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Abstract: Alzheimer’s disease (AD) is an old-age disease that comes in different stages and directly
affects the different regions of the brain. The research into the detection of AD and its stages has new
advancements in terms of single-modality and multimodality approaches. However, sustainable
techniques for the detection of AD and its stages still require a greater extent of research. In this study,
a multimodal image-fusion method is initially proposed for the fusion of two different modalities,
i.e., PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Further, the
features obtained from fused and non-fused biomarkers are passed to the ensemble classifier with a
Random Forest-based feature selection strategy. Three classes of Alzheimer’s disease are used in this
work, namely AD, MCI (Mild Cognitive Impairment) and CN (Cognitive Normal). In the resulting
analysis, the Binary classifications, i.e., AD vs. CN and MCI vs. CN, attained an accuracy (Acc) of
99% in both cases. The class AD vs. MCI detection achieved an adequate accuracy (Acc) of 91%.
Furthermore, the Multi Class classification, i.e., AD vs. MCI vs. CN, achieved 96% (Acc).

Keywords: image fusion; feature-level fusion; multimodality; machine learning; ensemble learning;
Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is a debilitating neurological disorder affecting millions
worldwide. AD is now a leading cause of death in old age [1], and through trends, the
number of cases will rise in the coming years. The biological reason for this condition
is the build-up of a protein called beta-amyloid in the brain, leading to the loss of nerve
cells [2]. Around 55 million people are affected by the severe neurological disorder known
as dementia, with more than 60% of cases occurring in middle- and low-income countries.
Economic, social, and mental stress are among the leading factors contributing to the
onset of AD. As a result, there is a growing need to better understand the disease and
identify effective treatments. In the modern era, using artificial intelligence (AI) techniques
for detecting AD and its sub-stages is common practice [3]. These techniques include
both single-modality and multimodality methods. However, though contributions from
researchers have been made in this field, the most appropriate and effective methods have
yet to be identified. AD has various biological and other causes, and the primary reasons
cannot be placed through a single-modality approach [4]. In addition, there are other
methods, such as clinical assessments, demographic conditions, and MMSE scores, but
none have proven to be a sustainable approach for AD detection [5]. In their searching for
a reliable method of detecting AD, many experts are exploring the use of a multimodal
approach. This technique combines various biomarkers, such as MRI scans and PET scans,
to diagnose more accurately [6].

In medical image fusion, combining different input images into a single fused image
is a more natural method that provides essential and complementary information for
accurate diagnosis and treatment. Pixel-level intensity matching is generally used in image
fusion [7]. This approach, also known as multimodal fusion, is considered more efficient
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than feature fusion techniques as it expresses information more effectively and presents
a broader range of features [8,9]. By fusing the components from different brain regions,
a more precise visualization is possible, which can help identify the various stages of the
disease, i.e., AD, Mild Cognitive Impairment (MCI), and Cognitive Normal (CN). This
study compares Binary and Multi Class analysis for understanding the differences in AD.
For classification, trending machine learning (ML) and ensemble learning (EL) techniques
are utilized. Using a multi-model, multi-slice 2D CNN ensemble learning architecture is
considered a highly effective approach for classifying AD versus CN and AD versus MCI,
with an (Acc) rate of 90.36% and 77.19%, respectively [10]. Another ensemble technique
using the same architecture yielded (Acc) rates of 90.36%, 77.19%, and 72.36% for AD,
MCI, and CN, respectively, when compared to each other [11]. A new subset of three
relevant features was used to create an ensemble model, and a weighted average of the
top two classifiers (LR and linear SVM) was used. The voting classifier weighted average
outperformed the basic classifiers, with an (Acc) rate of 0.9799 ± 0.055 and an AUPR of
0.9108 ± 0.015 [12]. The CNN-EL ensemble classifier, using an MRI modality of the MCInc,
yielded (Acc) rates of 0.84 ± 0.05, 0.79 ± 0.04, and 0.62 ± 0.06 for identifying subjects with
MCI or AD [13]. Bidirectional GAN is a revolutionary end-to-end network that uses image
contexts and latent vectors to synthesize brain MR-to-PET images [14].

MRIs are generally used for the detection of AD. They are highly effective imaging
tools and contain data related to the anatomy of the different neuro regions [15]. They
reveal changes in brain structure before clinical symptoms appear. These modalities reflect
alterations in the cortex, white matter (WM), and subcortical regions, which can help
detect abnormalities caused by AD [16]. Brain shrinkage, which is frequent in AD, as
well as the reduction in the size of specific brain areas such as the hippocampus (Hp),
entorhinal cortex (Ec), temporal lobe (Tl), parietal lobe (Pl), and prefrontal cortex (Pc),
have been observed [17]. These areas are critical for cognitive skills such as memory,
perception, and speaking in AD [18]. The degree and pattern of atrophy in these areas can
provide important visualizations for studying the prognosis of AD. MRI scans can detect
lesions or anomalies in the brain that signal AD, for the early identification and therapy
of the condition [19]. PET scans are generally for the diagnosis of AD [20]. PETs provide
functional brain imaging by measuring glucose metabolism and detecting AD-associated
brain function changes [21]. PET scans can detect amyloid plaques and Tau proteins, which
signify AD, and measure glucose metabolism in the brain. Various PET modalities, such
as amyloid PET, FDG-PET, and Tau PET, possess unique characteristics for identifying
AD biomarkers. Amyloid PET employs a radiotracer to bind amyloid plaques, FDG-PET
measures glucose metabolism, and Tau PET utilizes a radiotracer to bind Tau proteins,
visually representing their presence in the brain.

Structural MRI can reveal alterations in brain structure, while functional PET images
can capture the metabolic characteristics of the brain, enhancing the ability to detect lesions.
FDG PET characteristics distinctly exhibit quantitative hypometabolism and a component
in the precuneus among MCI patients. A volume-of-interest analysis comparing global GM
in AD patients to healthy controls revealed reduced CBF and FDG uptake [22]. In a similar
vein, MRI, FDG-PET, and CSF biomarkers were employed in a study to differentiate AD
(or MCI) from healthy controls using a kernel combination strategy, with the combined
method accurately identifying 91.5% of MCI converters and 73.4% of non-converters [23].
Both classifier-level and deep learning-based feature-level LUPI algorithms can enhance
the performance of single-modal neuroimaging-based CAD for AD [24]. CERF integrates
feature creation, feature selection, and sample classification to identify the optimal method
combination and provide a framework for AD diagnosis [25]. Although these methods
offer innovative frameworks, they still lack the ability to effectively detect AD and its
subtypes. Consequently, it has been suggested that multimodal approaches combining
MRI and PET images could improve the accuracy of AD classification. The fusion of PET
and MRI images in machine learning has many advantages for analyzing and diagnosing
neurological disorders such as AD [26]. Combining functional information from PET and
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structural details from MRI provides the models with a more extensive range of features,
improving accuracy and strength. This integration compensates for individual modality
limitations, allowing algorithms to utilize both imaging techniques’ strengths [27]. Machine
learning models can better understand disease progression by capturing both functional
and structural changes in the brain, ultimately improving early diagnosis, prognosis, and
treatment planning. Hence, various performance metrics are compared for these classes to
validate this study. The significant contribution made in this article is described here:

• This work proposes the image-fusion technique for the fusion of (PET + T1-weighted
MRI) scans and feature fusion from the fused and non-fused imaging modalities for
detecting AD.

• This work proposes the ensemble classification method (GB + SVM_RBF) for Multi
Class classification and (SVM_RBF + ADA + GB + RF) methods for the Binary Class
classification of AD.

• This work also reaches adequate (Acc) in the Multi Class and the Binary Class classifi-
cation of AD and its subtypes, i.e., (AD to MCI), which is 91%, and other classes (AD
to CN) and (MCI to CN), with 99%. The (Acc) achieved (AD vs. MCI vs. CN) in the
Multi Class is 96%.

In this article, Section 2 delves into the previous research on AD detection and the
importance of different methods in both single- and multimodal contexts, explicitly focusing
on ML, DL, and EL methods. Section 3 provides detailed information about the data set
used in the experiment, while Section 4 outlines the methodology, including various
preprocessing techniques and the proposed image-fusion method. The results obtained
from the ML and ensemble models (EL) are analyzed in Section 5, including Binary and
Multi Class results, and the different trending methods used in the article are discussed.
Lastly, Section 6 describes the conclusions of all the experimental works.

Figure 1 in the article provides an overview of the key experiments conducted in
the study through an experimental sequence diagram. This figure outlines the basic
experimental procedures described in the article.
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2. Recent Study

Aged people are generally affected by AD; no prevention and cure diagnosis proce-
dures are available for these patients. This disease is increasing drastically, and no decline
has occurred [28]. Several studies have come into existence to tackle this issue, such as
neuroimaging analysis to detect AD in the early stages [29]. AD detection can often be
observed in one of the most common regions, namely the Hp region, by measuring its



Mach. Learn. Knowl. Extr. 2023, 5 515

volume in affected patients. A decrease in the volume can result in the cause of AD [30].
To identify this reason, the semi-automatic segmentation technique ITK-SNAP concerns
the age, gender, and left and right Hp volume values of AD patients [31]. Hence these
values are taken as the neuroimaging data. These data, using factors such as age, visits,
education, and MMSE, are processed using ML algorithms to predict AD [32]. The Ex-
tended Probabilistic Neural Network (EANN) and the Dynamic EL Algorithm (DELA)
are also becoming trends in AD detection. The Logistic Regression (LR) method also has
sustainable (Acc) compared to the other methods.

Single modality and multimodality are ways of overriding the biomarkers. Neu-
roimaging also identifies the form of biomarkers to detect AD and its stages. Multimodality
helps to identify the crucial hybrid set of features that can help diagnose and detect AD.
These integrations are achieved through various ML and DL techniques [33]. DL methods
also show some promising results in detecting AD and its stages, specifically MCI to AD
conversion. They combine various data modalities to determine the difference between
AD’s cortical and subcortical regions and their stages [34]. Multimodality in fluorescence
optical imaging is used as biofuel for AD detection [35]. Fingerprints are common for the
identification of AD. This approach also shows a more significant difference in the different
stages of AD. Acoustic biomarkers play an essential role in the detection of subtypes of
AD. These data types, when used and processed through the ML technique, provided
83.6% (Acc) in AD and NC persons [36]. The retina attention is taken as a consideration
for the identification of AD and other neuro disorders and diseases [37]. Cognitive scores,
medication history, and demographic data also provide an effective source of information
for classifying AD and subtypes using ML techniques [38]. Tri-modal approaches are also
multimodal techniques for identifying hybrid features in the cortical region. Furthermore,
ADx is an integrated diagnostic system that combines acoustics, microfluidics, and or-
thogonal biosensors for clinical purposes [39]. ML and adversarial hypergraph fusion are
approaches for the prediction of AD and its stages [40].

A novel EL technique can accurately diagnose Alzheimer’s disease, even in its early
stages. This approach enhances AD detection (Acc) by integrating various classifiers
from neuroimaging features and surpasses multiple state-of-the-art methods [41]. In
this study, Alzheimer’s diagnostic precision was improved by applying the Decision
Tree algorithm and three EL techniques to OASIS clinical data, with bagging achieving
remarkable (Acc) [42]. To attain a more accurate and reliable model, researchers propose an
ensemble voting approach that combines multiple classifier predictions, yielding impressive
results for older individuals in the OASIS data set [43]. This investigation introduces a
unique computer-assisted method for early Alzheimer’s diagnosis, leveraging MRI images
and various 3D classification architectures for image processing and analysis, further
enhancing the EL technique’s outcomes [44].

For the detailed longitudinal studies of cortical regions of the brain, different state-of-
the-art methods are available, including SVM, DT, RF, and KNN, which have shown the
sustainable classification of the different stages of AD [45]. These come under the super-
vised learning approach and have been able to classify AD and its stages effectively [46].
A framework based on DL is used to identify individuals with various stages of AD, CN,
and MCI [47]. In AD, the concatenation of MRI and PET scans using a wavelet transform-
based multimodality fusion approach enables the prediction of AD [48]. To identify stages
from MCI to AD, a multimodal RNN is used in the DL technique [49]. A comprehensive
diagnostic tool detects AD and its stages using the hybrid cross-dimension neuroimaging
biomarkers, longitudinal CSF, and cognitive score from the ADNI database [50]. A multi-
modal DL technique can also be used in clinical trials to identify individuals at high risk of
developing AD [51].

These studies demonstrate the effectiveness of using DL and ML methods in single-,
dual-, or tri-modality contexts for AD detection. One of the major challenges when employ-
ing DL methods for AD detection is the difficulty in visualizing or validating the precise
features that contribute to AD identification and its stages. The DL approach makes it
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challenging to provide evidence for predicting and identifying the features responsible
for AD. Moreover, DL methods require a large amount of labeled data for classifying AD
and its stages. However, DL methods might necessitate even more data to accurately
classify AD and its stages. To assist in AD diagnosis, an image-fusion technique known
as ‘GM-PET’ combines MRI and FDG-PET grey matter (GM) brain tissue sections through
registration and mask encoding. A 3D multi-scale CNN approach is utilized to assess
its effectiveness [52]. In contrast, our research employs ensemble learning techniques to
classify various subtypes. By incorporating ML methods, we perform in-depth analyses
that enable us to pinpoint the precise AD-related regions within cortical and subcortical
features while also evaluating the effectiveness of the fusion technique.

Therefore, ML methods offer several advantages over DL for detecting AD and its
stages. They are often more straightforward to implement with detailed reasons about
which causes AD and their subtypes. ML uses biomarker features like molecular, audio,
fingerprints, structural MRI, functional MRI, PET scans, and clinical, which have shown
good performance even with smaller data sets. ML models are preferred because they
can better understand the factors that contribute to the disease and its stages. However,
the challenges are still in the enormous amount of medical data. EL is favored over
traditional ML models, as it can better comprehend the factors contributing to a disease
and its progression. Despite the challenges of vast medical data sets and the quest for
optimal (Acc), EL techniques help overcome limitations. The diagnostic performance can
be significantly improved compared to standard ML techniques. Even though DL has
an advantage when dealing with complex data such as fMRI and PET, ML, and EL are
practical approaches for detecting AD and its distinct stages.

3. Data Set

This data set has been taken from the Alzheimer Disease Neuroimaging Initiative
(ADNI). All the images taken here are raw; they are not preprocessed. The database
link is (adni.loni.usc.edu). Los Angeles, CA: Laboratory of Neuro Imaging, University
of Southern California Table 1. The PET images were acquired in December, with the
data set comprising various subjects from 2010 to 2022. The data were downloaded in
November 2022 for preprocessing and feature extraction purposes, specifically for the PET
modality of all AD, MCI, and CN subjects. In a similar vein, the sMRI data for AD, MCI,
and CN subjects spanned from 2006 to 2014 and were downloaded in April 2022. Instead
of subject-wise matching, only quantity and structural mapping were conducted for the
analysis.

Table 1. Data set used in this research.

S. No Stages Modality Age Gender Quantity Properties

1 AD T1-weighted MRI 80–85 M/F 200 Raw and Non-Filtered
2 CN T1-weighted MRI 82–85 M/F 200 Raw and Non-Filtered
3 MCI T1-weighted MRI 74–87 M/F 200 Raw and Non-Filtered
4 AD PET 85–86 M/F 200 Raw and Non-Filtered
5 CN PET 70–84 M/F 200 Raw and Non-Filtered
6 MCI PET 85–89 M/F 200 Raw and Non-Filtered

This table describes using two different modalities (T1-weighted MRI) and PET. These
data sets are a combination of males and females. Their ages generally range between 70 and
90, and the average age is 80. A total number of 1200 images was used in this research work,
and each stage, including AD, MCI, and CN, individually had 200 images. The quality
of these images is raw and unfiltered and they were not processed anywhere. Figure 2
provides more detailed information about the relationship between various attributes using
different plots.
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In Figure 2a, the bar plot represents the plot of Stages vs. Modality, which shows the
distribution of different stages (AD, CN, and MCI) across the two imaging modalities—
T1-weighted MRI and PET. Figure 2b, the box plot of Age vs. Stages, illustrates the age
range distribution for each stage, highlighting the differences and similarities in age ranges
among AD, CN, and MCI groups. Lastly, the Figure 2c pair plot showcases pairwise
relationships between columns in the data set (Min_Age, Max_Age, and Quantity), with
different colors representing the various stages.

4. Methods

This section discusses the various preprocessing steps required to prepare the data
for fusion and the methods to achieve the fusion. In Section 4.1, we detail how we applied
the different preprocessing techniques to the T1-weighted images extracted from statis-
tical and volume-generated images. Section 4.2 describes the preprocessing of the PET
scans. Section 4.3 describes the fusion of PET and MRI, achieved through the registration
technique. Section 4.4 clarifies the fusion of features from the fused and non-fused modali-
ties. Section 4.5 describes the traditional ML methods used, and Section 4.6 describes the
ensemble methods used for classifying the different classes: AD, MCI, and CN.

4.1. MRI SCANS

MRI scans were taken of these different classes: AD, MCI, and CN. These scans
were raw scans. These scans came with high-rated features and unwanted features for
disease diagnosis. So, to reduce the unwanted and noise-oriented elements, the different
preprocessing steps, as given in Figure 3, were applied, including normalization and N4
bias correction. Then, the preprocessed MRI scans were processed for feature extraction
using automatic pipeline methods and different statistical volume-generated features from
the feature extraction method.
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4.1.1. Normalization

The raw image taken from the ADNI data set was unprocessed. So, the normalization
technique was applied in that data set to reduce unwanted features. This technique
consists of adjusting the intensity range of a T1-weighted MRI image. It includes a proper
visualization and understanding of the importance of the brain’s other regions that are
affected by AD and its stages. This process is necessary to identify the anatomical features
from the cortical area correctly. This formula involves the calculation of each pixel in the
percentage range from 0 to 100 and mapping this range with the other pixels, which also
normalizes the different intensities. The desired formulae for the calculation of normal
image intensity are described in Equation (1):

Npv =
(Pv −Mv)

Mav −Mv
(1)

In Equation (1), Npv defines the normal pixel intensity value, Mv stands for the
minimum pixel intensity and Mav describes the maximum pixel intensity.

4.1.2. N4 Biased Correction

After the normalization, the T1-weighted modality was processed using the N4 bias
correction method to remove abnormalities from the different intensities of the MRI scan-
ners. This preprocessing technique is an essential technique that consists of removing the
various artifacts from the MRI scanners from the other version. This preprocessing method
was applied to the MRI, PET, and DTI scans for better visualization. These corrections can
be achieved through the formulae below, in Equation (2):

NPv =
1

1 + exp(−k(Pv − c))
(2)

In Equation (2), the normal pixel intensity value (NPv) is calculated concerning the
exponential constant and the pixel value attained from the different modalities of AD. c is
the shift of the curve that receives the different parameter. The parameter k contains the
slope of the curve. After the preprocessing, the processed T1-weighted MRI scans of the
MCI, AD, and CN stages are fed as input to the feature extraction method, which utilizes
the automatic pipeline method for the feature extraction.
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4.1.3. Feature Extraction

Following the preprocessing stage, the T1-weighted modalities undergo feature ex-
traction methods. The Free Surfer methods are used for feature extraction, which consist of
various fundamental algorithms that help to identify additional features in the brain region.
This method uses the Brain Surface Extraction technique, which combines surface model-
ing and deformable models to identify the brain regions from MRI scans. The technique
works on the principle of identifying curves that represent the different boundary regions
of the brain. These boundaries are refined using other deformable methods available in
the automatic pipeline method. Then, the Brain Tissue Segmentation technique uses a
deformable model and MNI-template-based atlas to segment the different parts of the brain
and identify areas with white matter (WM), grey matter (GM), and cerebrospinal fluid
(CSF). The Surface Registration approach is employed to register the MRI images of the
subject’s brain to a standard brain template and one another, to examine the regional brain
volume and cortical thickness. This involves normalizing the intensities of the subject’s
MRI scans using the standard template. The cortical thickness estimation is performed
through surface modeling and the linear registration of the tissue segmentation results.
To segment the brain into different subcortical structures such as the amygdala and Hp,
atlas-based segmentation and intensity normalization are used. The entire process follows
a professional and technical approach.

Then, after the completion of the execution shown in Figure 4, a different output is
achieved in the form of folders, i.e., subject data, including anatomical image, cortical
surfaces, WM segmentation, and GM segmentation. Statistical data were generated from
the analysis of the brain data.
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Algorithm 1 that describes transforming the raw T1-weighted data into processed
T1wMRIs through the N4 bias correction approach, which removes artifacts and normalizes
the images for uniformity. Feature extraction techniques such as Brain Surface Extraction
(T1wMRI) and Brain Tissue Segmentation (T1BSE) are applied to compare the different brain
regions, followed by Surface Registration (T1BTS) to identify other parts of the T1-weighted
image. Cortical Thickness (T1SR) is then calculated, and Sub-Cortical Registration (T1CT)
is implemented to produce volumetric shapes, constructed regions, and various cortical
and subcortical brain regions in stat files. After completing level 1 experiments, similar
preprocessing steps are taken to prepare the PET modality for the fusion process.
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Algorithm 1 Feature Extraction from the Single Modality (T1-weighted MRI Scans)

1: Input: Raw T1-weighted Image
2: Output: Statistical-based features
3: For I- = T T1wMRIs to n do
4: {
5: Normalization (T1wMRIsN4);
6: {Npv = (Pv −Mv)/(Mav −Mv)}
7: N4 Bias Correction(T1wMRIs);
8: {N4v = (1/(1 + exp(−k ∗ (pv − c))))}
9: return T1wMRI;
10: }
11: Then T1wMRI -> Processed to Free Surfer Method ()
12: {
13: Brain Surface Extraction (T1WMRI)
14: Brain Tissue Segmentation (T1BSE)
15: Surface Registration (T1BTS)
16: Cortical Thickness (T1SR)
17: Sub-Cortical Registration (T1CT)
18: }
19: End

4.2. PET SCANS

Before fusion, the preprocessing of the PET scans is one of the most important features.
The preprocessing in the PET scans is used to remove noise, reduce artifacts, and improve
the signal-to-noise ratio of the scans. The most common preprocessing techniques used for
PET scans include N4 bias correction, normalization, and registration. Artifacts are reduced
using techniques such as median filtering, which helps to remove artifacts by retaining the
originality of the image. These artifacts are generally removed from the PET scans using
the adaptive noise-filtering technique. In this technique, the noise-oriented input signal is
found and then it is subtracted from the template signal by preserving the signal original
form.

PETtscans = (1− α) ∗ PETtscansold + α ∗ X (3)

In Equation (3), PETtscans is the new noise level, PETtscansold is the old noise level,
alpha is the adaption rate and x is the current noise sample.

Filtering involves using a low-pass or high-pass filter to remove high-frequency noise
and artifacts Calibration is used to ensure that the intensities of the pixels are consistent
across images. Normalization is used to adjust the intensities of pixels, so they are within a
certain range. Finally, registration is used to align the images across multiple PET scans.
This is conducted by using an adaptive noise-reduction technique, which helps to reduce
noise without affecting the original image. Then the preprocessed PET scans are further
supplied to the Free Surfer-based registration method.

Algorithm 2 contains the basic preprocessing approach which is contextual to PET
scans. The PET scans are basically highly integrated into the features, but the vigilance of
these features cannot be integrated through this individual modality. This modality requires
a certain fusion approach with the T1-weighted image, to obtain the clear vision of the
amyloid protein and the affected cortical region in the brain. These PET scans underwent
the N4 bias correction methods, normalization and adaptive noise-filtering methods. These
methods help in the fusion approach for the feature extraction of the PET scans.
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Algorithm 2 Preprocessing approach in Single Modality (PETscans1)

1: Input: Raw PETscans
2: Output: Preprocessed PETscans
3: For I- = PETscans to n do
4: {
5: N4 Bias Correction (PETscans1);
6: {N4v = (1/(1 + exp(−k ∗ (pv − c))))}
7: Normalization (PETscans2);
8: {Npv = (Pv −Mv)/(Mav −Mv)}
9: Adaptive noise filtering
10: PETtscans = (1 − α) ∗ PETtscansold + α ∗ x
11: }

4.3. Multimodality Image Fusion

Image fusion is a technique in which the different modalities of images fuse to provide
the hybrid set of features in Figure 5. Pixel-level, feature-level, and decision-level fusion
are the basic types of image-fusion approaches in practice. In this process, we have chosen
the pixel-level fusion approach to see the actual difference in the cortical region of AD and
its different stages through these fused modalities. This helps reduce the noise level and
provides a better resolution of the affected area of the brain region. The T1-weighted scans
were processed through Free Surfer by the recon-all methods, which contain the pipeline
of the different preprocessing steps and help to evaluate the significant features—volume,
area, mean, and others—of the different cortical regions the brain. The T1 and PET scans
are taken using a register method, where a global affine transformation is implemented for
alignment. This transformation method produces a better comparison and study of these
modalities, which can be enriched with the GM, WM, cortical thickness, and presence in
the neuro region. This was operated using the three translations and aligned adaptation
approaches. After the registration method, the mutual characteristics of these modalities
required us to determine the similarity between the two scans. After the fusion of these
two scans, the volume registration approach wraps PET and MRI images by translating
the source volume to the target volume’s space. To align these volumes and bring them
into a unified space, the mri_vol2vol method establishes their transformation matrix.
Subsequently, the similarity measure between the two modalities was analyzed.

The fused (PET and MRI) images’ similarity measures were optimized through the
different registered parameters. They were also fine-tuned through this approach. These
recorded parameters were taken into account when creating the transformation matrix.
This matrix calculates the segmented features via the stat segmentation approach from the
Free Surfer method. Hence, the volume statistics were measured in the different regions,
and using the additional stat data, the calculations were performed for this approach.
These stat data were calculated for the specific ROI in the brain, such as the frontal lobes,
temporal lobes, occipital lobes, and cerebellum, as well as subcortical structures such as
the Hp, amygdala, thalamus, and basal ganglia. Hence, these generations of the different
stats contain cortical thickness, surface area, folding index, curvature, mean curvature, and
cortical volume.

Algorithm 3 that is fusion of the T1 scans and PET modality. Here, in this table, we
first applied the bb-registration methods for performing the registration, including global
affine transformation and non-rigid transformation, and then we returned the registered
modality. Then, these fused modalities went to volume-to-volume mapping, where they
were altered in the similarity measurement and correlation matrix, and we returned the
matrix. From the correlations matrix, the stat features were extracted, including the volume
statistics and surface statistics for the variation in the classification of AD, MCI and CN
classes.
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Algorithm 3 Algorithm for Fusion Dual Modality (PETscans + T1scans)

1: Input: Preprocessed PETscans and T1scans
2: Output: Stat_data_neuroregion
3: for I = PETscans and T1scans to n do
4: Register_method {

5: Global affine transformation (PETscans + T1scans);

6: Non-Rigid Registration (PT1rscans);

7: Return Matrix (NRPETscans + NRT1scans);

8: }

9:
Volume to Volume
Mapping {

10: Similarity Measure (NRPETscans + NRT1scans)
11: Correlation Matrix (NRPETscans + NRT1scans) optimized parameters
12: Return Matrix ((NRPETscans + NRT1scans) optimized parameters

13: }

14:
Stats Extraction From
Output of v to v Mapping {

15: Volume Statistics (((NRPETscans + NRT1scans) optimized parameters))
16: Surface Statistics ((((NRPETscans + NRT1scans) optimized parameters))
17: Return Stat Data (((((NRPETscans + NRT1scans) optimized parameters)))

18: }

19: end
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4.4. Feature-Level Fusion

For our feature-level fusion, we extracted the relevant features from T1-MRI scans,
which include calculation of the volume, area, white matter, curving, folding, Gaussian
curve, thickness, and folding from the different cortical regions of the brain. In the same way,
after fusion (T1 + PET), we extracted the features from the combined modality and compiled
them into one stat file for further classification. Before applying these combined features,
we used the correlation and drop-out techniques for the removal of unwanted features
before the selection of features. We applied Binary- and Multi Class-level classification for
the intended classes: AD, MCI, CN. The whole process is represented in Figure 6.

CSR = [F_T1, F_FNFR] (4)
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Let n_t1 be the number of features extracted from the T1 modality (F_T1) and n_fnfr be
the number of features extracted from the FNFR modality (F_FNFR). If we have m samples,
then the matrix representation of the CSR will be an m x (n_t1 + n_fnfr) matrix, denoted as
CSR_mat:

CSR_mat =

∣∣∣∣∣∣∣∣∣
FT11 FFNFR1

FT12 FFNFR2
...

FT1m FFNFRm

∣∣∣∣∣∣∣∣∣ (5)

4.5. ML and EL Models

ML methods are currently trending as essential techniques for classifying different
stages of AD. However, using the ensemble technique for validating results is a novel
approach that has yet to be explored in the trending ML methods for classifying AD, MCI,
and CN individuals. Therefore, both approaches were used in our study, utilizing the
latest trending ML approach, as shown in Figure 6. We ensembled from those methods to
validate the classification (Acc) of AD, MCI, and CN. We used a feature-fusion approach to
obtain a pool of fused and non-fused features, including the area, maximum, mean, number
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of vertices, and number of voxels, standard deviation, and volume from the fused (PET and
MRI) scans. Additionally, we considered the segmented volume, mean, and area from the
segmented region of the non-fused scans. These features were then passed through the ML
and EL approaches for further AD, MCI, and CN classification. The process is described in
detail in Figure 7.
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4.6. ML Methods

There are some current ML methods that are traditionally used for the classification
of AD and its subtypes. Here, recent methods have been used for the category. Logistic
Regression (LR) is the statistical technique employed for the Binary type. A Decision
Tree (DT) model resembles a flowchart and divides data depending on the feature values.
Random Forest (RF) is a collection of Decision Trees that reduces overfitting. Gradient
Boosting (GB) is an iterative approach that merges weak learners to enhance prediction.
Ada Boost (AB) is a boosting algorithm that changes sample weights to improve classifier
performance. K-Nearest Neighbor (KNN) is an instance-based technique that categorizes
data based on the majority vote of its nearest neighbors. Gaussian Naive Bayes (GNB) is a
probabilistic classifier based on Bayes’ theorem with an assumption of Gaussian distribution.
Support Vector Machine (SVM) is a technique that determines the best decision boundary
between classes. Multi-layer Perceptron (MLP) is a neural network that learns non-linear
relationships in a feedforward manner. Lastly, Support Vector Machine RBF (SVM-RBF) is
an SVM that incorporates a Radial Basis Function Kernel to allow for non-linear decision
boundaries. LR uses multi_class = ‘auto’ for automatic Multi Class strategy selection; DT
uses default settings; SVM uses a linear kernel, C = 0.9 for regularization, RF uses default
settings; GB and AB use default parameters; KNN uses three nearest neighbors; GNB uses
a default parameter; MLP uses two hidden layers, ReLU activation, and the Adam solver;
and SVM RBF uses an RBF kernel, gamma = 0.9, and C = 1. Hence, these are the parameters
used for both the Binary and Multi Class for AD.
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4.7. El Methods

To see the effectiveness reached in the (Acc), we tried this ensemble of different
traditional ML models. First, we combined Gradient Boosting (GB) and Support Vector
Machine with Radial Basis Function Kernel (SVM_RBF) to create an ensemble method
(SVM_RBF + GB) to classify Alzheimer’s disease (AD) subtypes. The voting classifier is
an ensemble learning algorithm that improves (Acc) and stability by leveraging diversity
among the base models. The voting classifier ensemble algorithm is used with the output
of a GB classifier and an SVM with an RBF kernel. It is a ‘hard’ voting approach, selecting
the class with the most votes from the base models. The SVM was adopted with the same
parameter as a decision boundary flexibility, C = 1 was used to enable regularization and
generalization, and Multi Class classification was performed. GB improves prediction (Acc)
by iteratively refining the weak metrics data, while SVM_RBF excels in the classification
removal of nonlinear data, which is included stat data part. Hence, the combination of
these models provides a better classification for the Multi Class of AD and its subtypes.

Similarly, we adopted this ensemble approach for Binary Class classification. Here,
we used the four models so the ensemble performed better in the Binary Class, especially
in the (AD vs. MCI). The (SVM_RBF + AB + GB + RF) is for the Binary classification of
AD and subtypes of AD. The model, which is a combination of four different classifiers,
includes specific parameters for each one. One of the classifiers is an SVM with an RBF
kernel, with gamma = 0.9 to control how the decision boundary is shaped, a regularization
parameter of C = 1, and decision_function_shape = ‘ovr’ for Multi Class classification.
Two other classifiers use default parameters for AB classifier () and GB classifier (). The
fourth classifier, RF, utilizes RF classifier () with a criterion of ‘gini’ and n_estimators = 100,
which determine the number transit in the data. This can enrich the classifier with better
performance for classifying AD and its subtypes. Consequently, after implementing these
techniques, significant findings were observed for identifying AD and its various stages. A
detailed discussion is presented in Section 5.

5. Result Analysis and Discussion

After the fusion of the features extracted from the fused PET and T1-weighted modali-
ties and the non-fused modalities, the high-intensity and noise-integrated features were in
the generated stat file. These features required regress preprocessing before the feature se-
lection. For the different features, normalization, correlation, scaling, and feature drop-out
techniques were applied to detect AD and its stages. First, this study uses the correlation
approach to filter out the relevant data whose impact is more significant than 0.9. This
procedure already normalized these remaining features. The feature selection method
ANOVA F-value and the RF technique were used for feature selection. Hence, the selected
features were obtained as shown in Figure 8. This feature set contains information about
the different forms of statistical calculation of the other cortical regions of the brain. Hence,
after the feature selection, these feature sets passed through various trending learning
techniques for classifying AD and its stages. These techniques include LR, DT, SVM, RF,
GB, AB, KNN, GNB, MLP, and SVM_RBF for the Binary and Multi Class classification of
AD, MCI, and CN, and similarly, the ensemble methods (SVM_RBF + GB) and (SVM_RBF +
AB + GB + RF). Section 5.1 covers Experiment 1, which involves Binary classification using
ML and EL techniques. Section 5.2 details Experiment 2, where Multi Class classification is
performed among AD, MCI, and CN classes. The same EL and ML methods are also used
here. These classifications are conducted using different performance metrics in terms of
(Acc), precision (Prec), recall (Rrec) achieved, and F1 score (F1sco).



Mach. Learn. Knowl. Extr. 2023, 5 526

Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW  15 
 

 

classification is performed among AD, MCI, and CN classes. The same EL and ML meth-
ods are also used here. These classifications are conducted using different performance 
metrics in terms of (Acc), precision (Prec), recall (Rrec) achieved, and F1 score (F1sco). 

 
Figure 8. Selected feature Set of the Feature-level fusion. Figure 8. Selected feature Set of the Feature-level fusion.



Mach. Learn. Knowl. Extr. 2023, 5 527

5.1. Experiment 1

Experiment 1 involved performing Binary Class classification on three classes from
the Alzheimer’s data set (AD, MCI, and CN). The results of the Binary Class, by applying
these standalone learning and EL methods, are described in Table 2.

Table 2. The results achieved from the different trending methods and performing the Binary
classification (MCI vs. CN).

Model (Acc) (Prec) (Rrec) (F1sco)

LR 98 98 98 98
DT 98 98 98 98

SVM 99 99 99 99
RF 98 99 99 99
GB 97 99 99 99
AB 96 99 99 99

KNN 74 79 73 72
GNB 81 81 81 81
MLP 75 84 75 74

Among these models, the SVM has the highest Acc (98), Prec (99), Rrec (99), and F1sco
(99), indicating that it performs the best overall. The other models also perform relatively
well, with high Acc, Prec, Rrec, and F1sco scores, ranging from 98 to 99. However, KNN and
MLP models have relatively lower performance scores. In the classification of MCI vs. CN,
we did not use the ensemble method; the adequate (Acc) was achieved through standalone
ML methods. The performance analysis is described using the graph and the box plot of all
the models for this classification in Figure 9.

Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW  16 
 

 

5.1. Experiment 1 
Experiment 1 involved performing Binary Class classification on three classes 

from the Alzheimer’s data set (AD, MCI, and CN). The results of the Binary Class, by 
applying these standalone learning and EL methods, are described in Table 2. 

Table 2. The results achieved from the different trending methods and performing the Binary 
classification (MCI vs. CN). 

Model (Acc) (Prec) (Rrec) (F1sco) 
LR 98 98 98 98 
DT 98 98 98 98 

SVM 99 99 99 99 
RF 98 99 99 99 
GB 97 99 99 99 
AB 96 99 99 99 

KNN 74 79 73 72 
GNB 81 81 81 81 
MLP 75 84 75 74 

Among these models, the SVM has the highest Acc (98), Prec (99), Rrec (99), and F1sco 
(99), indicating that it performs the best overall. The other models also perform relatively 
well, with high Acc, Prec, Rrec, and F1sco scores, ranging from 98 to 99. However, KNN and 
MLP models have relatively lower performance scores. In the classification of MCI vs. CN, 
we did not use the ensemble method; the adequate (Acc) was achieved through standalone 
ML methods. The performance analysis is described using the graph and the box plot of 
all the models for this classification in Figure 9. 

 
Figure 9. Performance Metrics and Model Performance of the Binary Class (MCI vs. CN). Figure 9. Performance Metrics and Model Performance of the Binary Class (MCI vs. CN).

The model break down, on the basis of the performance parameters for (MCI vs. CN),
is shown below. The ROC curve and confusion matrix of the model with high and low
(Acc) are shown in Figure 10.
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Again, we performed the classification for the other classes, such as AD vs. MCI. The
conversion of MCI to AD always has challenges in the classification. These challenges
increase due to the similarity in some of the features, where the classification model is
unable to find the difference in the comparison. Here, in this classification, we used
standalone methods and ensemble methods. Table 3 below describes the detailed results,
which were obtained after applying all these models.

Table 3. The results achieved by the different ML models for the Binary Class (AD vs. MCI).

Model (Acc) (Prec) (Rrec) (F1sco)

LR 72.97 74.55 72.97 72.89
DT 81.08 81.25 81.08 81.11

SVM 72.97 73.48 72.97 73.01
RF 86.49 86.65 86.49 86.51
GB 89.19 89.19 89.19 89.19
AB 89.19 89.57 89.19 89.11

KNN 89.19 89.74 89.19 89.21
GB 54.05 77.03 54.05 44.73

MLP 54.05 29.22 54.05 37.93
SVM RBF 86.49 86.53 86.49 86.45

(SVM_RBF + AB + GB + RF) 91.89 91.98 91.89 91.87

The ensemble method (SVM_RBF + AB + GB + RF) has the highest (Acc) 91.89, (Prec)
91.98, (Rrec) 91.89, and (F1sco) 91.87, indicating that it has the best performance value as
compared to the others. AB, GB, KNN with an (Acc) of 89.19 and (Prec), (Rrec), and (F1sco)
close to 89, is quite close to a good performance. The models, including LR, DT, SVM, GB,
MLP, have relatively reduced (Acc), (Prec), (Rrec), and (F1sco) levels. The ensemble and RF,
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GB, and AB models show an acceptable (Acc), while other models such as LR, DT, SVM,
GB, and MLP are lacking concerning the conversion of MCI to AD. The model break down,
on the basis of the performance parameters for the classification of (AD vs. MCI), is in
Figure 11.
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In the previous classification, we observed that the conversion of AD vs. MCI does
not provide the greater Acc as compared to the CN vs. MCI. An adequate (Acc) is achieved
through the ensemble model of 91. Now, again, we performed the classification of the pure
AD class vs. the CN class. The performance of these different models was acquired and the
results are described in Table 4.
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Table 4. Describes the results achieved by the different ML models for the Binary Class (AD vs. CN).

Model (Acc) (Prec) (Rrec) (F1sco)

LR 98 98 98 98
DT 97 97 97 97

SVM 99 99 99 99
RF 99 98 98 99
GB 97 97 98 96
AB 98 98 98 98

KNN 78 78 78 78
GNB 72 74 72 71
MLP 77 79 78 77

The SVM model has the highest (Acc) (99), (Prec) (99), (Rrec) (99), and (F1sco) (99),
indicating that it performs the best overall. The RF and AB models also have high (Acc),
(Prec), (Rrec) and (F1sco), with scores of 99 and 98, respectively. The LR, DT, GB, KNN, GNB,
and MLP models have lower performance metrics in comparison to the other models. The
performance analysis using a graph and a box plot of all the models for these classifications
is described in Figure 13.
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The model break down, on the basis of the performance parameters for the classifica-
tion of (AD vs. CN), is shown below. The ROC curve and confusion matrix of the highest
(Acc) and lower (Acc) achieved by the model for the classification are shown in Figure 14.
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Hence, after seeing the performance of the classifications of all the classes (AD, MCI
and CN), Binary Class detection has the maximum (Acc) of 99% using the SVM model. AD
vs. MCI classification also shows a sustainable (Acc) as compared to previous research
trends. After the Binary Class, we performed Multi Class detection for the detection of AD
and its different stages.

5.2. Experiment 2

Since Binary Class classification was conducted and an adequate (Acc) was achieved
using the classification models, we could again apply this model for Multi class and see the
performance of this model in this scenario. Table 5 describes the detailed results, which
were obtained after applying all these models (AD vs. MCI vs. CN).

Table 5. Describes the results achieved by the different ML models for the Binary Class (AD vs. MCI
vs. CN).

Model (Acc) (Prec) (Rrec) (F1sco)

LR 58.18 61.41 58.18 57.27
DT 82.73 83.10 82.73 82.88

SVM 59.09 65.12 59.09 54.34
RF 86.36 87.57 86.36 86.51
GB 93.64 93.71 93.64 93.66
AB 71.82 73.45 71.82 72.24

KNN 86.36 89.78 86.36 86.45
GNB 65.45 69.16 65.45 65.25
MLP 61.82 65.23 61.82 60.71

SVM_RBF 91.82 93.00 91.82 91.90
GB + SVM + RBF 96.36 97.42 96.36 96.36

Based on the results, the ensemble model has lots of potential for the m=Multi Class
classification of AD and its subtypes. There was a sustainable (Acc) achieved in the Multi
Class through the ensemble model as compared to standalone learning methods. The
ensemble model (GB_SVM_RBF) has the highest (Acc), with 96.36% (Acc) and an (F1sco) of
96.36%. In contrast, the Logistic Regression model has the second-lowest performance in
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both (Acc) (58.18%) and (F1sco) (57.27%). Other models, such as (RF), (GB), and (SVM_RBF)
also demonstrate strong performance, while models such as (GNB) and (MLP) are less
accurate and have lower (F1sco) levels. The performance analysis, using a graph and a box
plot, of all the models for these classifications is described in Figure 15.
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Following the evaluation of performance metrics and model performance for all
models, we also examined the Confusion Matrix and ROC curve for each model in relation
to the results obtained for (BC) (AD vs. MCI vs. CN) (Figure 16).

To further validate our study, we employed various feature selection (Random Forest
and KBest) and classification techniques and observed the differing results upon applying
these models. When conducting an ablation study concerning feature selection methods
and classification models, the ensemble model consistently demonstrated superior accuracy
compared to the other models utilized, shown in Table 6.

Table 6 presents the accuracy (Acc) of various combinations of feature selection meth-
ods and classification models. The ensemble model ‘RF + GB’ achieves the highest accuracy
(90.91%) among the non-ensemble models. The original ensemble model, ‘GB_SVM_RBF’,
outperforms all the other models, with an accuracy of 96%. Comparing the feature selection
methods, models using ‘RF’ generally achieve higher accuracy than those using ‘KBest‘.
Among the classifiers, ‘DT’, ‘KNN’, and ‘MLP’ consistently yield relatively high accuracy
scores when combined with different feature selection methods. The ‘GNB’ and ‘AB’ clas-
sifiers result in lower accuracy scores in most cases, indicating they may not be the most
suitable classifiers for this data set. The ensemble model ‘GB_SVM_RBF’ demonstrates the
best performance, and utilizing the ‘RF’ feature selection method yields superior results to
the ‘KBest’ method. The plot for this study is represented in Figure 17.
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Table 6. Describes the ablation study of the different ML and Ensemble models for the Multi Class
(AD vs. MCI vs. CN).

Model (Acc)

RF + LR 72.73
RF + DT 87.27

RF + SVM 80.00
RF + GNB 70.91
RF + KNN 86.36
RF + MLP 86.36
RF + RF 88.18
RF + GB 90.91
RF + AB 77.27

KBest + LR 72.73
KBest + DT 77.27

KBest + SVM 82.73
KBest + GNB 78.18
KBest + KNN 80.00
KBest + MLP 80.00
KBest + RF 80.00
KBest + GB 80.00
KBest + AV 71.82

GB_SVM_RBF 96
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The cumulative (Acc) comparison of the Binary Class and Multi Class classes of the
AD with respect to the different models is shown in Figure 18.

Regarding the fusion of the features and images, the results have effectively shown
progress in detecting AD and its stages. The fusion approach has significantly outperformed
other non-fusion methods. Figure 15 demonstrates the different performance metrics of
the various models for the Binary and the Multi Class classification of AD. An acceptable
(Acc) is achieved in the Binary Class classification. Many ML and ensemble models have
outperformed and shown sustainable (Acc). However, for Multi Class, the (Acc) is also
acceptable, but when comparing with the Binary results, there is still room for improvement.
The results achieved in this article are compared and validated with the recent research
conducted in AD detection in Table 7.

Table 7. Exiting proposed method comparison with the other method in the multimodality.

S. No Author Data Base Method Binary Class Multi Class

1 [53] ADNI 3D-CNN AD vs. CN = 91.5 NA
2 [54] ADNI Soft Max Classifier CN vs. MCI = 87.50 NA
3 [55] ADNI BiLSTM NA AD vs. CN vs. MCI = 84.95
4 [56] ADNI Feature Fusion AD vs. CN = 90 NA
5 [57] ADNI Graph Fusion AD vs. CN = 93 NA

6 Proposed ADNI
Image Fusion +

Feature-Level Fusion +
Ensemble method

AD vs. CN = 99
MCI vs. CN = 99
AD vs. MCI = 91

AD vs. MCI vs. CN = 96

The proposed study, as shown in the table, utilized a combination of image fusion,
feature-level fusion, and ensemble methods for classification. For the Binary classification
of AD vs. CN, an accuracy of 99% was achieved, which is higher than the accuracies
obtained in other studies. In the Binary type of MCI vs. CN, an accuracy of 99% was
obtained. For the Binary classification of AD vs. MCI, an accuracy of 91% was achieved.

For the Multi Class category of AD vs. MCI vs. CN, an accuracy of 96% was obtained.
The author reports that this result outperforms the Multi Class classification accuracy of
84.95% [32]. Hence, from the above table, we can see that the proposed model shows an
effective (Acc) in terms of the Binary Class and Multi Class classification in Figure 19.
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6. Conclusions

The prediction of AD and its stages is widely explored in this article using the multi-
modal approach. An automatic pipeline method called Free Surfer helps to combine two
modalities (PET and MRI) through the affine registration method. This whole technique
uses pixel-level fusion. Then, these fused and non-fused outcomes are again processed
for feature extraction. The extracted features, including volume, area, curving, folding,
standard deviation, and mean, are from different brain cortical and subcortical regions,
including the Hp, amygdala, and putamen. The features are fused for both modalities,
and unnecessary elements are removed, leaving only the optimum characteristics for clas-
sification. Techniques such as ANOVA, scalar, Random Forest classifier, and correlation
are used to select the prominent features. Those features are passed through various ML
trending methods, including LR, DT, RF, GB, AB, KNN, GNB, SVM, MLP, SVM-RBF, and
EL. Specifically, the EL methods are SVM_RBF + AB + GB + RF and GB + SVM_RBF. In a
Binary classification of AD vs. CN, most models achieved an adequate (Acc) of 99%. For
MCI vs. CN, high (Acc) scores were found using SVM, RF, GB, and AB models; that is,
99%. The (Acc) of AD to MCI detection was lower than other Binary classifications, but an
ensemble model (SVM_RBF + AB + GB + RF) still achieved 91% (Acc). For AD vs. MCI
vs. CN analysis, the ensemble model (GB + SVM_RBF) had the highest (Acc) score of 96%.
Therefore, the image- and feature-level fusion techniques demonstrate potential as features
for ensemble classification models, which perform sustainably in Binary and Multi Class
classification. Our subsequent analysis in future work will focus on identifying which
regions provide the most prominent features for detecting AD, MC, and CN.
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36. Odusami, M.; Maskeliūnas, R.; Damaševi, R. Pixel-Level Fusion Approach with Vision Transformer for Early Detection of
Alzheimer’s Disease. Electronics 2023, 12, 1218. [CrossRef]

37. El-Sappagh, S.; Abuhmed, T.; Islam, S.R.; Kwak, K.S. Multimodal multitask deep learning model for Alzheimer’s disease
progression detection based on time series data. Neurocomputing 2020, 412, 197–215. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3043715
https://doi.org/10.3390/electronics10030249
https://doi.org/10.3389/fnins.2020.00259
https://www.ncbi.nlm.nih.gov/pubmed/32477040
https://doi.org/10.1109/TMI.2021.3077079
https://www.ncbi.nlm.nih.gov/pubmed/33939609
https://doi.org/10.1016/j.neuroscience.2014.02.017
https://www.ncbi.nlm.nih.gov/pubmed/24583036
https://doi.org/10.1212/WNL.0b013e3181c3f293
https://doi.org/10.1016/j.neuron.2004.09.006
https://doi.org/10.1016/j.neurobiolaging.2006.11.010
https://doi.org/10.3233/JAD-2010-091504
https://doi.org/10.2174/138920210793360943
https://doi.org/10.1148/radiol.2018170575
https://doi.org/10.1016/j.neuroimage.2011.01.008
https://www.ncbi.nlm.nih.gov/pubmed/21236349
https://doi.org/10.1007/s11517-019-01974-3
https://www.ncbi.nlm.nih.gov/pubmed/31028606
https://doi.org/10.1109/JBHI.2020.2973324
https://www.ncbi.nlm.nih.gov/pubmed/32071013
https://doi.org/10.1016/j.media.2016.11.002
https://www.ncbi.nlm.nih.gov/pubmed/27898305
https://doi.org/10.1016/j.neuroimage.2014.10.002
https://doi.org/10.1016/j.bios.2021.113730
https://doi.org/10.1038/s41598-018-37769-z
https://doi.org/10.1016/j.simpat.2019.102023
https://doi.org/10.1016/j.bspc.2021.103293
https://doi.org/10.1038/s41467-022-31037-5
https://doi.org/10.1016/j.conb.2021.07.007
https://www.ncbi.nlm.nih.gov/pubmed/34399146
https://doi.org/10.3390/electronics12051218
https://doi.org/10.1016/j.neucom.2020.05.087


Mach. Learn. Knowl. Extr. 2023, 5 538

38. Uysal, G.; Ozturk, M. Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods. J. Neurosci.
Methods 2020, 337, 108669. [CrossRef] [PubMed]

39. Venugopalan, J.; Tong, L.; Hassanzadeh, H.R.; Wang, M.D. Multimodal deep learning models for early detection of Alzheimer’s
disease stage. Sci. Rep. 2021, 11, 3254. [CrossRef] [PubMed]

40. Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; Delon, M.R. Alzheimer’s disease and senile dementia: Loss of
neurons in the basal forebrain. Science 1982, 215, 1237–1239. [CrossRef]

41. Liu, M.; Zhang, D.; Shen, D.; Alzheimer’s Disease Neuroimaging Initiative. Ensemble sparse classification of Alzheimer’s disease.
NeuroImage 2012, 60, 1106–1116. [CrossRef]

42. Al-Hagery, M.A.; Al-Fairouz, E.I.; Al-Humaidan, N.A. Improvement of Alzheimer disease diagnosis (Acc) using ensemble
methods. Indones. J. Electr. Eng. Inform. (IJEEI) 2020, 8, 132–139.

43. Chatterjee, S.; Byun, Y.C. Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification. Sensors 2022, 22, 7661.
[CrossRef]

44. Gamal, A.; Elattar, M.; Selim, S. Automatic Early Diagnosis of Alzheimer’s Disease Using 3D Deep Ensemble Approach. IEEE
Access 2022, 10, 115974–115987. [CrossRef]

45. El-Sappagh, S.; Alonso, J.M.; Islam, S.M.; Sultan, A.M.; Kwak, K.S. A multilayer multimodal detection and prediction model
based on explainable artificial intelligence for Alzheimer’s disease. Sci. Rep. 2021, 11, 1–26. [CrossRef] [PubMed]

46. El-Sappagh, S.; Saleh, H.; Sahal, R.; Abuhmed, T.; Islam, S.R.; Ali, F.; Amer, E. Alzheimer’s disease progression detection model
based on an early fusion of cost-effective multimodal data. Futur. Gener. Comput. Syst. 2020, 115, 680–699. [CrossRef]

47. Ying, Y.; Yang, T.; Zhou, H. Multimodal fusion for alzheimer’s disease recognition. Appl. Intell. 2022, 1–12. [CrossRef]
48. Zargarbashi, S.; Babaali, B. A multi-modal feature embedding approach to diagnose Alzheimer disease from spoken language.

arXiv 2019, arXiv:1910.00330.
49. Zhang, F.; Li, Z.; Zhang, B.; Du, H.; Wang, B.; Zhang, X. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s

disease. Neurocomputing 2019, 361, 185–195. [CrossRef]
50. Zhang, J.; He, X.; Qing, L.; Gao, F.; Wang, B. BPGAN: Brain PET synthesis from MRI using generative adversarial network for

multi-modal Alzheimer’s disease diagnosis. Comput. Methods Programs Biomed. 2022, 217, 106676. [CrossRef]
51. Zuo, Q.; Lei, B.; Shen, Y.; Liu, Y.; Feng, Z.; Wang, S. Multimodal Representations Learning and Adversarial Hypergraph Fusion for

Early Alzheimer’s Disease Prediction. In Proceedings of the Pattern Recognition and Computer Vision: 4th Chinese Conference,
PRCV 2021, Beijing, China, 29 October–1 November 2021; Proceedings, Part III 4; Springer International Publishing: Cham,
Switzerland, 2021; pp. 479–490. [CrossRef]

52. Song, J.; Zheng, J.; Li, P.; Lu, X.; Zhu, G.; Shen, P. An effective multimodal image fusion method using MRI and PET for
Alzheimer’s disease diagnosis. Front. Digit. Health 2021, 3, 637386. [CrossRef]

53. Cui, R.; Liu, M. RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. 2019, 73,
1–10. [CrossRef]

54. Hu, C.; Ju, R.; Shen, Y.; Zhou, P.; Li, Q. Clinical decision support for Alzheimer’s disease based on deep learning and brain
network. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27
May 2016; pp. 1–6. [CrossRef]

55. Abuhmed, T.; El-Sappagh, S.; Alonso, J.M. Robust hybrid deep learning models for Alzheimer’s progression detection.
Knowl.-Based Syst. 2021, 213, 106688. [CrossRef]

56. Wang, Y.; Liu, X.; Yu, C. Assisted Diagnosis of Alzheimer’s Disease Based on Deep Learning and Multimodal Feature Fusion.
Complexity 2021, 2021, 6626728. [CrossRef]

57. Rohanian, M.; Hough, J.; Purver, M. Multi-modal fusion with gating using audio, lexical and disfluency features for Alzheimer’s
dementia recognition from spontaneous speech. arXiv 2021, arXiv:2106.09668.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jneumeth.2020.108669
https://www.ncbi.nlm.nih.gov/pubmed/32126274
https://doi.org/10.1038/s41598-020-74399-w
https://www.ncbi.nlm.nih.gov/pubmed/33547343
https://doi.org/10.1126/science.7058341
https://doi.org/10.1016/j.neuroimage.2012.01.055
https://doi.org/10.3390/s22197661
https://doi.org/10.1109/ACCESS.2022.3218621
https://doi.org/10.1038/s41598-021-82098-3
https://www.ncbi.nlm.nih.gov/pubmed/33514817
https://doi.org/10.1016/j.future.2020.10.005
https://doi.org/10.1007/s10489-022-04255-z
https://doi.org/10.1016/j.neucom.2019.04.093
https://doi.org/10.1016/j.cmpb.2022.106676
https://doi.org/10.1007/978-3-030-88010-1_40
https://doi.org/10.3389/fdgth.2021.637386
https://doi.org/10.1016/j.compmedimag.2019.01.005
https://doi.org/10.1109/icc.2016.7510831
https://doi.org/10.1016/j.knosys.2020.106688
https://doi.org/10.1155/2021/6626728

	Introduction 
	Recent Study 
	Data Set 
	Methods 
	MRI SCANS 
	Normalization 
	N4 Biased Correction 
	Feature Extraction 

	PET SCANS 
	Multimodality Image Fusion 
	Feature-Level Fusion 
	ML and EL Models 
	ML Methods 
	El Methods 

	Result Analysis and Discussion 
	Experiment 1 
	Experiment 2 

	Conclusions 
	References

