [106,107], and genetic data are avail-
able from several sources. Other less common data types include electroencephalography
(EEG) for brain activity monitoring [106,107], mass spectra data collected through surface-
enhanced laser desorption and ionization assay of saliva [108], and retinal imaging for
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abnormalities [109]. Electronic health records have also been studied to screen dementia
and AD [110,111]. Alternative data types such as speech [112,113], activity pattern monitor-
ing [114,115], and eye-tracking [116] have also been studied with a deep learning approach.
Few deep-learning-related comparative studies have been performed between different
data modalities and types, especially for the less common data types [117].

2.2. Sources of Data

Several open libraries have been created in the past two decades, providing easier
access for researchers to available data on subjects with AD or related diseases. One of
the main libraries is Alzheimer’s Disease Neuroimaging Initiative (ADNI) [118], a large
longitudinal study aiming to develop novel biomarkers to detect AD and monitor disease
progression. The original ADNI cohort was collected from 2004 to 2010 and contains
T1-weighted MRI [119], FDG-PET, blood, and CSF biomarkers from 800 subjects [120].
Additional cohorts, ADNI-Go and ADNI-2, extended the longitudinal study of ADNI-1
while also encompassing a broader range of the stages of AD, adding 200 new subjects
with early MCI [121]. A fourth cohort, ADNI3, with additional modalities targeting tau
protein tangles, started in 2016 and is due to complete in 2022 [122].

ADNI is the most commonly used open library available for neuroimaging data.
Another commonly used open library is the Open Access Series of Imaging Studies (OASIS),
which includes a cross-sectional cohort (OASIS-1), a longitudinal cohort (OASIS-2) of
demented or non-demented subjects MRI, and an additional longitudinal cohort (OASIS-
3) provides MRI and PET in various modalities of 1098 subjects of normal cognition or
AD [123]. While ADNI contains genomic data, OASIS only contains neuroimaging and
neuropsychology data, i.e., cognitive assessments.

Other open libraries include the Harvard Aging Brain Study (HABS) [124] and Min-
imal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) [125]. These open
libraries are essential in propagating studies in machine learning or deep learning for AD
research. There also exist several local studies modeled similar to ADNI for data compatibil-
ity, including Japan ADNI (J-ADNI) [126], the Hong Kong Alzheimer’s Disease Study [127],
and the Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) [128]. Var-
ious institutes have established platforms to provide information and efficient access to
available databases and libraries, including NeuGRID [129,130] and the Global Alzheimer’s
Association Interactive Network [131]: http://www.gaain.org/ (accessed on 17 April 2023).
We provide a shortlist of selected data sources in Table 2.

An alternative source of data for ML practitioners and researchers alike are the chal-
lenges hosted either by ADNI or other institutions, such as CADDementia [132], TAD-
POLE [133,134], DREAM [135], and the Kaggle international challenge for automated
prediction of MCI from MRI data. These challenges may provide pre-selection or prepro-
cessed data, reducing the need for expert knowledge. A few studies have proposed to use
brain age as a surrogate measure of cognitive decline and utilized databases of cognitively
normal individuals, including UKBioBank [136], NKI, IXI [137], LifespanCN [138], and
the Cambridge dataset [139]. Other sources of data that may be available include data
from the International Genomics of Alzheimer’s Project (IGAP) [140], the Korean Longi-
tudinal Study on Cognitive Aging and Dementia (KLOSCAD) [141,142], the INSIGHT-
preAD study [143,144], the Imaging Dementia—Evidence for Amyloid Scanning (IDEA)
study [145], and the European version of ADNI—AddNeuroMed [146,147]. Institutes that
hold private data collections of AD or related diseases include the National Alzheimer’s
Coordination Center, the Biobank of Beaumont Reference Laboratory, and IRCCS. As one
of the most significant health crises of the era, many studies have collected data for AD
and related diseases; therefore, the above-listed sources include only those most commonly
used in reviewed literature and examples of alternative sources.

http://www.gaain.org/
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Table 2. Sources of AD and dementia data.

Library Number of Subjects Modalities Link

ADNI 2750 MRI, PET, CSF, Genetic http://adni.loni.usc.edu/
(accessed on 17 April 2023)

OASIS 1300+ MRI, PET https://oasis-brains.org/
(accessed on 17 April 2023)

AIBL 1100+ MRI, PET, CSF, Genetic https://aibl.csiro.au/
(accessed on 17 April 2023)

NACC 47,000+ Neuropathology, Genetic https://www.alz.washington.edu/
(accessed on 17 April 2023)

EDSD 471 MRI, DTI, Genetic https://www.neugrid2.eu/
(accessed on 17 April 2023)

ARWIBO 2700+ MRI, PET, Genetic http://www.arwibo.it/
(accessed on 17 April 2023)

HABS 290 MRI, PET, Genetic https://habs.mgh.harvard.edu/
(accessed on 17 April 2023)

KLOSCAD 6818 MRI, QOL, Behavioral http://kloscad.com/
(accessed on 17 April 2023)

VITA 606 MRT, Genetic https://www.neugrid2.eu/
(accessed on 17 April 2023)

3. Data Preprocessing

The deep learning approach can replace the feature-crafting step of machine learning
and reduce the need for preprocessing. Data types such as clock-drawing test images [148],
activity monitoring data [115], and speech audio files [112] can be processed in a similar
way to natural images and time-series data. However, for the prevalent neuroimaging data,
due to the complexity of data and the variety of established pipelines, data preprocessing is
a significant component in current DL studies. This survey will focus on imaging data, the
most prevalent data category in the intersection between AD and deep learning. Differences
in the organization of data adds to the difficulty of preprocessing. Gorgolewski et al. [149]
proposed the Brain Imaging Data Structure (BIDS) repository structure. Conversion to
a standard data structure such as BIDs is essential when using multiple modalities and
data sources.

3.1. Structural MRI Data

MRI is a safe, non-invasive medical imaging technique. High-quality medical images
can be generated with good spatial resolution while minimizing patient harm using a pow-
erful magnetic field, radio waves, and a computer. Structural MRI (sMRI) and functional
MRI (fMRI) are different MRI techniques used to study the brain. sMRI is a non-invasive
brain imaging technique that can investigate changes in brain structure [150]. Changes
in brain structure due to worsening cognitive impairment may include atrophy of spe-
cific brain regions, loss of brain tissue, and changes in the shape and size of certain brain
structures [151,152].

MRI machines are highly complex medical equipment that can vary individually.
Inhomogeneity of the B1-field in MRI machines can cause artifact signals known as the bias
field. Bias field correction is often the first step in MRI data preprocessing [153,154], usually
using B1-scans to correct for the non-uniformity in the MR image. Similarly, gradient
non-linearity can be corrected with displacement information and phase mapping, e.g.,
Gradwarp. These corrections are often in-built into the MRI systems, and its outputs are
often the raw data available from data sources. Intensity normalization is essential to
mitigate the difference between multiple MRI machines, especially in large-scale multi-
center studies or when combining data from multiple sources. The most common method

http://adni.loni.usc.edu/
https://oasis-brains.org/
https://aibl.csiro.au/
https://www.alz.washington.edu/
https://www.neugrid2.eu/
http://www.arwibo.it/
https://habs.mgh.harvard.edu/
http://kloscad.com/
https://www.neugrid2.eu/
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found in AD-related papers is the N3 nonparametric non-uniform intensity normalization
algorithm [155,156], a histogram peak sharpening algorithm that corrects intensity non-
uniformity without establishing a tissue model. In some studies, motion correction is used
to correct for subject motion artifacts produced during scanning sessions [157].

Brain extraction is a common MRI preprocessing component. It is the removal of
non-brain components from the MRI scan. Skull-stripping removes the skull component,
e.g., through bootstrapping histogram-based threshold estimations. Other similar proce-
dures include cerebellum removal and neck removal. The extracted brain images are often
registered to a brain anatomical template for spatial normalization, usually performed after
brain extraction. Registration can be categorized based on the deformation allowed into
affine registration and non-linear registration. Affine registration includes linear registra-
tion, while non-linear registration allows for local deformations [158–160]. A standard
template used is MNI-152 based on 152 subjects [161], while some studies use alternative
templates such as Colin27. A potential challenge in this process is that the selected control
subjects’ age does not match the AD subjects’ older age and corresponding brain atrophy.
Some studies resolve this issue by constructing study-specific template space based on
training data, which can also be aligned with standard templates. Other alignments in-
clude AC-PC correction, the alignment of the images with the anterior commissure (AC)
and posterior commissure (PC) on the same geometric plane. AC-PC correction can be
performed with resampling to 256 × 256 × 256 and intensity normalization using the N3
algorithm with MIPAV. Studies have shown that linear or affine normalization is potentially
sufficient for deep learning models [162,163], while other studies have shown that non-rigid
registration can improve performance.

Another potential MRI preprocessing procedure is brain region segmentation, the
division of the brain MRI into known anatomical regions. This step is usually performed
to isolate brain regions related to AD, e.g., grey matter of the medial temporal lobe and
the hippocampal region. Segmentation can be performed manually by outlining bounding
boxes or precise pixel boundaries. Ideal practices include randomizing the samples and
segmenting multiple times or segmentation with multiple expert radiologists [164]. How-
ever, manual segmentation is time intensive and not suitable for large datasets. Automated
algorithms such as FSL FIRST [165] and the FreeSurfer pipeline can perform segmentation
by registering to brain atlases, e.g., AAL. Other methods include using RAVENS maps
produced by tissue-preserving image wrapping methods [166] and specific region segmen-
tation, e.g., hippocampus segmentation with MALPEM [167]. With segmentation-based
neural networks, multiple studies have applied the deep learning approach to hippocampus
segmentation [168,169].

In AD-related studies, downsampling is often performed after preprocessing to reduce
the dimensionality of input into the neural network, directly affecting the number of
parameters and computational cost and achieving uniformity in input dimensions [170].
Smoothing is also often performed to further improve the signal-to-noise ratio [166] but it
results in lower amplitude and increases peak bandwidth. Age correction also considers
normal brain atrophy due to increasing age, similar to atrophy due to AD. A potential
method to correct this effect is via a voxel-wise linear regression model after registration,
which benefits overall model performance [167].

3.2. PET Data

PET utilizes a radioactive tracer to study the activity of cells and tissues in the
body [171]. When studying neurological disorders, the tracer binds to specific proteins
associated with the disease, such as amyloid beta, a hallmark of AD [172], and tau in the
case of AD [173,174]. It can also help identify changes in glucose metabolism, which is
altered in the brains of Alzheimer’s patients. The preprocessing of PET images is similar
to the preprocessing of structural MRI images described in Section 3.1. In AD-related
studies, PET data are often used with MRI data due to combined collection in major studies,
e.g., ADNI. Preprocessing up to image registration and segmentation is first performed
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on the MRI image, while the PET images are registered to the corresponding MRI images
through rigid alignment [166]. The post-segmentation steps of downsampling and smooth-
ing are similar to those performed on MRI images. Studies independent of MRI follow
either simplified preprocessing methods similar to MRI preprocessing [80,175,176] or only
minimal preprocessing [177].

3.3. Functional MRI Data

Functional MRI (fMRI) is a type of magnetic resonance imaging designed to measure
brain activity by monitoring blood flow within the brain. Instead of static, single-instance
structural MRI, fMRI is temporal, consisting of a series of images. fMRI is used to study
changes in brain function related to the disease. These changes can encompass altered
connectivity between distinct regions of the brain [178] and variations in how the brain
reacts to stimuli [179]. The fMRI can investigate alterations in memory and attention
associated with cognitive impairment in MCI and AD [180]. Both sMRI and fMRI can be
utilized to monitor the progression of the disease by detecting changes in specific brain
regions over time [181,182].

Therefore, preprocessing steps in addition to the preprocessing procedures for struc-
tural MRI mentioned in Section 3.1 are required. Slice time correction is required to achieve
the time-series exact timing, where fMRI may need to be first corrected for the temporal
offset between each scan instance. More extended periods of fMRI scanning and the col-
lection of multiple images in a single session increase the chance of head motion artifacts.
Therefore, fMRI scans require additional filtering or correction for motion. Head motion
correction of fMRI is usually performed through the spatial alignment to the first scan, or
scan of choice, before spatial normalization. High-pass and low-pass filters can also be
introduced to the temporal domain to control the fMRI data frequency and period [183].
The preprocessing of fMRI data can be automated using the SPM REST Toolkit, DPABI,
or FreeSurfer. Data redundancy reduction methods are often applied to fMRI data; these
can be categorized as methods based on common spatial pattern (CSP) or brain functional
network (BFN). CSF-based methods produce spatial filters that maximize one group’s
variance while minimizing another [184]. BFN-based methods use ROI segmentation to
construct a brain network where the ROI features are vertices and the functional connec-
tions are edges. Brain networks can also be constructed by calculating ROI correlations
after segmentation [185]. A recent study has also applied the deep learning approach
to construct weighted correlation kernels integrated into neural network architecture to
extract dynamic functional connectivity networks [186].

4. Data Processing

Data processing is essential to the deep learning approach, significantly influencing
model architecture and performance. Compared with traditional machine learning feature
extraction, data processing for deep learning focuses on processing input data to neural
networks instead of establishing quantified representations. Data processing aims to
preserve and emphasize critical discriminatory information within the preprocessed or raw
data while standardizing the input for model readability across samples and modalities.
The processing can be categorized into common types of model inputs. A basic summary
of the most commonly used input types is illustrated in Figure 4.

4.1. Feature-Based

Feature-based approaches are performed on individual features of the provided data.
For neuroimaging, this is also known as the voxel-based approach [96], which is applied to
individual image voxels of spatially normalized images. Space co-alignment between im-
ages is also essential to ensure comparability between individual voxels across the dataset.
To limit the amount of input information, tissue segmentation of the grey matter probability
maps is often performed. Machine learning extraction of texture, shape, or other features
can also be performed to reduce dimensionality and form an ML-DL hybrid approach [187].
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Voxel-based methods for neuroimaging data retain global 2D or 3D information but ignore
local information as it treats the entire brain uniformly, regardless of anatomical features.
For 3D scans and genetic data with large transcription quantity, higher dimensions of input
result in high computational cost; dimensionality reduction through either feature selection
or transformations is common. Feature-based approaches are used for most alternative
data types such as cognitive assessments, CSF, serum, and genetic biomarkers. Longitu-
dinal data for these types of time-series data such as EEG, activity, and speech requires
more stringent processing for sample completeness, e.g., imputation for missing data and
time-stamp alignment [188].
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4.2. Slice-Based

Slice-based approaches use 2D images or data. For 3D information, slice-based ap-
proaches assume that 2D information is a sufficient representation of the required informa-
tion. Practical clinical diagnosis is often based upon a limited number of 2D slices instead
of a complete 3D image. Some studies extract single or multiple 2D slices along the sagittal,
axial, and coronal planes from the 3D scan. Slices from the axial plane are most commonly
extracted, whereas the coronal view might contain the most critical AD-related regions.
The selection of slices from 3D scans usually focuses on a particular dissection of the brain
and the anatomical components it contains, e.g., the sagittal slices of the hippocampus are
a known region of interest. Some studies used sorting procedures to find the most valuable
slices, e.g., entropy sorting with greyscale histograms (Choi and Lee 2020). Slice-based
approaches can be less computationally expensive than feature-based approaches with
limited information quantity. However, the drawback of slice-based approaches is the
loss of global and 3D geometric structures. Studies attempt to compensate for this loss
by using multiple slices from multiple views, e.g., slices from three projections that show
the hippocampal region [189], and multiple modalities, e.g., combining slices from MRI
and PET.
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4.3. Patch-Based

Instead of using all features or 2D slices, we can use regions of predefined size as
input to the model, which is known as the patch-based approach. These regions can be
2D or 3D to suit model requirements [166]. Lin, Tong, Gao, Guo, Du, Yang, Guo, Xiao,
Du and Qu [167] combined 2D greyscale patches of the hippocampal region into RGB
patches. The patch-based approach can provide a larger sample size, equivalent to the
number of patches, in the training procedure. Individual patches have a smaller memory
footprint with lower input dimensions, reducing the computational resources required for
training. However, additional resources for reconstructing sample-level results will mean
costs to efficiency during testing and application. The challenge of patch-based approaches
is capturing the most informative regions. Region selection is a vital component in this
category; this includes the size of patches, the choice of overlap between the patches,
and the choice of essential patches. Studies have attempted to use voxels’ statistical
significance [56,190] to find patching regions, while landmark-based methods perform
patching around anatomically significant landmarks [191]. These patch-based approach is
an intermediate form of voxel-based and ROI-based methods. Various kinds of approaches
require patch-level data, including the use of a single or a low number of patches from
each image for low input dimension models used to localize atrophy [192], patch-level sub-
networks for hierarchical models [166], and ensemble learning through networks trained
on defined regions.

4.4. ROI-Based

Patch-based methods have predefined regions, and sizes of extraction are often rigid,
while ROI-based methods focus on anatomical regions of interest within the brain. These
ROIs of anatomical function are often finely selected in the preprocessing stage of reg-
istration to brain atlases. The most common atlas used among the reviewed studies is
the Automated Anatomical Labeling (AAL) atlas, which contains 93 ROIs. Other atlases
include the Kabani reference work [193] and the Harvard-Oxford cortical and subcortical
structural atlases [194,195]. Elastic registration, such as HAMMER, has higher registration
performance [196,197]. After ROI extraction, the reviewed studies commonly use GM
tissue mean intensities, or volumes, of brain ROIs as features from PET, MRI, fMRI or
other modalities [198]. Other measures include subcortical volumes [199,200], grey matter
densities [201,202], cortical thickness [203,204], brain glucose metabolism [205,206], cerebral
amyloid-β accumulation [207,208], and the average regional CMRGlc [209] for PET. The
hippocampus is of particular interest in the reviewed papers; ROI-based methods have used
3D data and morphological measurements of its cortical thickness, curvature, surface area,
and volume. Aderghal, Benois-Pineau and Afdel [189] proposed using both left and right
hippocampal regions through flipping regions along the median plane. The relationships
between ROIs are also used as standard input; the correlation between regions provides
connectivity matrices that are often divided into cortical and subcortical regions [210].

ROI-based methods are closely linked to anatomical regions and have high inter-
pretability and clinical implementability. However, the close link to a priori knowledge
limits its potential in explorative studies. The computational cost is usually between that
of the voxel and slice-based approaches, but ROI-based methods can maintain local 3D
geometric information. Hierarchical neural network frameworks containing sub-networks
at each representation level have also been proposed with effective network pruning to
retain complete information [192].
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4.5. Voxel-Based

Voxel-based approaches are feature-based approaches that focus on the analysis of in-
dividual voxels, which are the three-dimensional pixels that make up a medical image [211].
These voxels represent discrete locations in the brain [212], and their size and number can
be adjusted to balance computational efficiency and spatial resolution [213]. Compared
with slice-based approaches, voxel-based methods can capture the three-dimensional struc-
ture of the brain and its changes, which may not be evident in two-dimensional slices. Due
to the complexity of brain structure and differences between subjects, spatial co-alignment
(registration) is essential [214]. Registration is the process of spatially aligning image scans
to an anatomical reference space [215]. This process involves aligning MRI images of
different patients or the same patient at different time points to a standardized template
representing a common anatomical space [216]. Many studies segment the aligned images
into different tissue types, such as gray matter, white matter, and cerebrospinal fluid, us-
ing unique signal features of different tissue types before applying the model [217,218].
Comparing gray and white matter across groups or time points can be a sensitive method
for detecting subtle changes in brain structure. However, voxel-based approaches also
have limitations. One major limitation is the requirement for high spatial resolution. The
paper [219] utilizes functional network topologies to depict neurodegeneration in a low-
dimensional form. Furthermore, functional network topologies can be expressed using a
low-dimensional manifold, and brain state configurations can be represented in a relatively
low-dimensional space.

5. Introduction to Deep Learning

Deep learning (DL) is a branch of machine learning which implements universal
approximators of neural networks [70,220], a modern development of the original percep-
tron [221,222] with chain rule-derived gradient computation [223,224] and backpropaga-
tion [225,226]. The fundamental formulation of the neural network can be represented
through the formulation of a classifier:

y = f
′
(x) (1)

where x is the data. The function f′ represents the ideal mapping between the input and
the underlying solution y. A neural network defines a mapping f(x, θ) that provides an
approximation of f′ by adjusting its parameters θ. This adjustment can be considered a
form of learning. For learning, a loss function, L(f(x; θ), y), can be constructed through
the relation between the ideal output and the current output of the neural network. Back-
propagation through derivatives of the loss function provides a means of updating the
parameters for the learning process with a learning rate of ε. DL can abstract latent feature
representations with minimal manual interference. Features generated by DL cover the
hierarchy of low- to high-level features that extend from lines, dots, or edges to objects or
characteristic shapes [227].

θ← θ− ε
∂L(x, θ)

∂θ
, (2)

Advances in deep learning have achieved performance comparable to healthcare
professionals in medical imaging classification [175,228]. Due to its feature as a component-
wise universal approximator, it can be formulated in multiple ways, including feature
extractors dependent on preprocessing and domain knowledge, classifiers for discrimina-
tion between groups, or regressors for the prediction of scenarios. Neural networks can
also be used in AD knowledge discovery as the feature representation extracted by neural
networks might contain information that is counter-intuitive to human understanding.
This review outlines the fundamental techniques of deep learning and the main categories
of current approaches to various challenges. As a machine learning sub-branch, deep
learning approaches can be categorized into two main categories: unsupervised learning
and supervised learning.
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6. Unsupervised Learning

Unsupervised learning extracts inferences without ground truth categorization of the
provided data samples or labels, while supervised approaches require data sample and
label pairs. In deep learning, no architecture is strictly supervised or unsupervised if we
decompose them into their base components, e.g., feature extraction and classification
components of convolutional neural networks. In this survey, the distinction is made
based on the relationship between the optimization target of the main neural network or
framework and ground truth labels. Unsupervised learning methods will be summarized
in this section, while supervised learning methods will be summarized in Section 7.

6.1. Autoencoder (AE)

Autoencoders are a type of artificial neural network designed to learn efficient data
representation. The classical application of autoencoders is an unsupervised learning
method with two main components: the encoder fe, and the decoder fd. The encoder is
a neural network designed to map the input to a latent feature representation, while the
decoder is a mirror image of the encoder designed to reconstruct the original input from
the compressed representation, i.e.,

x
′
= fd(fe(x)), (3)

where x′ is the reconstructed input, and fe(x) = z, is the latent representation. AE can
obtain efficient data representations in an alternative dimension by minimizing a recon-
struction loss, e.g., squared errors:

L
(

x, x
′)

= ||x− x
′ ||2 (4)

The original AE consists of fully connected layers, while a stacked autoencoder consist
of multiple layers within the encoder and decoder to allow extraction of high-level repre-
sentations. This structure can be directly applied to train on extracted features such as the
ROI features detailed in Section 4.4. In a previous study, structural features of ROI were
combined with texture features extracted from Fractal Brownian Motion co-occurrence
matrices [229]. Since the AE is unsupervised, a supervised neural network component is
attached after training to enable classification or regression. This component commonly
consists of fully connected layers (FCL) and activations. Fine-tuning by re-training the
network with the supervised component is often applied to achieve better performance.

Greedy layer-wise training can be applied since the encoder and decoder have similar
structures regardless of the number of stacked layers. In this training protocol, layers are
continuously added to the encoder and decoder and retrained for hierarchical representa-
tion. Liu et al. [230] integrated this protocol with multi-modal fusion to improve multi-class
classification with MCI sub-types to 66.47% ACC with 86.98% specificity. The same AE
also achieved higher performance for binary classification tasks of AD vs. HC and MCI
vs. HC. Another commonly applied method to improve AE performance is using sparsity
constraints on the parameters. The constraint can be applied through l1-regularization or
Kullback–Leibler divergence [231–233] for the model to learn with limited neurons during
training instances and thereby reduce overfitting. For the classification between HC and
MCI, Ju et al. [234] applied sparsity-constrained AE with functional connection matrices
between ROIs in fMRI data. The sparsity constraint AE achieved a classification ACC of
86.47% with an AUC of 0.9164, over 20% higher than the machine learning counterparts
of SVM, LDA, and LR. Apart from the training protocol and parameter constraint, some
methods moderate the input and output of AE. Denoising AE reformulates the original
reconstruction problem of AE to a denoising problem with the introduction of isotropic
Gaussian noise.

x
′
= fd(fe(x + N(0, 1))) (5)
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Ithapu et al. [235] utilized this AE variant for feature extraction to construct a quantified
marker for sample enrichment. Bhatkoti and Paul [236] applied a k-sparse autoencoder
where only the neurons corresponding to the k-largest activations in the output are activated
for backpropagation. These studies are representative of innovations in the application and
enhancement of the original autoencoder.

The structure of neural networks in the encoder and decoder is not limited to MLP; the
convolutional structure is also common among AD-related applications of AE. A study has
applied 1D convolutional-AE to derive vector representations of longitudinal EHR data,
where the 1D convolution operations act as temporal filters to obtain information on patient
history [110]. Similarly, more sophisticated convolutional structures can also be used in
the encoder and decoder architecture. Oh et al. [237] applied a convolutional AE with
Inception modules, which are groups of layers consisting of multiple parallel filters. The
standardized structure of AE makes it adaptable to any input dimension by configuring
the encoder and decoder structure. Hosseini-Asl et al. [238], and Oh, Chung, Kim, Kim and
Oh [237] applied 3D convolutional autoencoders to compress the representations of 3D
MRI, while Er and Goularas [239] applied AE as an unsupervised component of the feature
extraction process. AE can also be implemented as a pre-training technique, where after
training, fully connected layers are added to the compressed layer of the encoder and used
for supervised learning [240].

Apart from structural adjustments to the encoder and decoder layers, a probabilistic
variation of AE also exists. These AE are known as variational autoencoders (VAE). For VAE,
a single sample of available data xi can be interpreted as a random sample from the true
distribution of data p

′
, while the encoder can be represented as q(z|x), an approximation

to the true marginal distribution of p(x|z). The loss function is, therefore,

L = L1

(
x, x

′)
+ LKL(q(z|x), p(z)), (6)

where L1 is the reconstruction loss and L2 is the Kullback–Leibler divergence, which regu-
larizes the VAE and enforces the Gaussian prior p(z) = N(0, 1). Through this adjustment,
AE learns latent variable distributions instead of representations [241]. A more intuitive
formulation is as follows:

µ = fh1
(fe(x)) and σ = fh2

(fe(x)), (7)

where fh1
and fh2

represent the mapping to two independent neural network layers rep-
resenting µ and σ, the set of mean and variance of the latent distributions. The latent
representation can be sampled through reparameterization,

z = µ + σε where ε ∼ N(0, 1), (8)

and decoded to reconstruct the input x
′
= fd(z). Variational autoencoder has recently been

applied to extract latent distributions of eMCI from high-dimensional brain functional
networks [242] and provide risk analysis for AD progression [243]. Instead of a single
set of latent distributions, a hierarchy of latent distributions can also be learned using
ladder VAE. This variant of VAE was applied by Biffi et al. [244] to model HC and AD
hippocampal segmentation populations, where latent distribution-generated segmentations
for AD showed apparent atrophy compared with HC. By learning latent distributions,
new data can be sampled from these distributions to generate new samples. From this
perspective, VAE can be considered a generative model and is introduced in the following
subsection. The fundamental autoencoder structures are shown in Figure 5.
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Figure 5. Fundamental autoencoder structures. The top figure represents a stacked 2D autoencoder,
where each block represents a convolutional layer composed of a bank of convolutional filters
(represented by the rectangular columns). The bottom represents a VAE, where instead of the latent
representation, the encoder generates latent distributions represented by mean µ and variance σ,
which are then used to generate representations. The convolution operation can be replaced by fully
connected layers or complex modules, e.g., the Inception module.

6.2. Generative Models

Generative methods are a form of unsupervised learning that requires the model to
recreate new data to supplement an existing data distribution. Variational autoencoders
and RBM mentioned in the previous sections are both generative models. Another popular
generative method is the construction of generative adversarial networks (GANs), where
two or more neural networks compete in a zero-sum game. Classical GAN includes a
generative neural network G used to generate dummy data and a discriminator neural
network D to determine whether a sample is generated. The generator generates fake
images x

′
= G(ε) from noise ε. The generated sample belongs to the generated data

distribution x′ ∈ pg. The discriminator attempts to discriminate between generated images
x
′

and real images, x ∈ pr(x). The competition between the generator and discriminator
can be formulated through their loss function

L = EG(ε)∼pg{log[1− D(G(ε))]}+ Ex∼pr{log[D(x)]}, (9)

where the objective is to minimize G and maximize D [245]. GAN is widely used for
medical image synthesis, reconstruction, segmentation, and classification [246]. Islam and
Zhang [247] applied a convolutional GAN to generate synthetic PET images for AD, NC,
and MCI. The GAN model generated images with a mean PSNR of 32.83 and a mean
SSIM of 77.48. The generated data were then classified using a 2D CNN, which achieved
71.45% ACC. This performance drop illustrates the difficulty in synthesizing quality syn-
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thetic images for training. A similar framework was proposed with shared feature maps
between the generator and discriminator. With transfer learning, the framework achieved
0.713 AUC for SCD-conversion prediction [248]. Roychowdhury and Roychowdhury [249]
implemented a conditional GAN, where the discriminator and generator are conditioned
by labels y,

L = EG(ε)∼pg{log[1− D(G(ε|y ))]}+ Ex∼pr{log[D(x|y )]}, (10)

The conditional GAN was applied to generate longitudinal MRI data by generating
and overlaying cortical ribbon images. The generated data provide a potential disease
progression model of MCI to AD conversion and brain atrophy. The study showed that
the modeled fractal dimension of the cortical image decreases over time. Baumgartner
et al. [250] applied an unsupervised Wasserstein GAN, where a K-Lipschitz constraint
critic function C replaces the supervised discriminator. The loss of this model can be
formulated as:

L = Ex∼p(y=1){log[C(x + M(x))]}+ Ex∼p(y=0){log[C(x)]}, (11)

where D is a set of 1-Lipschitz functions, and M is a map generator function that uses
existing images x to generate new images x

′
= x + M(x). An additional regularization

component LM = ‖M(x)‖1 is also added to the overall loss function to constrain the map
M for minimum change to the original image x. In the study, M is modeled by a 3D
U-Net segmentation model. The modified WGAN generated disease effect maps similar
to human observations for MRI images of MCI-converted AD. An alternative application
of Wasserstein GAN with additional boundary equilibrium constraints was applied by
Kim et al. [251]. This study extracted latent representations from autoencoder structure
discriminators for classification with FCL and SVM. For AD vs. HC, the model achieved
an ACC of 95.14% with an AUC of 0.98. A subsequent study by Rachmadi et al. [252]
built upon the Wasserstein GAN structure with an additional critic function C2. The loss
function corresponding to this additional component is:

Lc2 = Ex1, x0∼p1,p0 [C2(x1 − x0)]− Ex0∼p0 [C2(M(x0))], (12)

where x0 and x1 are baseline and follow-up images, respectively. Apart from using the
original critic C to discriminate between real and fake images, the new critic C2 is also
applied to discriminate between real disease evolution maps x1 − x0 and generated maps
M(x0). The inclusion of C2 reformulates the generation of dummy scans to the generation
of longitudinal evolution maps. Though this study was applied in monitoring the evolution
of white matter hyperintensities in cerebral small vessel disease, the same concept and
technique can be migrated to data on Alzheimer’s and related diseases [252]. Example
GANs are illustrated in Figure 6. Apart from GAN, another type of innovative generative
model is invertible neural networks (INN), which create invertible mappings with exact
likelihood. Sun et al. [253] used two INN to extract the latent space of MRI and PET
data and map them to each other for modality conversion. Conditional INNs, based on
the conditional probability of latent space and combined with recurrent neural networks
(RNN), were also used to generate longitudinal AD samples [176].
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Figure 6. Example generative adversarial networks. The top figure is an example vanilla 3D convolu-
tional generative adversarial network. The bottom figure shows the basic schematics of the modified
Wasserstein GAN [250,252]. The structure of each generator and discriminator component can be
modified for different neural network architectures.

6.3. Restricted Boltzmann Machine (RBM) and Other Unsupervised Methods

Apart from GAN and AE, numerous unsupervised methods have been applied for AD
and related diseases. A well-known category is the restricted Boltzmann machine (RBM).
An RBM is a generative network with a bipartite graph used to extract the probability
distributions of the input data. RBM consists of two symmetrically-linked layers containing
the visible and hidden units, respectively. The units, or neurons, within each layer are not
connected. Similar to autoencoders, RBMs encode the input data through the forward pass
while reconstructing input data through its backward pass. Two sets of biases for the two
different passes aid this process. As an unsupervised method, RBM can also be used for
feature extraction. Li et al. [254] applied multiple RBMs to initialize multiple hidden layers
one at a time, while Suk et al. [255] combined RBM with the autoencoder learning module
by combining layer-wise learning with greedy optimization. Conditional RBM has been
applied as a statistical model for unsupervised progression forecasting of MCI, achieving
ADAS-Cog13 prediction performance compared with supervised methods [256]. A deep
belief network (DBN) is a neural network architecture comprising stacked RMBs. The basic
structure of a DBN is shown in Figure 7. A DBN allows a backward pass of generative
weights from the extracted feature to the input, making it more robust to noise. However,
the layer-by-layer learning procedure for DBN can be computationally expensive. Suk, Lee,
Shen and Initiative [166] applied a combination of MLP and DBM for feature extraction
from multiple modalities.
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More recent studies in unsupervised learning applied show great diversity. Razavi
et al. [257] applied sparse filtering as an unsupervised pre-training strategy for a 2D CNN.
Sparse filtering is an easily applicable pre-training method where a neural network is
first trained to output in a specified feature dimension. In this study, the cost function of
classification is replaced by minimizing the sparsity of l2-normalized features of specified
dimensions. Bi et al. [258] combined a CNN with PCA-generated filters and k-means
clustering for a fully unsupervised framework for clustering MRI of AD, MCI, and NC.
Wang, Xin, Wang, Gu, Zhao and Qian [184] hierarchically applied extreme learning ma-
chines for unsupervised feature representation extraction. Extreme learning machines are a
variant of feedforward neural networks that applies the Moore–Penrose generalized inverse
instead of gradient-based backpropagation. Majumdar and Singhal [259] applied deep
dictionary input while using noisy inputs, such as denoising autoencoders, for categorical
classification, while Cheng et al. [260] utilized a U-net-based CNN with rigid alignment for
cortical surface registration of MRI images.

7. Supervised and Semi-Supervised Learning

Supervised learning involves the use of known labels. In this study, we focus on the
use of neural networks to map inputs to definite outputs. This section first introduces archi-
tecture classes, such as convolutional and recurrent neural networks, in Sections 7.1 and 7.2.
We then present recent advances in transfer learning, ensemble learning, and multimodal
fusion in Sections 8.1–8.3. Finally, we introduce the most recent developments in graph
and geometric neural networks.

7.1. Convolutional Neural Networks (CNN)

The innovation of convolutional neural networks (CNN), especially the development
of the AlexNet [261,262] by Krizhevsky et al. [263], validated neural networks as prac-
tical universal approximators with layer-wise feature propagation. In CNN, the dense
connections of MLPs are replaced with kernel convolutions:
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where K is the convolutional kernel; σ is a non-linear activation function; and H, W, and
C represent the dimensions for height, width, and channel of the input. CNN allows for
parameter-efficient hierarchical feature extraction. Besides the reduced computational
requirements, CNN has translational invariance and can retain spatial information, making
it particularly suitable for neuroimaging data. The effectiveness of CNN is evident in their
broad application, both as an independent model and as network components [264].
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A typical CNN consists of several convolutional layers followed by non-linear activa-
tions. The non-linearity provides the basis for learning through backpropagation. Com-
monly used activation functions include the rectified linear unit (ReLU), σ = max(0, x),
the hyperbolic tangent, σ = tanhx, and sigmoid functions, σ = (1 + e−x)

−1. Recent new
activation functions such as leaky-ReLU and parametric-ReLU are also seen in the reviewed
literature [177,265].

Pooling, the downsampling of feature maps through an average or maximum filter
approach, is also often applied. Batch normalization, where each mini-batch of data is
standardized, is also commonly applied after convolution. A combination of the above
procedures forms a convolution block, and a typical CNN comprises multiple convolution
blocks. These blocks are often followed by a few fully connected layers and a Softmax
activation for classification or a linear activation for regression. The theoretical foundations
of CNN can be understood through the decomposition of tensors [266], while in this
paper, we will focus on practical applications of CNN for AD-related tasks. The following
subsections will provide a summarized introduction to 2D and 3D CNN focusing on recent
applications, while more detail can be found in previous reviews [89,96].

7.1.1. 2D-CNN

The original CNN was designed for computer vision pattern recognition of 2D images,
allowing an easy application for 2D neuroimaging data. A basic 2D-CNN is shown in
Figure 8. Aderghal, Benois-Pineau and Afdel [189] used a two-layer CNN with ReLU
and max-pooling of 2D+ ε images that project slices from the sagittal, coronal, and axial
slices into a three-channel 2D image. Alternatively, when 2D slices are available from
multiple planes of a 3D image, an individual 2D-CNN can be used for each image and then
ensembled. Neural network depth is associated with an increase in performance. Wang,
Phillips, Sui, Liu, Yang and Cheng [265] proposed a deeper eight-layer CNN with leaky
rectified learn units to classify single-slice MRI images, while a similar CNN was applied
for the classification of Florbetaben-18 PET images [177]. Tang et al. [267] used a CNN
model to identify amyloid plaques in AD histology slides. Similar to the aforementioned
2D CNN, the neural network consists of alternating layers of 2D convolution and max-
pooling, followed by fully connected layers with ReLU activation and a Softmax activation
to produce classification outputs. The CNN model showed excellent performance in the
classification of amyloid plaques with an AUC of 0.993. The current state-of-art 2D CNN
models are also mostly developed for natural image classification, though these models are
easily applicable for 2D AD-related data. The availability of pre-trained state-of-art models
provides the basis of transfer learning, as summarized in Section 8.1.
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Due to the two dimension limit, data with multiple slices are either treated as inde-
pendent or similar. 2D-CNN can also be applied to 1D data, including using the Hilbert
space-filling curve to transform 1D cognitive assessment data to 2D [268] or using the time-
series data of multi-channel EEG as a 2D matrix [269]. Though limited by dimensionality,
2D-CNN can be more practical in real-world application and deployment, as the data used
in clinical practice are often 2D or lacks enough slices to construct the high-dimensional 3D
T1-weighted MRI predominately used for medical research. The 3D neuroimaging data in
open libraries such as ADNI and OASIS are often processed to obtain 2D slices or patches,
as mentioned in Section 4. To retain 3D spatial information, 2D slices or patches from the
sagittal, coronal, and axial views are often extracted for multi-view networks [270]. The
lower dimensionality of 2D-CNN also makes it suitable for adaptation for 1D data, e.g.,
Alavi et al. [271] utilized the triplet architecture of face recognition and the Siamese one-shot
learning model for automated live comparative analysis of RNA-seq data from GEO.

7.1.2. 3D-CNN

3D-CNN is inherently the same as 2D-CNN apart from an additional dimensionality
in all components, including the convolutional kernel. The additional dimension provides
3D-CNN with better spatial information than 2D-CNN as the latter is inherently limited by
kernel dimensionality and is, therefore, unable to efficiently capture the spatial information
between slices. A basic 3D-CNN is shown in Figure 9. Similar to fundamental 2D-CNN
models, Islam and Zhang [272] used a 3D-CNN composed of four 3D convolutional layers
with FCL and Softmax with T1-weighted MRI, while Duc et al. [273] applied a similar
CNN with rs-fMRI functional networks. A simple two-block 3D-CNN applied by Basaia
et al. [274] showed either comparable or better performance than 2D-CNN in binary
classification with AD, NC, and various MCI subtypes.
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Figure 9. Basic 3D CNN architecture. 3D images and patches from Figure 4 can be used as inputs
for this architecture. Individual blocks within a convolutional layer represent channel-wise feature
maps after convolution. Modifications such as identity mapping and dense connectivity can be
applied with an additional dimension of height. Fully connected layers can be replaced with global
average pooling for a fully convolutional neural network, while the final activation can be modified
for classification, regression, or additional structure can be applied for alternative tasks such as
semantic segmentation.
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With the similarity between 2D and 3D CNN, high-performing architectures in two
dimensions can easily be adapted to three dimensions; Basaia, Agosta, Wagner, Canu,
Magnani, Santangelo, Filippi and Initiative [274] and Qiu et al. [275] both implemented 3D
versions of an all convolutional neural network for the classification of AD and MCI, where
the FCL + Softmax classification component is replaced with a CNN with a channel number
corresponding to the number of categories and global pooling of each channel. A similar
application of an all convolutional CNN was applied by Choi et al. [276] for MCI conversion
prediction. Unsupervised pre-training has also been tested by Hosseini-Asl, Keynton and
El-Baz [238] and Martinez-Murcia et al. [277] with 3D convolutional autoencoders, while
features extracted by 3D-CNN have also been used as input for sparse autoencoders [278].
Ge et al. [279] combined a U-Net-structured 3D-CNN for multi-scale feature extraction
with XG-Boost feature selection. State-of-art architectures for 2D-CNN have also been
adapted to 3D, e.g., a 3D architecture for the Inception-v4 network [280]. Liu et al. [281]
used 3D-AlexNet and 3D-ResNet as comparative models. Wang et al. [282] also proposed
a probability-based ensemble of densely connected neural networks with 3D kernels to
maximize network information flow. This study also revealed ensemble learning as a
potential approach to higher performance, which is detailed in Section 8.2.

The additional dimensionality of 3D does not restrict input to the spatial domain.
An example is dynamic functional connectivity networks, which are 2D representations
of brain ROIs’ changes in blood oxygen level-dependent (BOLD) signals over time. For
input of FCNs, the 3D-CNN obtains an additional temporal dimension in addition to the
2D spatial representation. With convolution along the temporal dimension, the neural
network combines temporal and spatial connectivity to form more dynamic FCNs that can
characterize time-dependent interactions considering the different contributions of time
points [186].

The additional dimensionality of 3D-CNN corresponds to a significantly higher num-
ber of parameters within the model and higher computational cost. In order to reduce
the computational cost, Spasov et al. [283] applied parameter-efficient 3D separable con-
volution, where the original 3D convolution is divided into depth-wise convolution and
1 × 1 point-wise convolution. Liu, Yadav, Fernandez-Granda and Razavian [281] per-
formed comparative and ablation experiments and found that instance normalization can
generalize better than batch normalization. This study also found that early spatial down-
sampling negatively impacts model performance, indicating that wider CNN architecture
is more beneficial than additional layers and that smaller initial kernel sizes are ideal.

Liu, Cheng, Wang, Wang and Initiative [170] proposed the combined use of an ensem-
ble 3D-CNN and 2D-CNN in a sequential manner, where the 3D-CNN captures spatial
correlations with the 3D input. An ensemble of cascading 3D-CNN-generated feature
maps is used as input for 2D-CNNs. While most of the studies above focus on categorical
classification, disease progression predictions, and prediction of clinical measures, some
deep learning studies were applied for different purposes, e.g., segmentation and image
processing, which is potentially valuable for future studies in Alzheimer’s and related
diseases. Yang et al. [284] proposed a 3D-CNN with residual learning architecture for
hippocampal segmentation that is significantly more efficient than conventional algorithms.
Pang et al. [285] combined a semi-supervised autoencoder with local linear mapping. With
the development and availability of more powerful hardware in the past decade, the
3D convolutional neural network has become increasingly popular amongst applications
within the reviewed literature.
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7.2. Recurrent Neural Networks (RNN)

Longitudinal data of AD provide multiple data instances of a subject, allowing us
to find ground truth for MCI conversion and time-to-conversion. However, the temporal
nature of a series of instances is often not explored in DNN and CNN architecture. Recurrent
neural networks incorporate the temporal domain through adaption to a sequence of input
with time-varying activation and sequential synapse-like structure. The fundamental
concept was formulated by Goodfellow et al. [227] as:

ht = f
′(

ht−1, xt
)

, (14)

where ht and xt represent the state and input at time step t. The state can be unfolded with
respect to the past sequence:

ht = gt
(

x1, x2, . . . , xt
)

, (15)

where gt is a function. This property of the vanilla RNN allows f to learn on all time steps
and sequence lengths. Second-order RNNs consist of more complex neurons with memory
components such as long short-term memory. LSTM is composed of a memory cell and
three gates. The gates can be formulated as:

gc
t = σ

(
bc + Ucxt + Wcht−1

)
, (16)

where for each gate c, σ represents the activation, and Wc and Uc represent the recurrent
weight and input weight matrices, respectively. The cell and update protocol can be
formulated as:

st = gt
f st−1 + gt

e·σ
(

b + Uxt + Wht−1
)

, (17)

ht = tanh
(
st)·gt

o, (18)

where g f is the forget gate, ge is the external input gate and go is the output gate. The recur-
rent weight and input weight of the memory cell are represented as U and W, respectively.

LSTM has been applied to brain network graph matrices to extract adjacent positional
features from fMRI data; the combination of LSTM and extreme learning machine (ELM)
showed a slight improvement over a CNN-ELM model in classification tasks [185]. Gated
recurrent unit (GRU) is another gated-RNN structure that shares a similar structure with
LSTM but does not contain the forget gate. Therefore, it contains a lower number of
parameters and is more suitable for capturing long-term temporal patterns. GRU has been
used for classification with temporal clustering of actigraphy time-series obtained through
the monitoring of activity for NC, MCI, and AD subjects. In this application, features
extracted with CNN and Toeplitz inverse covariance-based clustering were combined and
fed into the recurrent neural network [286].

Bi-directional GRU (BGRU) is a GRU variation that can process input both forwards
and backwards. It has been applied in a similar manner to MLP and CNN-extracted features
in multiple studies [287,288]. Apart from its use as a classification component to replace
traditional MLP or machine learning classifiers, RNN can also be utilized for structural data.
One study has combined CNN and RNN by inputting a series of 2D slices from 3D scans to
capture spatial features; the CNN component captures features within single slices, while
the BGRU structures obtain a time-series of CNN-extracted features to extract inter-slice
features, which are then used as input for an MLP classifier component [289]. Similarly,
instead of features extracted from slice-level data, LSTM architecture variants have been
modified to suit 3D structural data, e.g., 3D convolutional LSTM to encode representations
extracted by a 3D-CNN [290].
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In the range of applications of RNN in deep learning, a key characteristic that stands
out is its ability to deal with temporal data. Therefore, one focus of interest is the com-
bination of spatial and temporal information. Wang et al. [291] combined the two types
of information for fMRI data through the parallel implementation of multiple LSTM on
features corresponding to multiple time series of ROI BOLD signals and the use of con-
volutional components for time-series segments. While most studies formulate the MCI
prediction problem as a classification task [292], one study has used features extracted from
an LSTM-based autoencoder for prognosis modeling with a Cox regression model [293].
For time-series or sequential data, sample completeness is a significant challenge in practice.
Due to the difficulty in longitudinal data collection, many datasets have missing or delayed
collection time points. On top of classical data imputation, Nguyen et al. [294] utilized their
proposed minimal RNN model to impute missing data by filling it with model predictions.
This study achieved exceptional results in the TADPOLE longitudinal challenge for the
6-year predictions of ADAS-Cog13 and ventricular volume. These studies have shown
the effectiveness of RNNs in the temporal modeling of AD and related diseases. With the
incrementally increasing amount of longitudinal data collected across various projects, they
will significantly impact the direction of the deep learning approach.

7.3. Graph and Geometric Neural Networks (GNNs)

The underlying assumption for conventional neural networks is that the latent distri-
bution of data lies in the Euclidean domain. Graph and geometric neural networks are a
branch of deep learning designed for data in the non-Euclidean domain [295], e.g., genetic
pathways, brain manifolds, and functional networks. Before the development of GNN, the
dominant deep learning approach to graph data was graph kernel methods, where a kernel
function is used to map the graph into vector space as input for neural networks. Studies
have utilized this method by calculating brain function networks represented as correlation
matrices and then using them as input for various neural networks [185,296]. Therefore,
most brain function network studies can be considered graph kernel methods. The pipeline
to generate these vectors is deterministic, while GNN is learnable and is relatively less
penalized by the curse of dimensionality with relational data [297].

There are many categories of GNN, but the most popular GNN in AD research are
graph convolutional neural networks (GCNN), which can be sub-categorized into special
and spatial GCNN. Song et al. [298] utilized GCNN for multi-class classification and
verified a performance advantage over traditional machine learning classifiers with a low
sample size. The GCNN was then applied to predict tau protein trajectory with a constraint
on loss based on a physical model of tau protein spread in the brain [299]. Song et al. [300]
proposed a GCN framework with similarity-aware receptive fields and adaptive adjacency
matrices generated through pre-training for better prediction.

A major sub-category of GCNN is spatial GCNN, where we reformulate convolution
operations onto the graph nodes to exploit their spatial relationships [301]. A simple
formulation of this process is presented by Wu, Pan, Chen, Long, Zhang and Philip [297],
where for each layer k,

hk = σ

(
XWk +

k−1

∑
i=0

Ahk−1Θk

)
, (19)

where A is an adjacency matrix that contains the connection information between graph
nodes; X is the feature matrix of the graph; and W and Θ are matrices of learnable pa-
rameters. A key aspect of utilizing GNNs is the generation of graphs or manifolds, e.g.,
structural connectivity graphs derived from DTI [298] and hypersphere projections of
brain-functional networks extracted from fMRI [302]. The graph generation component
can also be incorporated into the neural network with embedding and attention-based
mechanisms [303], while global attention mechanisms can also be used to build resilience
against noise and variance [304].
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Spectral GCNN redefines convolution operations to the Fourier domain through the
eigendecomposition of graph Laplacian [305]. For a simplified channel-wise example, the
spectral GCNN can be formulated as:

h
′
= σ

(
UωUTh

)
, (20)

where ω denotes the channel component of the filter, which contains trainable parameters,
and U are the eigenvalues of a normalized graph Laplacian. L = UΛUT and UTx are
equivalent to the Fourier transform of x [297]. Wee et al. [306] generated graphs based on
the cortical thickness of structural MRI and implemented a spectral GCNN for classification
between disease stages. The model achieved 92% accuracy in predicting late MCI conver-
sion to AD. Similarly, Zhao et al. [307] utilized a Cheby-GCN-based spectral GCNN with
graphs constructed upon MCI functional connectivity networks, hardware, and gender
information to predict MCI. Similar to the application of the attention mechanism with
spatial-GCNN, Kazi et al. [308] combined spectral-GCNN with an attention module based
on LSTM for personalized diagnosis. Huang and Chung [309] implemented Monte-Carlo
dropout on a similar network structure for uncertainty estimation in the prediction of MCI
conversion. Yu et al. [310] proposed a spectral-GCN framework that simulates random
walks with parallel GCN layers and takes a combined input of structural connectivity
from DTI and functional connectivity from fMRI. The model showed the difference in the
structural connection between different disease stages and achieved 84~93% accuracy for
binary classification tasks between NC, early MCI, and late MCI [310].

As an emerging field in deep learning, many AD-related studies focus on various
other fields of interest in geometric neural networks, including geometric deep learning
manifolds, e.g., Zhen et al. [311] implemented a dilated convolutional architecture designed
for sequential manifold-valued data and the application of spectral-temporal neural net-
works for EEG and fMRI data to capture both spatial and temporal information [312,313].
Geometric and graph neural networks represent a more general structure than the rigid
Euclidean domain of conventional neural networks. This property is more suitable for
inherently non-Euclidean data and can facilitate better integration of a variety of data types.
GNN is becoming a significant area of research for developing future neural networks in
AD research.

7.4. Other Methods

Other methods include reinforcement learning, a topic of artificial intelligence research
that branches apart from supervised or unsupervised learning. Instead of learning repre-
sentations, reinforcement learning models focus on agents’ actions within an environment.
Tang, Uchendu, Wang, Dodge and Zhou [112] applied reinforcement learning with natural
language processing techniques for an MCI screening dialogue agent. The reinforcement
learning environment was set up with the Actor-Critic method, where a user simulator
neural network generates new dialogue data. This set-up is very similar to GAN, but for
GAN, the actor cannot affect the reward of the critic function [314]. While the perceptron
units of neural networks simulate human brain neurons’ fundamental function, it is an
oversimplistic representation. Current research in deep learning has attempted to create
neural networks based on more representative biological neurons. An example of this
research field is spiking neural networks (SNN). Compared with the sequential nature
of RNNs, SNNs are neural networks inherently temporal by design. Capecci et al. [315]
provided a proof-of-concept with an SNN architecture using EEG data for the prediction of
MCI conversion.

We summarize the literature mentioned in this section in Tables 3–5.
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Table 3. Binary classification results of selected literature between AD, NC, and MCI.

Study Data
Modalities

Number of Subjects Classification ACC (%) Classification AUC

AD NC MCI AD vs. NC MCI vs. NC AD vs. NC MCI vs. NC

Suk and Shen [316] MRI, PET 51 52 99 95.9 85 - -

Suk, Lee, Shen and Initiative
[166] MRI, PET 93 101 204 95.35 85.67 - -

Liu, Liu, Cai, Che, Pujol,
Kikinis, Feng and Fulham

[230]
MRI, PET 85 109 77 82.59 82.10 - -

Li, Tran, Thung, Ji, Shen and
Li [254]

MRI, PET,
CSF 51 99 52 91.4 77.4 - -

Aderghal, Benois-Pineau
and Afdel [189] MRI 188 228 399 69.53 91.41 - -

Suk et al. [317] MRI 186 393 226 91.02 - 0.927 -

Majumdar and Singhal [259] MRI, PET,
CSF 51 99 52 95.4 85.7 - -

Cui, Liu and Li [287] MRI 198 229 - 89.69 - 0.9214 -

Shi et al. [318] MRI, PET 51 52 99 97.13 87.24 0.972 0.901

Liu, Wang, Tang, Hu, Wu
and Pan [210] MRI - 303 83 - 90.9 - -

Lu et al. [319] PET 226 304 521 93.58 - - -

Ning et al. [320] MRI, Genetic 138 225 358 - - 0.992 -

Liu, Cheng, Wang, Wang
and Initiative [170] MRI, PET 93 100 204 93.26 74.34 0.957 0.802

Ge, Qu, Gu and Jakola [279] MRI 193 139 - 93.53 - - -

Ju, Hu and Li [234] fMRI - 79 91 - 86.47 - 0.916

Liu, Zhang, Adeli and Shen
[191] MRI 227 249 390 93.7 - - -

Islam and Zhang [272] PET 169 400 661 88.76 - - -

Wen, Thibeau-Sutre,
Diaz-Melo,

Samper-González, Routier,
Bottani, Dormont,

Durrleman, Burgos and
Colliot [89]

MRI 336 330 787 87 b - - -

Liu, Li, Yan, Wang, Ma,
Shen, Xu and Initiative [169] MRI 97 119 233 88.9 76.2 0.925 0.775

Lee et al. [321] MRI 198 229 374 92.75 89.22 0.980 0.957

Lian, Liu, Zhang and Shen
[192] MRI 358 205 2964 89.5 - 0.959 -

Cui and Liu [187] MRI 192 223 396 92.29 74.64 0.75 0.797

Martinez-Murcia, Ortiz,
Gorriz, Ramirez and
Castillo-Barnes [277]

MRI 99 168 212 84.9 - - -

Duc, Ryu, Qureshi, Choi,
Lee and Lee [273] fMRI 133 198 - 85.3 b - - -
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Table 3. Cont.

Study Data
Modalities

Number of Subjects Classification ACC (%) Classification AUC

AD NC MCI AD vs. NC MCI vs. NC AD vs. NC MCI vs. NC

Kim, Lee, Lee, Oh, Yun and
Yoo [251] PET 212 415 - 94.82 - 0.98 -

Choi, Kim, Yoon, Lee, Lee
and Initiative [276] PET 243 393 666 0.94 -

Xia, Yue, Xu, Feng, Yang,
Wang and Lei [290] MRI 198 299 408 94.19 79.01 0.96 0.88

Ieracitano, Mammone,
Hussain and Morabito [269] EEG 63 63 63 85.78 85.34 - -

Islam and Zhang [247] PET 98 105 208 71.45 - - -

Qiu, Joshi, Miller, Xue,
Zhou, Karjadi, Chang, Joshi,

Dwyer and Zhu [275]

MRI, Demo,
CA 488 978 - 96.8 - 0.996 -

Bashyam et al. [322] MRI 353 833 513 86 70.2 0.91 0.743

Pan, Phan, Adel, Fossati,
Gaidon, Wojak and Guedj

[270]
PET 237 242 526 93.13 - 0.9747 -

b Some studies applied balanced accuracy, where accuracy is weighted by categorical distribution.

Table 4. Results from selected studies of binary classification between cMCI and ncMCI.

Study Data
Modalities

Time to
Conversion

Number of Subjects
ACC (%) AUC

cMCI ncMCI

Suk, Lee, Shen and Initiative [166] MRI, PET 78 128 75.92

Suk, Lee, Shen and Initiative [317] MRI 18 M 167 226 74.82 0.754

Ning, Chen, Sun, Hobel, Zhao,
Matloff, Toga and Initiative [320] MRI, Genetic 24 M 166 192 0.835

Lu, Popuri, Ding, Balachandar, Beg
and Initiative [319] PET 36 M 112 409 82.51

Cui and Liu [187] MRI 165 231 74.64 0.777

Spasov, Passamonti, Duggento, Liò,
Toschi and Initiative [283]

MRI, Demo, CA,
Genetic 36 M 181 228 86 0.925

Lee, Choi, Kim, Suk and Initiative
[321] MRI 18 M 160 214 88.52

Choi, Kim, Yoon, Lee, Lee and
Initiative [276] PET 36 M 167 274 0.82

Lian, Liu, Zhang and Shen [192] MRI 36 M 205 465 80.9 0.781

Wen, Thibeau-Sutre, Diaz-Melo,
Samper-González, Routier, Bottani,
Dormont, Durrleman, Burgos and

Colliot [89]

MRI 36 M 295 298 76

Er and Goularas [239] MRI 125 169 87.2

Pan, Phan, Adel, Fossati, Gaidon,
Wojak and Guedj [270] PET 36 M 166 360 83.05 0.868

Abbreviations: M—months, cMCI—MCI converters, ncMCI—non-converters, w.r.t.—time of conversion.
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Table 5. Multi-class classification results of selected studies.

Study Data Modalities Classes Accuracy

Liu, Liu, Cai, Che, Pujol, Kikinis, Feng
and Fulham [230] MRI, PET AD, cMCI, ncMCI, NC 64.07

Dolph, Alam, Shboul, Samad and
Iftekharuddin [229] MRI AD, MCI, NC 58

Shi, Zheng, Li, Zhang and Ying [318] MRI, PET AD, cMCI, ncMCI, NC 57.00

Liu, Zhang, Adeli and Shen [191] MRI AD, pMCI, sMCI, NC 51.8

Lee, Choi, Kim, Suk and Initiative [321] MRI AD, MCI, NC 71.17

Liu, Yadav, Fernandez-Granda and
Razavian [281] MRI AD, MCI, NC 70

8. Deep Learning Techniques
8.1. Transfer Learning

With the popularity of deep neural networks in medical diagnostic systems, common
challenges exist in practical applications [323]. These challenges include the availability
of medical data and relevant labels. Current computer vision success is based on the
ImageNet [324] hierarchical database, which contains millions of annotated images [325].
However, medical images are much smaller in quantity and require expert knowledge for
labeling [326–329]. A potential solution to this problem is transfer learning—the transfer of
knowledge across domains [330]. In image classification applications, transfer learning is
commonly implemented by transferring model structure, weights, or parameters for clas-
sification in different feature spaces and distributions. Neural networks with transferred
parameters have been shown to outperform the same neural networks with randomized pa-
rameters in convergence and have lower requirements for complicated and time-consuming
hyperparameter searches [331].

There are three types of transfer learning: (1) transfer from Image-Net pre-trained
models, e.g., Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Lituiev, Copeland, Aboian
and Mari Aparici [175] used the pre-trained Inception-V3 for the classification of AD vs.
MCI, Bae et al. [332] applied a modified Inception-V4 with custom preprocessing for classi-
fication of AD vs. CN, Lin et al. [333] used the pre-trained AlexNet with RVR for regression,
and Chen, Stromer, Alabdalrahim, Schwab, Weih and Maier [148] selected pre-trained
ResNet-152, VGG-16, and DenseNet-121 for screening and scoring of dementia using
clock-drawing test images; (2) transfer from pre-trained networks for similar classification
or prediction tasks, e.g., using a pre-trained network trained on one dataset for another
dataset [90,281]; and (3) transfer from pre-trained networks used for different classification
or prediction tasks, e.g., using an AD vs. NC pre-trained model for classification between
pMCI and sMCI [192,237], or for MCI vs. NC [334].

Chen, Hsu, Yang, Tung, Luo, Liu, Hwang, Hwu and Tseng [163] transferred domain
knowledge between different datasets for brain age prediction, while in a large-scale study,
Bashyam, Erus, Doshi, Habes, Nasralah, Truelove-Hill, Srinivasan, Mamourian, Pomponio
and Fan [322] transferred a model used for brain age prediction to AD vs. NC and MCI vs.
NC. Similar domain transfer has also been applied for transfer from Alzheimer’s disease to
Parkinson’s disease [276]. Transfer learning is also applied for other data types, including
eye-tracking, where datasets such as MIT GazeCapture, which are unrelated to Alzheimer’s
or related diseases, can be utilized for gaze location estimation [116].
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8.2. Ensemble Learning

Ensemble Learning in deep learning is the combination of multiple representations
to achieve higher overall performance. Ensemble learning allows multiple representa-
tions and mitigates errors within individual neural networks [335]. These errors are not
limited to misclassification but can also include underfitting or overfitting on training
data. Underfitting occurs when the gradient descent is trapped in local minima, and the
neural network fails to capture the underlying manifold of the training data. Conversely,
overfitting occurs when irrelevant fluctuations in the training data are also captured by
the neural network, resulting in lower generalization [336]. Ensemble learning has been
widely applied in medical image classification [282,337] and the classification of AD and
related diseases [338,339].

Ensemble learning can be performed at three levels: input, feature, and output. The
input-level ensemble combines data prior to input into the neural network, e.g., the combi-
nation of adjacent slices of hippocampal data to construct mimic RGB channels [189] and
the use of zero-masking for the fusion of concatenated MRI and PET inputs [340]. The
feature-level ensemble combines features from patch-level, region-level, and subject-level
sub-networks as input features for a classification module; Lian, Liu, Zhang and Shen [192]
is an ideal example of a feature-level ensemble with hierarchical sub-networks at each
level, where the outputs of each level are concatenated and used as input for the next level.
The feature-level ensemble was also applied at individual feature levels, i.e., an ensemble
of multi-scale patch-level sub-networks [319]. The output-level ensemble combines the
predictions of component neural networks, e.g., through majority voting of prediction
results [157]. Suk, Lee, Shen and Initiative [317] combined the outputs of multiple sparse
regression models with varying regularization parameters for classification. Wang, Shen,
Wang, Xiao, Deng, Wang and Zhao [282] utilized a probability-based fusion of softmax
outputs from an ensemble of 3D-DenseNets. Apart from combining the outputs of neural
networks, output-level ensembles also allow for the ensemble between neural networks
and traditional machine learning classifiers [341]. A sub-category of ensemble learning is
multi-view learning. Multi-view learning for AD neuroimaging is commonly linked to the
3D nature of available neuroimaging data and slice-based preprocessing, as described in
Section 3.

Pan, Phan, Adel, Fossati, Gaidon, Wojak and Guedj [270] created a pyramid network
of multiple CNN subnetworks with separable convolutions for each of the three views. The
features were added for each view and concatenated for classification [270]. It is worth
noting that although ensembling at all three levels is common amongst reviewed papers,
there are only a few applications of the boosting method. Boosting is standard in machine
learning applications [279]. In this method, individual components are trained sequentially
in an adaptive manner. The ensemble with multiple modalities, also known as multi-modal
fusion, is introduced in the subsequent section.

8.3. Multi-Modal Fusion

Individual modalities are fundamentally limited in their information content, e.g., ge-
netic data cannot provide information on texture information of neuroimaging data, and
MRI has good soft-tissue resolution but is not directly associated with Amyloid-β protein
depositions. Fusing information from different modalities can provide a more comprehen-
sive perspective of AD and related diseases. Multi-modal fusion is a common practice in the
reviewed literature due to the availability of multi-modal data for AD and related diseases.
The standard fusion method is the feature-level ensemble mentioned in Section 8.2, where
at a particular stage of the model architecture, features produced by modality-dependent
components are fused through concatenation or merging [166,318,342,343].

Liu, Liu, Cai, Che, Pujol, Kikinis, Feng and Fulham [230] performed the zero-masking
of a single modality for a stacked autoencoder, which took both MRI and PET as input
and achieved the fusion of the two modalities through data reconstruction of one zero-
masked modality with only the other modality. Demographics and genetic biomarkers
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are often fused with neuroimaging data through the concatenation of features extracted
with fully connected layers [191]. For studies with 1D data or engineered features, the
direct fusion of multi-modal data through concatenation or combined processing is achiev-
able, e.g., the fusion of cognitive scores, volumetric features, gene expression, and CSF
biomarkers [254,344,345].

Multimodal fusion is often combined with multi-scale or multi-view learning, e.g.,
studies have trained individual neural networks for patches of different sizes by process-
ing MRI and PET images, where the inputs of the neural networks are concatenated for
classification [170,320,346]. Through intricately designed connections between 1D and
3D network structures, Senanayake et al. [347] fused MRI and neuropsychological data.
Likewise, Spasov, Passamonti, Duggento, Liò, Toschi and Initiative [283] constructed a more
extensive architecture with the fusion of additional demographic and APOE-e4 genetic
markers to input and Jacobian of sMRI images. Using multi-modal data is expected to
improve the performance of neural networks. However, multi-modal fusion can also be
limited by the availability of multi-modal data, especially for longitudinal studies. A basic
overview of the common multi-modal fusion methods is shown in Figure 10.
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9. Training and Evaluation

The previous sections provide an overview of the myriad approaches to deep learning
and relevant techniques applicable to its use for AD and related diseases. In general,
two additional dependencies exist for any study/application of deep learning: how the
method is trained and evaluated. Varying these two dependencies can generate wildly
different results using the same approach and techniques. Different training and evaluation
methods can also affect the interpretation and understanding of the results. In the following
sections, we will first explore methods of evaluation in Section 9.1. This is the basis for an
introduction to commonly applied training protocols in Section 9.2.
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9.1. Evaluation Methods
9.1.1. Hold-Out and Cross-Validation

Data-driven models commonly suffer from the effects of overfitting, where the model
learns from the noise and variance within the training data. The fundamental evaluation
method for any deep learning algorithm is an independent test set sampled from the same
distribution as the training set. This method, also called hold-out, provides unbiased
measures of evaluation. The test set is generally 20–50% of the entire cohort, split according
to the number of individual subjects. The number of test subjects directly affects the
approximate measures of generalization, including the Hoeffding inequality bounds.

Another commonly implemented method is cross-validation (CV) [348,349], a measure
of model robustness. There are various types of cross-validation, including k-fold cross-
validation [350], balanced cross-validation, randomized cross-validation, and leave-one-out
cross-validation (LOOCV) [351,352].

The fundamental cross-validation method, also known as k-fold cross-validation, is
performed by splitting the data into k equal folds of similar categorical distributions to the
original cohort. For each of k rounds, a single fold is used as the validation set, while the
remainder is used for training an independent model. Categorical imbalance can cause
biased performance, whereas balanced cross-validation undersamples, or oversamples
components of the cross-validation split to provide a balanced training or testing set.
Randomized cross-validation does not adhere to the rigid k-folds; a random split is provided
for each of the unlimited cross-validation rounds. LOOCV is a variation of k-fold cross-
validation where k = 1; this is commonly used for data with a limited number of subjects.

9.1.2. Metrics for Classification

The most common form of metric for classification is accuracy in predictions of defined
labels. Apart from the basic classification accuracy, there are also sample-wise, subject-wise,
and balanced accuracy, which weigh classification performance by categorical distribution.
The measure of accuracy, or the correct classification rate, can be separated into a range of
prediction measures, including true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). Similar metrics that measure various aspects of classification include
the positive predictive value (precision), true positive rate (sensitivity), true negative rate
(specificity), and the weighted combination of precision and sensitivity, the F1 score. Simple
variations of these metrics for binary classification:

Accuracy =
TP + TN

TP + FP + TN + FN
, (21)

Precision =
TP

TP + FP
, (22)

Sensitivity =
TP

TP + FN
, (23)

Specificity =
TN

TN + FP
, (24)

F1 score =
2TP

2TP + (FP + FN)
, (25)

Apart from these fundamental metrics, other metrics are also used for specific purposes.
A common measure for imbalanced datasets is balanced accuracy (BAC), accuracy weighted
by class distribution. Kim et al. [353] used Cohen’s Kappa to provide a comparison between
observed and random accuracy, while Son, Oh, Oh, Kim, Lee, Roh and Kim [177] and
Mårtensson et al. [354] applied it to assess inter-method agreement. The receiver operating
characteristic (ROC) curve visualizes the trade-off between specificity and sensitivity. The
area under the curve (AUC) for the ROC curve indicates separability between binary class
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probabilities. AUC is one of the most common metrics of classification in AD-related
publications. Other metrics include the Gini-coefficient, derived from the AUC-ROC, and
the Kolmogorov–Smirnov statistic which compares categorical probability distributions.
These terms are commonly defined in binary terms but can be easily generalized to multi-
class scenarios, providing a group of metrics for each category.

9.1.3. Metrics for Prediction

Since prediction can be formulated into classification problems, most classification
metrics in Section 9.1.2 can be applied as prediction metrics. If the prediction problem is
formulated as a regression, regression metrics can be used. These include measures of error
such as the mean absolute error (MAE) and mean squared error (MSE):

MAE = 1
n ∑

i

∣∣yi − y′i
∣∣

MSE = 1
n ∑

i

(
yi − y′i

)2 , (26)

where n is the number of samples, yi are labels and y′i are predictions. Similar metrics
include errors compared with simple predictors including the relative absolute error (RAE)
and relative squared error (RSE), 

RAE = 1
n

∑i|yi−y′i|
∑i |yi−yi |

RSE = 1
n

∑i(yi−y′i)
2

∑i(yi−yi)
2

, (27)

or the proportion of predictable variance, the coefficient of determination (R2). Standard
residual plots and residual analysis metrics can also be applied in this case. Since AD
is a chronic medical condition, prediction can also be formulated as prognosis problems.
Similar to the challenges in survival models, due to limitations in data collection from
subjects suffering from AD or related diseases, there are cases of missing values or uncer-
tain post-study outcomes. Metrics such as Harrell’s C-index, or concordance index, take
these ‘censored’ data into account by measuring the relationship between concordant and
discordant pairs as follows:

C index =
∑i 6=j 1ti>tj ·1ηi<ηj ·δj

∑i 6=j 1ti>tj ·δj
, (28)

where t is time, η represents risk scores, and δ ∈ (0, 1) are auxiliary variables indicating
‘censorship’. Li et al. [355] measured concordance with other survival analysis measures,
such as the Kaplan–Meier estimate. However, there is a lack of deep learning studies ex-
tending this approach to provide individualized risk models, such as the Cox proportional
hazard model, with metrics such as the cumulative hazard. Moreover, there is a lack of
deep learning-related research into the treatment effect of AD treatment methods where
we measure individualized treatment effect (ITE) and C-for-benefit.

9.1.4. Other Metrics

A range of other metrics are also used for various purposes including data reconstruc-
tion and generation. Such metrics include the peak signal-to-noise ratio (PSNR):

PSNR =
n×max(y)2

MSE
, (29)
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Another such metric is the structural similarity index (SSIM):

SSIMx,y =

(
2σx,y + (K2L)2

)(
2µxµy + (K1L)2

)
(

µ2
x + µ2

y + (K1L)2
)(
σ2

x + σ2
y + (K2L)2

) , (30)

where x and y are two patches or images, K1 and K2 are constant values, µx is luminance,
and σx is contrast.

µx =
1
n ∑i xi and σx =

√
1

N − 1 ∑i(xi − µx)
2, (31)

Both PSNR and SSIM are metrics of generative models. Normalized cross-correlation
is another metric that is used to measure the quality of feature selection in the form of
visual attributions:

NCC =
1
n ∑

x,y
yx,y·y′x,y, (32)

where y′ is the ground truth map for AD-affected regions. Segmentation metrics include
the dice similarity coefficient, formulated in the same way as the F1-score in Section 9.1.2,
where pixel-wise localization success is used instead of classification prediction.

9.1.5. Level of Evaluation

Data for AD and related diseases are inhomogeneous, with diverse data types and
sources. Additional variance in preprocessing and processing data can provide significantly
different inputs to the deep learning models. These differences give rise to problems
in evaluation.

We can categorize two primary levels of evaluation: sample level and subject level.
Sample-level evaluation is based on the model’s performance in classifying or predicting
data samples, while subject-level evaluation is based on individual subjects, e.g., AD or
MCI patients. Sample-level evaluation occurs when multiple samples from the same subject
are used in evaluation or when the data source does not indicate independence between
samples. Subject-level evaluation can be based on either a single sample of data or multiple
sample-level results; this provides a better representation in a real-world application.

With multiple data sources available for AD and related diseases, another level of
evaluation has become more common in recent studies: validation with alternative datasets.
This validation process involves using a trained model on a single dataset to provide
outputs for data originating from an alternative source, e.g., a separate cohort or study. As
the largest open library, data from ADNI is often used to train deep learning models, which
are subsequently tested on data from other open libraries such as AIBL, OASIS [89], and
private datasets [332].

9.1.6. Combination of Evaluation Methods

In current AD-related deep learning studies, a combination of evaluation techniques
and metrics is often applied. A typical combination of evaluation techniques is cross-
validation on the training set for hyper-parameter optimization and hold-out testing on
the independent test set. The study-specific combinations are dependent on the overall
objective of the deep learning model and training protocols applied to achieve this objective.
Training protocols are discussed in detail in Section 9.2. In regard to classification, a
combination of accuracy, sensitivity, and precision metrics is commonly measured for
evaluation. Most MCI-conversion prediction problems are formulated as a classification
based on a conversion time limit and share similar evaluation metrics.
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9.1.7. Comparison and Ablation

Comparative studies provide insight into overall model performance, improvement, or
limitation compared with the state-of-art studies of similar methods. In current AD-related
deep learning literature, most studies apply comparative methods. These applications are
often baseline machine learning or deep learning methods, such as SVM, Decision Tree,
basic 2D-CNN, or variants of the proposed method. Most studies also contain a comparison
of metrics from the literature. A comparison between models is commonly achieved by
comparing the same or similar metrics under the assumption that the evaluation method
and training protocols are similar. However, these comparisons can only serve as a rough
performance evaluation due to differences in metrics definitions, data sampling, and
processing methods. A major study to counter this problem of in-comparability and
lack of reproducibility is the development of a standardized framework for machine
learning algorithms, Clinica [90], and the extension of the framework for neural network
evaluation [89].

With recent studies of increasingly advanced deep learning approaches, the perfor-
mance increase between subsequent studies is small. For some studies, the performance
gain in comparative models is within the approximated generalization error bounds. There-
fore, instead of basic comparisons, some studies conducted statistical tests to validate
performance gain. The Delong test [268,356], which produces a confidence interval and
standard error of difference, can compare the AUC of comparative models [355]. Apart
from comparing model performance, the comparison of model architecture, data processing
pipelines, and evaluation methods are also vital to propagating innovation. To establish
a valid comparison within a single study, some scholars have used ablation studies to
evaluate the individual components’ importance in the overall modeling process [294]. In
ablation studies, individual model components, feature inputs, or processing steps are
removed to assess their importance. These studies, along with in-model comparisons,
should be encouraged for all future studies to assess the effectiveness of the wide variety of
model structures, techniques, and pipelines.

9.2. Training Protocols

As a data-driven approach, the practical application of deep learning to AD classifi-
cation or prediction typically consists of a model or framework that acts as the basis of
training to achieve the objective of individual algorithmic implementations. For most pre-
diction and classification studies, this implies that the training and evaluation protocol has
limited dependence on core architecture and utility. The protocol followed by training and
evaluation impacts the models’ performance, quality, and potential generalizability. This
section will first introduce typical training and evaluation protocols, in addition to those
methods mentioned in Section 7.1, and then highlight the hazard of information leakage.
Then we will discuss appropriate optimization methods and the use of comparative studies.

9.2.1. Training and Evaluation Protocols

Standard training protocols involve using a single type of hold-out or cross-validation.
However, using a validation set pre-selected from the training set or performing cross-
validation on the training set for hyperparameter optimization is common. The metrics of
performance on the validation set or CV of the training set provide a basis for the optimiza-
tion. The use of a validation set is more commonly applied due to lower computational
costs. When cross-validation is performed on the training set, testing can be performed
on either a model from the cross-validation process or by retraining a new model with the
entire training set.

More complex training and evaluation protocols can also be applied with sufficient
data samples and computational resources. These protocols include component-wise pa-
rameter optimization, where each component of a neural network framework is trained
or optimized separately. Random seeding is an evaluation procedure commonly used
in machine learning, where multiple tests are run with different initial seeds for the ran-
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dom number generators. As an interdisciplinary field between computer science and
medicine, another procedure for evaluating model performance is human evaluation by
medical practitioners.

9.2.2. Information Leakage

A significant concern under-addressed in current machine learning research in the
field of AD or other diseases is the problem of information leakage [89]. This refers to the
leakage of information from the training or validation set to the test set, introducing bias
that can skew or invalidate the testing results. Information leakage can be categorized into
three main types: (1) lack of test set, (2) invalid split, and (3) leakage in design.

The lack of an independent test set means the study cannot evaluate overfitting and
generalization. The test set can also be invalidated if this subset is involved in hyperpa-
rameter optimization instead of a separate validation set. In these scenarios, the metrics do
not provide a valid approximation of the model’s actual performance and generalizability.
Reported performance in these studies is typically significantly overstated quantitatively
and should be considered as training performance only.

A test set can also be biased due to an invalid splitting process. A cross-sectional study
might use the same subject’s data samples at different time points as independent samples
with longitudinal datasets in multiple data sources. However, if the split is performed
according to images instead of subjects, the anatomical features of individual subjects could
introduce bias that overfits the model at the subject level. A relative performance difference
of 8% was found by Bäckström et al. [357]. Similar scenarios related to the invalid splitting
of training and testing sets can also occur in other stages of the training process, e.g., data
augmentation of an entire dataset before sample-wise splitting.

Apart from an invalid test set, information leakage can also occur through other factors
in the studies. These factors include flawed data sourcing, where the same individual in
multiple data sources is treated as independent. This leakage is possible for data sources
such as ADNI, where some individuals are enrolled in multiple rounds of data collection
and separated into different cohorts. Similar problems can occur with transfer learning
where the source and target domains contain an amount of overlap. Information leakage
is not limited to between the test and training sets but can also occur with intermediate
subsets such as the validation set. With the validation set as an intermediate measure of
model performance between the training and independent test set, we expect to utilize
the validation set and, therefore, leak information. However, extensive hyperparameter
optimization on the validation set can cause more information to be passed from this set to
the model, causing overfitting on the validation set. Validation overfitting can negatively
impact testing set performance and the overall generalizability of the model.

9.2.3. Optimization Protocols

Optimization is an essential component of overall training protocols and is divided
into two main parts: optimization of parameters in the training process, and optimization of
hyperparameters in the training protocol. Optimizers have become an essential component
of current neural networks as they dictate the trajectory and means of gradient descent.
Today’s main optimizers are standardized, such as the stochastic gradient descent with
momentum (SGDM) and RMSProp. Recent developments in neural network optimizers
such as Adam and Adadelta have reduced dependence on learning rates and are more adap-
tive. Some studies include custom modifications, while others rely on model-dependent
machine learning optimizers such as Limited memory BFGS [198,234]. The other main op-
timization component is the choice of hyperparameters, which define the overall structure
and training specifications. Current methods are mostly based on grid search and random
search, where a definite or random selection of hyperparameters is combined to train a
model and evaluate performance. Statistical methods such as Bayesian optimization have
only limited success due to the large search space and high computational cost.
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9.3. Development Platforms

The modern development platforms are mainly based on MATLAB, R, and Python.
MATLAB is a proprietary computational platform for science and engineering; its Deep
Learning Toolbox provides an optimized framework for the efficient development and
deployment of neural networks. The MathWorks File Exchange provides a platform for
open-source code sharing, but the core platform is inherently closed-source. The most
popular programming language for deep learning implementation and research is Python.
The large open-source community has provided researchers with deep-learning libraries
such as Tensorflow [358], Caffe [359], Theano [360], and PyTorch [361].

Higher-level APIs for these packages, such as Keras for Tensorflow and Fast.ai for
Pytorch, have also been developed to lower scripting requirements and difficulty for
researchers outside the field of bioinformatics and computer science. The majority of
AD-related open-source deep learning packages or scripts are in Python. Keras is also
available as a package for R, a popular programming language and platform for statistical
computing and graphics. The access, availability, and reduced application difficulty of
these platforms promote research into Alzheimer’s disease and related diseases from an
interdisciplinary perspective.

10. Path to Interpretation of Deep Learning Models

A significant challenge in applying DL to AD research is the lack of interpretability
inherent in these often over-parameterized and highly complex data-driven models. A large
number of studies have attempted to improve interpretability from different perspectives.
Basic interpretation can be achieved through simple methods, e.g., correlation analysis
and clustering of neural network features or predictions. Lin, Wu, Wu and Wu [333]
analyzed the correlation between prediction error and individual features to validate
the relationship between APOE-e4 and brain aging. Ding, Sohn, Kawczynski, Trivedi,
Harnish, Jenkins, Lituiev, Copeland, Aboian and Mari Aparici [175] performed t-distributed
stochastic neighbor embedding (t-SNE) on neural network-generated features to validate
the model’s understanding of AD disease stages, and a similar analysis with additional
principal component analysis was performed by Son, Oh, Oh, Kim, Lee, Roh and Kim [177].

These simple methods offer a primer to the various methods utilized in the surveyed
studies to explain model predictions and improve interpretability. In machine learning,
the approaches to interpretability can be categorized into post hoc and intrinsic. Post
hoc interpretation methods refer to probing and manipulation after the model is trained,
while the intrinsic approach attempts to build a level of interpretability directly into the
model architecture. However, since neural networks are inherent “black boxes,” most deep
learning methods surveyed focus on the post hoc approach. In this section, we detail three
branches of the post hoc approach: (1) data-based methods, (2) architecture-based methods,
and (3) model-agnostic visualization methods.

How data are processed and inputted into deep neural networks can fundamentally
impact interpretability. ROI-based methods can provide a level of basic interpretability,
which can be further translated to ROI sensitivity and feature stability. These measures
can be projected to functional regions [198]. Feature maps can also be directly projected
to ROIs [234]. Similarly, patch-based methods have some basic interpretability, e.g., Liu,
Cheng, Wang, Wang and Initiative [170] visualized network attention areas by finding
critical local patches that significantly affect class prediction probability, i.e., a drop in
performance if they are removed. Graphical data also provide benefits for interpretability.
Li, Rong, Meng, Lu, Kwok and Cheng [286] used analytic graph measures such as PageRank
to determine the importance of each vertex in the input graph data, while Ju, Hu and
Li [234] utilized brain networks of fMRI imaging to isolate functional regions of importance.
At the voxel level, Duc, Ryu, Qureshi, Choi, Lee and Lee [273] visualized independent
components of individual component analysis results as saliency maps on MRI and utilized
these maps as inputs for the classification of AD and regression of MMSE. Methods utilizing
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the inherent types and properties of data are often hybrids of traditional machine learning
and deep learning that attempt to gain advantages from both approaches.

The choice of neural network architectures can also impact interpretability. As a classic
example, the decoder component of convolutional autoencoders often contains transposed
convolutional layers, or deconvolution layers, which are often used to reconstruct the input
from the encoded feature space. The deconvolution process generates reconstructed images
and feature maps, which can be compared globally with the input image, or locally with
the anatomical structures of the input image [238].

A prime example is the use of generative models, such as variational autoencoders or
GAN, to generate representational reconstructions through averaging iterative generations
and structural transformations [244]. Alternatively, neural network architectures, such
as the fully convolutional networks, which replace fully connected layers with global
average pooling and SoftMax, can be designed to generate probabilistic maps [275,276].
The hierarchical framework implemented by Lee, Choi, Kim, Suk and Initiative [321] also
allows for abnormality detection at various levels of voxels, patches, and regions, which can
be combined to form a unified regional abnormality map. Visualization and interpretation
methods that are dependent on architecture are also fundamentally constrained by the
rigidity of the architecture and may not be able to adapt to new data or modalities. The data-
based and architecture-based methods can be considered partially ad hoc. However, most
data-model frameworks do not intrinsically provide functionality for tracing the decision
process from inputs to classification probabilities and, therefore, cannot be considered
intrinsically interpretable.

Transformer technology is a relatively new and powerful technique. The main area
of application for transformers is language-based tasks. In future Alzheimer’s disease
research, transformers can extract meaningful information from medical records, patient
interviews, and research articles by applying natural language processing techniques. Their
ability to capture long-range dependencies in sequential data makes them highly suitable
for analyzing textual data related to Alzheimer’s disease.

Furthermore, transformers offer the potential for multimodal fusion in Alzheimer’s
disease research. Integrating data from multiple modalities, including imaging data, genetic
information, and clinical assessments, can provide a comprehensive understanding of the
disease. Transformers can facilitate the fusion of diverse data sources, capturing complex
interactions and uncovering hidden relationships between different data types. One notable
advantage of transformers is their attention mechanism, which enhances explainability.
By highlighting relevant regions in images or identifying important words in the text,
attention weights provide insights into the model’s predictions. This interpretability feature
can be valuable for medical professionals in understanding and validating the results of
transformer models.

Alternatively, model-agnostic techniques exist to visualize feature saliency. The prob-
abilistic maps generated through FCN by Qiu, Joshi, Miller, Xue, Zhou, Karjadi, Chang,
Joshi, Dwyer and Zhu [275] are examples of CAM’s dependence on the model structure.
Recent developments of Grad-CAM utilize gradient information, allowing visualization of
feature maps of various layers throughout the neural network. Tang, Chuang, DeCarli, Jin,
Beckett, Keiser and Dugger [267] utilized a guided Grad-CAM with feature occlusion to
identify amyloid-β plaques on immunohistochemically-stained slides. Similar methods
were also applied to whole-brain MRI and identified GM regions around the hippocampus
and ventricles that were consistent with anatomical pathology [281,290,322]. Monitoring
model output with perturbations in the input is another method to interpret neural net-
work function. An example of this approach is the swap test proposed by Nigri et al. [362],
where patches of the image of interest are replaced by patches from reference images of an
alternative class. The hippocampal region showed the highest impact on model predictions
for the swap test. Mean relevance maps can also be generated for each category to interpret
disease stages and progression from the perspective of groups instead of individuals [355].
Regional saliency maps were also combined with hippocampal segmentation by Liu, Li,
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Yan, Wang, Ma, Shen, Xu and Initiative [169], while attention maps can also be included
in the neural network framework to enhance performance and localization results [363].
However, as with the methods mentioned above, providing quantitative assessments of
these visualizations is difficult.

Data-based methods, architectural-based methods, and model-agnostic visualization
techniques are all constrained by their fundamental limits, e.g., the information content of
patch-based ensembles is limited by the patch dimensions. The generative models summa-
rized in Section 6.2 emphasize new approaches that dedicate modeling to interpretation by
changing the core aim to visual attribution [250] and designing neural networks that are
inherently interpretable, e.g., invertible neural networks [176]. These approaches present
the most novel aspects on the path to interpretation. A basic summary is presented in
Figure 11.
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11. Path to Generalization in the Real World

A major challenge in DL is the real-world generalization of models. Generalization is
heavily affected by the data used to train the models. Most of the literature surveyed utilized
data collected under strict acquisition protocols with specified modalities, types, and
hardware and are often not representative of clinical settings. Preprocessing is commonly
applied to eliminate some of these variabilities, but its variations and subjectivity can
introduce uncertainty and different levels of quality and is, therefore, a double-edged sword.
Mårtensson, Ferreira, Granberg, Cavallin, Oppedal, Padovani, Rektorova, Bonanni, Pardini
and Kramberger [354] extensively assessed training and testing in different data domains.

While the proposed recurrent CNN showed consistency across different datasets,
the recent study confirmed the expected degradation of performance in evaluating data
collected through protocols that differ from those used for training data. As a solution,
including a broader range of protocols in training, increased generalization performance
in unseen data. Though this study is limited to a single CNN-based model and does not
provide a definite conclusion, it provides valuable insight into the possible generalization
challenges and the importance of data heterogeneity in countering them. It is established
that generalization is heavily affected by the amount of data used in training and evaluation.
Apart from collecting new data, methods to increase data quantity and heterogeneity during
training include implementing lower-dimensional data (i.e., use of 2D slices of 3D scans),
data augmentation, and the careful use of generative models. An alternative approach
focuses on reducing the model’s training data requirement, utilizing a train-test split of
50% or lower. These approaches are often semi-supervised and provide a larger testing set
and a more accurate approximation of generalizability.

The theoretical forefront of this problem lies in estimating the ‘generalization gap,’ the
difference between metrics derived from the independent test set and real-world scenarios.
The approximate generalization bounds derived from the Hoeffding inequality [364] are
based on a range of assumptions but provide a core insight into the relationship between
the testing set and the approximate generalization gap—the bound is proportional to the
inverted root of the sample size. Even though the amount of data required by these worst-
case bounds is likely impossible to achieve in practical data collection, generalizability
benefits from a larger sample size. A complete estimation is based on model complexity,
usually measured through the Vapnik–Chervonenkis dimension. Alternative methods
to derive generalization bounds have been explored, which include using the validation
set [365], measurement of network smoothness [366], and comparison of generalization
error between deep neural networks and humans [367]. An alternative approach to esti-
mating generalization is to tackle the concept of label inhomogeneity due to misdiagnosis.
Wu et al. [368] proposed using unsure data models to account for discordant MCI samples
for which conversion is uncertain.

Apart from the technical and theoretical pathways to generalization, another key
consideration is the practical generalization to clinical use, especially in mass screening.
False positives produced by deep learning models in small-scale studies have been found
to increase radiologist workload. In large-scale screening, the overdiagnosis caused by
the number of false positives may significantly affect cost and efficiency [369,370]. Close
monitoring of false-positive rates alongside generalization gap approximations should be a
key aspect of evaluation in these scenarios.

12. Conclusions

In the past 13 years, many deep-learning studies have been conducted for AD and
related diseases, producing various techniques, models, and protocols. We have provided
a comprehensive summary of these major components that contribute to a deep learning
study and a summary of the most recent advances, including recurrent neural networks,
graph and geometric neural networks, as well as generative modeling.
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These studies have shown promising results for a broad range of tasks, including
image processing, disease categorical classification, and disease progression prediction.
However, the wide variety of approaches shows a lack of consistency, and few studies
provide standardized benchmarks for comparison. Most of these studies are research-
oriented; few studies have conducted or simulated evaluations in clinical settings. These
issues contribute to the challenges of interpretation and generalization of deep learning.

This review provides a glimpse into the possible solutions for interpretation, e.g.,
visualization techniques and inherently interpretable architectures. It also provides insights
into potential pathways for generalization, e.g., data heterogeneity, data quantity, and
generalization gap approximation. Apart from the key aspects of interpretation and gener-
alization of neural networks, there are many other aspects of potential research, e.g., deep
learning for polygenic studies [371] and the application of transformer-based foundational
models. Combined with the continuously developing model architectures, these pathways
will guide us toward more robust and clinically feasible deep-learning models for AD and
related diseases.
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